Refactor indicator management to a data-driven approach

- Introduced dynamic generation of parameter fields and callback handling for indicators, enhancing modularity and maintainability.
- Updated `config_utils.py` with new utility functions to load indicator templates and generate dynamic outputs and states for parameter fields.
- Refactored `indicators.py` to utilize these utilities, streamlining the callback logic and improving user experience by reducing hardcoded elements.
- Modified `indicator_modal.py` to create parameter fields dynamically based on JSON templates, eliminating the need for manual updates when adding new indicators.
- Added documentation outlining the new data-driven architecture for indicators, improving clarity and guidance for future development.

These changes significantly enhance the flexibility and scalability of the indicator system, aligning with project goals for maintainability and performance.
This commit is contained in:
Vasily.onl 2025-06-11 19:09:52 +08:00
parent 89b071230e
commit 3e0e89b826
8 changed files with 406 additions and 249 deletions

View File

@ -6,6 +6,7 @@ import json
import os
import logging
from typing import List, Dict, Any, Optional
from dash import Output, Input, State
logger = logging.getLogger(__name__)
@ -164,4 +165,174 @@ def generate_parameter_fields_config(indicator_type: str) -> Optional[Dict[str,
fields_config[param_name] = field_config
return fields_config
return fields_config
def get_parameter_field_outputs() -> List[Output]:
"""Generate dynamic Output components for parameter field visibility callbacks.
Returns:
List[Output]: List of Output components for all parameter containers
"""
templates = load_indicator_templates()
outputs = [Output('indicator-parameters-message', 'style')]
for indicator_type in templates.keys():
outputs.append(Output(f'{indicator_type}-parameters', 'style'))
return outputs
def get_parameter_field_states() -> List[State]:
"""Generate dynamic State components for parameter input fields.
Returns:
List[State]: List of State components for all parameter input fields
"""
templates = load_indicator_templates()
states = []
for indicator_type, template in templates.items():
config = generate_parameter_fields_config(indicator_type)
if config:
for field_config in config.values():
states.append(State(field_config['input_id'], 'value'))
return states
def get_parameter_field_edit_outputs() -> List[Output]:
"""Generate dynamic Output components for parameter fields in edit mode.
Returns:
List[Output]: List of Output components for setting parameter values
"""
templates = load_indicator_templates()
outputs = []
for indicator_type, template in templates.items():
config = generate_parameter_fields_config(indicator_type)
if config:
for field_config in config.values():
outputs.append(Output(field_config['input_id'], 'value'))
return outputs
def get_parameter_field_reset_outputs() -> List[Output]:
"""Generate dynamic Output components for resetting parameter fields.
Returns:
List[Output]: List of Output components for resetting parameter values
"""
templates = load_indicator_templates()
outputs = []
for indicator_type, template in templates.items():
config = generate_parameter_fields_config(indicator_type)
if config:
for field_config in config.values():
outputs.append(Output(field_config['input_id'], 'value', allow_duplicate=True))
return outputs
def collect_parameter_values(indicator_type: str, all_parameter_values: Dict[str, Any]) -> Dict[str, Any]:
"""Collect parameter values for a specific indicator type from callback arguments.
Args:
indicator_type (str): The indicator type
all_parameter_values (Dict[str, Any]): All parameter values from callback
Returns:
Dict[str, Any]: Parameters specific to the indicator type
"""
config = generate_parameter_fields_config(indicator_type)
if not config:
return {}
parameters = {}
defaults = get_indicator_default_parameters(indicator_type)
for param_name, field_config in config.items():
field_id = field_config['input_id']
value = all_parameter_values.get(field_id)
default_value = defaults.get(param_name, field_config.get('default'))
# Use provided value or fall back to default
parameters[param_name] = value if value is not None else default_value
return parameters
def set_parameter_values(indicator_type: str, parameters: Dict[str, Any]) -> List[Any]:
"""Generate parameter values for setting in edit mode.
Args:
indicator_type (str): The indicator type
parameters (Dict[str, Any]): Parameter values to set
Returns:
List[Any]: Values in the order expected by the callback outputs
"""
templates = load_indicator_templates()
values = []
for current_type, template in templates.items():
config = generate_parameter_fields_config(current_type)
if config:
for param_name, field_config in config.items():
if current_type == indicator_type:
# Set the actual parameter value for the matching indicator type
value = parameters.get(param_name)
else:
# Set None for other indicator types
value = None
values.append(value)
return values
def reset_parameter_values() -> List[Any]:
"""Generate default parameter values for resetting the form.
Returns:
List[Any]: Default values in the order expected by reset callback outputs
"""
templates = load_indicator_templates()
values = []
for indicator_type, template in templates.items():
config = generate_parameter_fields_config(indicator_type)
if config:
defaults = get_indicator_default_parameters(indicator_type)
for param_name, field_config in config.items():
default_value = defaults.get(param_name, field_config.get('default'))
values.append(default_value)
return values
def get_parameter_visibility_styles(selected_indicator_type: str) -> List[Dict[str, str]]:
"""Generate visibility styles for parameter containers.
Args:
selected_indicator_type (str): The currently selected indicator type
Returns:
List[Dict[str, str]]: Visibility styles for each parameter container
"""
templates = load_indicator_templates()
hidden_style = {'display': 'none'}
visible_style = {'display': 'block'}
# First style is for the message
message_style = {'display': 'block'} if not selected_indicator_type else {'display': 'none'}
styles = [message_style]
# Then styles for each indicator type container
for indicator_type in templates.keys():
style = visible_style if indicator_type == selected_indicator_type else hidden_style
styles.append(style)
return styles

View File

@ -7,6 +7,16 @@ from dash import Output, Input, State, html, dcc, callback_context, no_update
import dash_bootstrap_components as dbc
import json
from utils.logger import get_logger
from config.indicators.config_utils import (
get_parameter_field_outputs,
get_parameter_field_states,
get_parameter_field_edit_outputs,
get_parameter_field_reset_outputs,
get_parameter_visibility_styles,
collect_parameter_values,
set_parameter_values,
reset_parameter_values
)
logger = get_logger("default_logger")
@ -46,48 +56,17 @@ def register_indicator_callbacks(app):
return is_open
# Update parameter fields based on indicator type
# Update parameter fields based on indicator type - now fully dynamic!
@app.callback(
[Output('indicator-parameters-message', 'style'),
Output('sma-parameters', 'style'),
Output('ema-parameters', 'style'),
Output('rsi-parameters', 'style'),
Output('macd-parameters', 'style'),
Output('bollinger_bands-parameters', 'style')],
get_parameter_field_outputs(),
Input('indicator-type-dropdown', 'value'),
prevent_initial_call=True
)
def update_parameter_fields(indicator_type):
"""Show/hide parameter input fields based on selected indicator type."""
# Default styles
hidden_style = {'display': 'none'}
visible_style = {'display': 'block'}
# Default message visibility
message_style = {'display': 'block'} if not indicator_type else {'display': 'none'}
# Initialize all as hidden
sma_style = hidden_style
ema_style = hidden_style
rsi_style = hidden_style
macd_style = hidden_style
bb_style = hidden_style
# Show the relevant parameter section
if indicator_type == 'sma':
sma_style = visible_style
elif indicator_type == 'ema':
ema_style = visible_style
elif indicator_type == 'rsi':
rsi_style = visible_style
elif indicator_type == 'macd':
macd_style = visible_style
elif indicator_type == 'bollinger_bands':
bb_style = visible_style
return message_style, sma_style, ema_style, rsi_style, macd_style, bb_style
return get_parameter_visibility_styles(indicator_type)
# Save indicator callback
# Save indicator callback - now fully dynamic!
@app.callback(
[Output('save-indicator-feedback', 'children'),
Output('overlay-indicators-checklist', 'options'),
@ -99,27 +78,10 @@ def register_indicator_callbacks(app):
State('indicator-timeframe-dropdown', 'value'),
State('indicator-color-input', 'value'),
State('indicator-line-width-slider', 'value'),
# SMA parameters
State('sma-period-input', 'value'),
# EMA parameters
State('ema-period-input', 'value'),
# RSI parameters
State('rsi-period-input', 'value'),
# MACD parameters
State('macd-fast-period-input', 'value'),
State('macd-slow-period-input', 'value'),
State('macd-signal-period-input', 'value'),
# Bollinger Bands parameters
State('bollinger_bands-period-input', 'value'),
State('bollinger_bands-std-dev-input', 'value'),
# Edit mode data
State('edit-indicator-store', 'data')],
State('edit-indicator-store', 'data')] + get_parameter_field_states(),
prevent_initial_call=True
)
def save_new_indicator(n_clicks, name, indicator_type, description, timeframe, color, line_width,
sma_period, ema_period, rsi_period,
macd_fast, macd_slow, macd_signal,
bb_period, bb_stddev, edit_data):
def save_new_indicator(n_clicks, name, indicator_type, description, timeframe, color, line_width, edit_data, *parameter_values):
"""Save a new indicator or update an existing one."""
if not n_clicks or not name or not indicator_type:
return "", no_update, no_update
@ -129,26 +91,16 @@ def register_indicator_callbacks(app):
from components.charts.indicator_manager import get_indicator_manager
manager = get_indicator_manager()
# Collect parameters based on indicator type and actual input values
parameters = {}
# Create mapping of parameter field IDs to values
parameter_states = get_parameter_field_states()
all_parameter_values = {}
for i, state in enumerate(parameter_states):
if i < len(parameter_values):
field_id = state.component_id
all_parameter_values[field_id] = parameter_values[i]
if indicator_type == 'sma':
parameters = {'period': sma_period or 20}
elif indicator_type == 'ema':
parameters = {'period': ema_period or 12}
elif indicator_type == 'rsi':
parameters = {'period': rsi_period or 14}
elif indicator_type == 'macd':
parameters = {
'fast_period': macd_fast or 12,
'slow_period': macd_slow or 26,
'signal_period': macd_signal or 9
}
elif indicator_type == 'bollinger_bands':
parameters = {
'period': bb_period or 20,
'std_dev': bb_stddev or 2.0
}
# Collect parameters for the specific indicator type
parameters = collect_parameter_values(indicator_type, all_parameter_values)
feedback_msg = None
# Check if this is an edit operation
@ -381,7 +333,7 @@ def register_indicator_callbacks(app):
error_msg = dbc.Alert(f"Error: {str(e)}", color="danger")
return error_msg, no_update, no_update
# Handle edit indicator - open modal with existing data
# Handle edit indicator - open modal with existing data - now fully dynamic!
@app.callback(
[Output('modal-title', 'children'),
Output('indicator-name-input', 'value'),
@ -389,16 +341,7 @@ def register_indicator_callbacks(app):
Output('indicator-description-input', 'value'),
Output('indicator-timeframe-dropdown', 'value'),
Output('indicator-color-input', 'value'),
Output('edit-indicator-store', 'data'),
# Add parameter field outputs
Output('sma-period-input', 'value'),
Output('ema-period-input', 'value'),
Output('rsi-period-input', 'value'),
Output('macd-fast-period-input', 'value'),
Output('macd-slow-period-input', 'value'),
Output('macd-signal-period-input', 'value'),
Output('bollinger_bands-period-input', 'value'),
Output('bollinger_bands-std-dev-input', 'value')],
Output('edit-indicator-store', 'data')] + get_parameter_field_edit_outputs(),
[Input({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'n_clicks')],
[State({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'id')],
prevent_initial_call=True
@ -407,7 +350,10 @@ def register_indicator_callbacks(app):
"""Load indicator data for editing."""
ctx = callback_context
if not ctx.triggered or not any(edit_clicks):
return [no_update] * 15
# Return the correct number of no_updates for all outputs
basic_outputs = 7 # Modal title, name, type, description, timeframe, color, edit_data
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
# Find which button was clicked
triggered_id = ctx.triggered[0]['prop_id']
@ -424,59 +370,31 @@ def register_indicator_callbacks(app):
# Store indicator ID for update
edit_data = {'indicator_id': indicator_id, 'mode': 'edit'}
# Extract parameter values based on indicator type
params = indicator.parameters
# Default parameter values
sma_period = None
ema_period = None
rsi_period = None
macd_fast = None
macd_slow = None
macd_signal = None
bb_period = None
bb_stddev = None
# Update with actual saved values
if indicator.type == 'sma':
sma_period = params.get('period')
elif indicator.type == 'ema':
ema_period = params.get('period')
elif indicator.type == 'rsi':
rsi_period = params.get('period')
elif indicator.type == 'macd':
macd_fast = params.get('fast_period')
macd_slow = params.get('slow_period')
macd_signal = params.get('signal_period')
elif indicator.type == 'bollinger_bands':
bb_period = params.get('period')
bb_stddev = params.get('std_dev')
# Generate parameter values for all fields
parameter_values = set_parameter_values(indicator.type, indicator.parameters)
# Return all values: basic fields + dynamic parameter fields
return (
f"✏️ Edit Indicator: {indicator.name}",
indicator.name,
indicator.type,
indicator.description,
indicator.timeframe,
indicator.styling.color,
edit_data,
sma_period,
ema_period,
rsi_period,
macd_fast,
macd_slow,
macd_signal,
bb_period,
bb_stddev
[f"✏️ Edit Indicator: {indicator.name}",
indicator.name,
indicator.type,
indicator.description,
indicator.timeframe,
indicator.styling.color,
edit_data] + parameter_values
)
else:
return [no_update] * 15
basic_outputs = 7
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
except Exception as e:
logger.error(f"Indicator callback: Error loading indicator for edit: {e}")
return [no_update] * 15
basic_outputs = 7
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
# Reset modal form when closed or saved
# Reset modal form when closed or saved - now fully dynamic!
@app.callback(
[Output('indicator-name-input', 'value', allow_duplicate=True),
Output('indicator-type-dropdown', 'value', allow_duplicate=True),
@ -485,22 +403,19 @@ def register_indicator_callbacks(app):
Output('indicator-color-input', 'value', allow_duplicate=True),
Output('indicator-line-width-slider', 'value'),
Output('modal-title', 'children', allow_duplicate=True),
Output('edit-indicator-store', 'data', allow_duplicate=True),
# Add parameter field resets
Output('sma-period-input', 'value', allow_duplicate=True),
Output('ema-period-input', 'value', allow_duplicate=True),
Output('rsi-period-input', 'value', allow_duplicate=True),
Output('macd-fast-period-input', 'value', allow_duplicate=True),
Output('macd-slow-period-input', 'value', allow_duplicate=True),
Output('macd-signal-period-input', 'value', allow_duplicate=True),
Output('bollinger_bands-period-input', 'value', allow_duplicate=True),
Output('bollinger_bands-std-dev-input', 'value', allow_duplicate=True)],
Output('edit-indicator-store', 'data', allow_duplicate=True)] + get_parameter_field_reset_outputs(),
[Input('cancel-indicator-btn', 'n_clicks'),
Input('save-indicator-btn', 'n_clicks')], # Also reset on successful save
prevent_initial_call=True
)
def reset_modal_form(cancel_clicks, save_clicks):
"""Reset the modal form to its default state."""
return "", "", "", "", "", 2, "📊 Add New Indicator", None, 20, 12, 14, 12, 26, 9, 20, 2.0
# Basic form reset values
basic_values = ["", "", "", "", "", 2, "📊 Add New Indicator", None]
# Dynamic parameter reset values
parameter_values = reset_parameter_values()
return basic_values + parameter_values
logger.info("Indicator callbacks: registered successfully")

View File

@ -5,7 +5,7 @@ Indicator modal component for creating and editing indicators.
from dash import html, dcc
import dash_bootstrap_components as dbc
from utils.timeframe_utils import load_timeframe_options
from config.indicators.config_utils import get_indicator_dropdown_options, generate_parameter_fields_config
from config.indicators.config_utils import get_indicator_dropdown_options, generate_parameter_fields_config, load_indicator_templates
def create_dynamic_parameter_fields(indicator_type: str) -> html.Div:
@ -137,12 +137,8 @@ def create_indicator_modal():
children=[html.P("Select an indicator type to configure parameters", className="text-muted fst-italic")]
),
# Parameter fields (SMA, EMA, etc.)
create_dynamic_parameter_fields('sma'),
create_dynamic_parameter_fields('ema'),
create_dynamic_parameter_fields('rsi'),
create_dynamic_parameter_fields('macd'),
create_dynamic_parameter_fields('bollinger_bands'),
# Dynamically generate parameter fields for all indicator types
*[create_dynamic_parameter_fields(indicator_type) for indicator_type in load_indicator_templates().keys()],
html.Hr(),
# Styling Section

View File

@ -0,0 +1,46 @@
# ADR-005: Data-Driven Indicator System
## Status
Accepted
## Context
Previously, the technical indicator configurations, including their parameters and UI generation logic, were partially hardcoded within Python files (e.g., `dashboard/components/indicator_modal.py`, `dashboard/callbacks/indicators.py`). This approach made adding new indicators, modifying existing ones, or updating their parameter schemas a cumbersome process, requiring direct code modifications in multiple files.
The need arose for a more flexible, scalable, and maintainable system that allows for easier management and extension of technical indicators without requiring constant code deployments.
## Decision
We will refactor the technical indicator system to be fully data-driven. This involves:
1. **Centralizing Indicator Definitions**: Moving indicator metadata, default parameters, and parameter schemas into JSON template files located in `config/indicators/templates/`.
2. **Dynamic UI Generation**: The `dashboard/components/indicator_modal.py` component will dynamically read these JSON templates to generate parameter input fields for the indicator modal, eliminating hardcoded UI elements.
3. **Dynamic Callback Handling**: The `dashboard/callbacks/indicators.py` callbacks will be refactored to dynamically collect, set, and reset indicator parameters based on the schema defined in the JSON templates, removing hardcoded logic for each indicator type.
4. **Runtime Loading**: A new utility (`config/indicators/config_utils.py`) will be responsible for loading and parsing these JSON templates at runtime.
## Consequences
### Positive
- **Increased Extensibility**: Adding new indicators or modifying existing ones now primarily involves creating or updating a JSON file, significantly reducing the development overhead and time to market for new indicator support.
- **Improved Maintainability**: Centralized, data-driven configurations reduce code duplication and simplify updates, as changes are made in one place (the JSON template) rather than across multiple Python files.
- **Reduced Code Complexity**: The `indicator_modal.py` and `indicators.py` files are now more concise and generic, focusing on dynamic generation rather than specific indicator logic.
- **Enhanced Scalability**: The system can easily scale to support a large number of indicators without a proportional increase in Python code complexity.
- **Better Separation of Concerns**: UI presentation logic is decoupled from indicator definition and business logic.
### Negative
- **Initial Refactoring Effort**: Requires a significant refactoring effort to migrate existing indicators and update dependent components.
- **New File Type Introduction**: Introduces JSON files as a new configuration format, requiring developers to understand its structure.
- **Runtime Overhead (Minor)**: Small overhead for loading and parsing JSON files at application startup, though this is negligible for typical application sizes.
- **Debugging Configuration Issues**: Issues with JSON formatting or schema mismatches may require checking JSON files in addition to Python code.
## Alternatives Considered
- **Keeping Hardcoded Logic**: Rejected due to the high maintenance burden and lack of scalability.
- **Database-Driven Configuration**: Considered storing indicator configurations in a database. Rejected for initial implementation due to added complexity of database schema management, migration, and the overhead of a full CRUD API for configurations, which was deemed unnecessary for the current scope. JSON files provide a simpler, file-based persistence model that meets the immediate needs.
- **YAML/TOML Configuration**: Considered other configuration formats like YAML or TOML. JSON was chosen due to its widespread use in web contexts (Dash/Plotly integration) and native Python support.
## Decision Makers
[Your Name/Team Lead]
## Date
2024-06-12

View File

@ -202,35 +202,7 @@ SUBPLOT_REGISTRY = {
### 3. Add UI Components
Update `dashboard/components/indicator_modal.py`:
```python
def create_parameter_fields():
return html.Div([
# ... existing fields ...
html.Div([
dbc.Row([
dbc.Col([
dbc.Label("%K Period:"),
dcc.Input(
id='stochastic-k-period-input',
type='number',
value=14
)
], width=6),
dbc.Col([
dbc.Label("%D Period:"),
dcc.Input(
id='stochastic-d-period-input',
type='number',
value=3
)
], width=6),
]),
dbc.FormText("Stochastic oscillator periods")
], id='stochastic-parameters', style={'display': 'none'})
])
```
***(No longer needed - UI is dynamically generated from JSON templates)***
## Best Practices

View File

@ -35,11 +35,57 @@ components/charts/config/
## Indicator Definitions
### Core Classes
The indicator definitions are now primarily managed through **JSON template files** located in `config/indicators/templates/`. These JSON files define the schema, default parameters, display properties, and styling for each technical indicator. This approach allows for easy addition and modification of indicators without requiring code changes.
#### `ChartIndicatorConfig`
### Core Schema Fields (defined in JSON templates)
The main configuration class for individual indicators:
Each indicator JSON template includes the following key fields:
- **`name`**: Display name of the indicator (e.g., "Simple Moving Average")
- **`description`**: Brief explanation of the indicator.
- **`type`**: Unique identifier for the indicator (e.g., "sma", "ema"). This is used for internal mapping.
- **`display_type`**: How the indicator is rendered on the chart ("overlay" or "subplot").
- **`timeframe`**: Optional default timeframe for the indicator (can be null for chart timeframe).
- **`default_parameters`**: Default values for the indicator's calculation parameters.
- **`parameter_schema`**: Defines the type, validation rules (min/max), default values, and descriptions for each parameter.
- **`default_styling`**: Default color, line width, and other visual properties.
**Example JSON Template (`config/indicators/templates/sma_template.json`):**
```json
{
"name": "Simple Moving Average",
"description": "Simple Moving Average indicator",
"type": "sma",
"display_type": "overlay",
"timeframe": null,
"default_parameters": {
"period": 20
},
"parameter_schema": {
"period": {
"type": "int",
"min": 1,
"max": 200,
"default": 20,
"description": "Period for SMA calculation"
},
"timeframe": {
"type": "string",
"default": null,
"description": "Indicator timeframe (e.g., '1h', '4h'). Null for chart timeframe."
}
},
"default_styling": {
"color": "#007bff",
"line_width": 2
}
}
```
### `ChartIndicatorConfig` (Python representation)
The `ChartIndicatorConfig` Python dataclass in `components/charts/config/indicator_defs.py` serves as the runtime representation of an indicator's configuration, parsed from the JSON templates.
```python
@dataclass
@ -56,7 +102,9 @@ class ChartIndicatorConfig:
subplot_height_ratio: float = 0.3 # For subplot indicators
```
#### Enums
### Enums (for internal type safety)
Enums like `IndicatorType`, `DisplayType`, `LineStyle` are still used internally for type safety and consistent value representation within the Python codebase.
**IndicatorType**
```python
@ -67,6 +115,7 @@ class IndicatorType(str, Enum):
MACD = "macd"
BOLLINGER_BANDS = "bollinger_bands"
VOLUME = "volume"
# ... new indicator types should be added here for internal consistency
```
**DisplayType**
@ -86,7 +135,19 @@ class LineStyle(str, Enum):
DASH_DOT = "dashdot"
```
### Schema Validation
**PriceColumn**
```python
class PriceColumn(str, Enum):
OPEN = "open"
HIGH = "high"
LOW = "low"
CLOSE = "close"
VOLUME = "volume"
```
### Schema Validation (driven by JSON templates)
The validation system now primarily reads parameter schemas from the JSON templates. The `IndicatorParameterSchema` and `IndicatorSchema` dataclasses are used for internal representation when parsing and validating these JSON definitions.
#### `IndicatorParameterSchema`
@ -119,39 +180,9 @@ class IndicatorSchema:
description: str = ""
```
### Schema Definitions
### Schema Definitions (now loaded dynamically)
The system includes complete schemas for all supported indicators:
```python
INDICATOR_SCHEMAS = {
IndicatorType.SMA: IndicatorSchema(
indicator_type=IndicatorType.SMA,
display_type=DisplayType.OVERLAY,
parameters=[
IndicatorParameterSchema(
name="period",
type=int,
min_value=1,
max_value=200,
default_value=20,
description="Number of periods for the moving average"
),
IndicatorParameterSchema(
name="price_column",
type=str,
required=False,
default_value="close",
valid_values=["open", "high", "low", "close"],
description="Price column to use for calculation"
)
],
description="Simple Moving Average - arithmetic mean of prices",
calculation_description="Sum of closing prices divided by period"
),
# ... more schemas
}
```
The `INDICATOR_SCHEMAS` dictionary is now populated dynamically at runtime by loading and parsing the JSON template files. Manual definitions in `indicator_defs.py` are deprecated.
### Utility Functions
@ -636,33 +667,58 @@ if performance_issues:
### Adding New Indicators
1. **Define Indicator Type**
```python
# Add to IndicatorType enum
class IndicatorType(str, Enum):
# ... existing types
STOCHASTIC = "stochastic"
```
- Add to `IndicatorType` enum (if not already present)
2. **Create Schema**
```python
# Add to INDICATOR_SCHEMAS
INDICATOR_SCHEMAS[IndicatorType.STOCHASTIC] = IndicatorSchema(
indicator_type=IndicatorType.STOCHASTIC,
display_type=DisplayType.SUBPLOT,
parameters=[
IndicatorParameterSchema(
name="k_period",
type=int,
min_value=1,
max_value=100,
default_value=14
),
# ... more parameters
],
description="Stochastic Oscillator",
calculation_description="Momentum indicator comparing closing price to price range"
)
```
2. **Create JSON Template**
- Create a new JSON file in `config/indicators/templates/` (e.g., `stochastic_template.json`)
- Define the indicator's name, type, display type, default parameters, parameter schema, and default styling.
- **Example (`stochastic_template.json`):**
```json
{
"name": "Stochastic Oscillator",
"description": "Stochastic momentum oscillator indicator",
"type": "stochastic",
"display_type": "subplot",
"timeframe": null,
"default_parameters": {
"k_period": 14,
"d_period": 3,
"smooth_k": 1
},
"parameter_schema": {
"k_period": {
"type": "int",
"min": 2,
"max": 50,
"default": 14,
"description": "Period for %K calculation"
},
"d_period": {
"type": "int",
"min": 1,
"max": 20,
"default": 3,
"description": "Period for %D (moving average of %K)"
},
"smooth_k": {
"type": "int",
"min": 1,
"max": 10,
"default": 1,
"description": "Smoothing factor for %K"
},
"timeframe": {
"type": "string",
"default": null,
"description": "Indicator timeframe (e.g., '1h', '4h'). Null for chart timeframe."
}
},
"default_styling": {
"color": "#e83e8c",
"line_width": 2
}
}
```
3. **Create Default Presets**
```python

View File

@ -89,7 +89,7 @@ These indicators are displayed in separate panels:
- Name: Custom name for the indicator
- Type: Select from available indicator types
- Description: Optional description
3. **Set Parameters**: Type-specific parameters appear dynamically
3. **Set Parameters**: Type-specific parameters appear dynamically (generated from JSON templates)
4. **Customize Styling**:
- Color: Hex color code
- Line Width: 1-5 pixels
@ -169,7 +169,7 @@ class UserIndicator:
description: str # User description
type: str # Indicator type (sma, ema, etc.)
display_type: str # "overlay" or "subplot"
parameters: Dict[str, Any] # Type-specific parameters
parameters: Dict[str, Any] # Type-specific parameters, dynamically loaded from JSON templates
styling: IndicatorStyling # Appearance settings
visible: bool = True # Default visibility
created_date: datetime # Creation timestamp

View File

@ -304,12 +304,13 @@ for timestamp, row in result_df.iterrows():
## Contributing
When adding new indicators:
1. Create a new class in `implementations/`
2. Inherit from `BaseIndicator`
3. Implement the `calculate` method to return a DataFrame
4. Ensure proper warm-up periods
5. Add comprehensive tests
6. Update documentation
1. Create a new class in `implementations/`.
2. Inherit from `BaseIndicator`.
3. Implement the `calculate` method to return a DataFrame.
4. Ensure proper warm-up periods.
5. Add comprehensive tests.
6. Create a corresponding **JSON template file** in `config/indicators/templates/` to define its parameters, display properties, and styling for UI integration.
7. Update documentation in `docs/guides/adding-new-indicators.md`.
See [Adding New Indicators](./adding-new-indicators.md) for detailed instructions.