Vasily.onl 3e0e89b826 Refactor indicator management to a data-driven approach
- Introduced dynamic generation of parameter fields and callback handling for indicators, enhancing modularity and maintainability.
- Updated `config_utils.py` with new utility functions to load indicator templates and generate dynamic outputs and states for parameter fields.
- Refactored `indicators.py` to utilize these utilities, streamlining the callback logic and improving user experience by reducing hardcoded elements.
- Modified `indicator_modal.py` to create parameter fields dynamically based on JSON templates, eliminating the need for manual updates when adding new indicators.
- Added documentation outlining the new data-driven architecture for indicators, improving clarity and guidance for future development.

These changes significantly enhance the flexibility and scalability of the indicator system, aligning with project goals for maintainability and performance.
2025-06-11 19:09:52 +08:00

421 lines
19 KiB
Python

"""
Indicator-related callbacks for the dashboard.
"""
import dash
from dash import Output, Input, State, html, dcc, callback_context, no_update
import dash_bootstrap_components as dbc
import json
from utils.logger import get_logger
from config.indicators.config_utils import (
get_parameter_field_outputs,
get_parameter_field_states,
get_parameter_field_edit_outputs,
get_parameter_field_reset_outputs,
get_parameter_visibility_styles,
collect_parameter_values,
set_parameter_values,
reset_parameter_values
)
logger = get_logger("default_logger")
def register_indicator_callbacks(app):
"""Register indicator-related callbacks."""
# Modal control callbacks
@app.callback(
Output('indicator-modal', 'is_open'),
[Input('add-indicator-btn-visible', 'n_clicks'),
Input('cancel-indicator-btn', 'n_clicks'),
Input('save-indicator-btn', 'n_clicks'),
Input({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'n_clicks')],
[State('indicator-modal', 'is_open')],
prevent_initial_call=True
)
def toggle_indicator_modal(add_clicks, cancel_clicks, save_clicks, edit_clicks, is_open):
"""Toggle the visibility of the add indicator modal."""
ctx = callback_context
if not ctx.triggered:
return is_open
triggered_id = ctx.triggered[0]['prop_id'].split('.')[0]
# Check for add button click
if triggered_id == 'add-indicator-btn-visible' and add_clicks:
return True
# Check for edit button clicks, ensuring a click actually happened
if 'edit-indicator-btn' in triggered_id and any(c for c in edit_clicks if c is not None):
return True
# Check for cancel or save clicks to close the modal
if triggered_id in ['cancel-indicator-btn', 'save-indicator-btn']:
return False
return is_open
# Update parameter fields based on indicator type - now fully dynamic!
@app.callback(
get_parameter_field_outputs(),
Input('indicator-type-dropdown', 'value'),
prevent_initial_call=True
)
def update_parameter_fields(indicator_type):
"""Show/hide parameter input fields based on selected indicator type."""
return get_parameter_visibility_styles(indicator_type)
# Save indicator callback - now fully dynamic!
@app.callback(
[Output('save-indicator-feedback', 'children'),
Output('overlay-indicators-checklist', 'options'),
Output('subplot-indicators-checklist', 'options')],
Input('save-indicator-btn', 'n_clicks'),
[State('indicator-name-input', 'value'),
State('indicator-type-dropdown', 'value'),
State('indicator-description-input', 'value'),
State('indicator-timeframe-dropdown', 'value'),
State('indicator-color-input', 'value'),
State('indicator-line-width-slider', 'value'),
State('edit-indicator-store', 'data')] + get_parameter_field_states(),
prevent_initial_call=True
)
def save_new_indicator(n_clicks, name, indicator_type, description, timeframe, color, line_width, edit_data, *parameter_values):
"""Save a new indicator or update an existing one."""
if not n_clicks or not name or not indicator_type:
return "", no_update, no_update
try:
# Get indicator manager
from components.charts.indicator_manager import get_indicator_manager
manager = get_indicator_manager()
# Create mapping of parameter field IDs to values
parameter_states = get_parameter_field_states()
all_parameter_values = {}
for i, state in enumerate(parameter_states):
if i < len(parameter_values):
field_id = state.component_id
all_parameter_values[field_id] = parameter_values[i]
# Collect parameters for the specific indicator type
parameters = collect_parameter_values(indicator_type, all_parameter_values)
feedback_msg = None
# Check if this is an edit operation
is_edit = edit_data and edit_data.get('mode') == 'edit'
if is_edit:
# Update existing indicator
indicator_id = edit_data.get('indicator_id')
success = manager.update_indicator(
indicator_id,
name=name,
description=description or "",
parameters=parameters,
styling={'color': color or "#007bff", 'line_width': line_width or 2},
timeframe=timeframe or None
)
if success:
feedback_msg = dbc.Alert(f"Indicator '{name}' updated successfully!", color="success")
else:
feedback_msg = dbc.Alert("Failed to update indicator.", color="danger")
return feedback_msg, no_update, no_update
else:
# Create new indicator
new_indicator = manager.create_indicator(
name=name,
indicator_type=indicator_type,
parameters=parameters,
description=description or "",
color=color or "#007bff",
timeframe=timeframe or None
)
if not new_indicator:
feedback_msg = dbc.Alert("Failed to save indicator.", color="danger")
return feedback_msg, no_update, no_update
feedback_msg = dbc.Alert(f"Indicator '{name}' saved successfully!", color="success")
# Refresh the indicator options
overlay_indicators = manager.get_indicators_by_type('overlay')
subplot_indicators = manager.get_indicators_by_type('subplot')
overlay_options = []
for indicator in overlay_indicators:
display_name = f"{indicator.name} ({indicator.type.upper()})"
overlay_options.append({'label': display_name, 'value': indicator.id})
subplot_options = []
for indicator in subplot_indicators:
display_name = f"{indicator.name} ({indicator.type.upper()})"
subplot_options.append({'label': display_name, 'value': indicator.id})
return feedback_msg, overlay_options, subplot_options
except Exception as e:
logger.error(f"Indicator callback: Error saving indicator: {e}")
error_msg = dbc.Alert(f"Error: {str(e)}", color="danger")
return error_msg, no_update, no_update
# Update custom indicator lists with edit/delete buttons
@app.callback(
[Output('overlay-indicators-list', 'children'),
Output('subplot-indicators-list', 'children')],
[Input('overlay-indicators-checklist', 'options'),
Input('subplot-indicators-checklist', 'options'),
Input('overlay-indicators-checklist', 'value'),
Input('subplot-indicators-checklist', 'value')]
)
def update_custom_indicator_lists(overlay_options, subplot_options, overlay_values, subplot_values):
"""Create custom indicator lists with edit and delete buttons."""
def create_indicator_item(option, is_checked):
"""Create a single indicator item with checkbox and buttons."""
indicator_id = option['value']
indicator_name = option['label']
return html.Div([
# Checkbox and name
html.Div([
dcc.Checklist(
options=[{'label': '', 'value': indicator_id}],
value=[indicator_id] if is_checked else [],
id={'type': 'indicator-checkbox', 'index': indicator_id},
style={'display': 'inline-block', 'margin-right': '8px'}
),
html.Span(indicator_name, style={'display': 'inline-block', 'vertical-align': 'top'})
], style={'display': 'inline-block', 'width': '70%'}),
# Edit and Delete buttons
html.Div([
html.Button(
"✏️",
id={'type': 'edit-indicator-btn', 'index': indicator_id},
title="Edit indicator",
className="btn btn-sm btn-outline-primary",
style={'margin-left': '5px'}
),
html.Button(
"🗑️",
id={'type': 'delete-indicator-btn', 'index': indicator_id},
title="Delete indicator",
className="btn btn-sm btn-outline-danger",
style={'margin-left': '5px'}
)
], style={'display': 'inline-block', 'width': '30%', 'text-align': 'right'})
], style={
'display': 'block',
'padding': '5px 0',
'border-bottom': '1px solid #f0f0f0',
'margin-bottom': '5px'
})
# Create overlay indicators list
overlay_list = []
for option in overlay_options:
is_checked = option['value'] in (overlay_values or [])
overlay_list.append(create_indicator_item(option, is_checked))
# Create subplot indicators list
subplot_list = []
for option in subplot_options:
is_checked = option['value'] in (subplot_values or [])
subplot_list.append(create_indicator_item(option, is_checked))
return overlay_list, subplot_list
# Sync individual indicator checkboxes with main checklist
@app.callback(
Output('overlay-indicators-checklist', 'value', allow_duplicate=True),
[Input({'type': 'indicator-checkbox', 'index': dash.ALL}, 'value')],
[State('overlay-indicators-checklist', 'options')],
prevent_initial_call=True
)
def sync_overlay_indicators(checkbox_values, overlay_options):
"""Sync individual indicator checkboxes with main overlay checklist."""
if not checkbox_values or not overlay_options:
return []
selected_indicators = []
overlay_ids = [opt['value'] for opt in overlay_options]
# Flatten the checkbox values and filter for overlay indicators
for values in checkbox_values:
if values: # values is a list, check if not empty
for indicator_id in values:
if indicator_id in overlay_ids:
selected_indicators.append(indicator_id)
# Remove duplicates
return list(set(selected_indicators))
@app.callback(
Output('subplot-indicators-checklist', 'value', allow_duplicate=True),
[Input({'type': 'indicator-checkbox', 'index': dash.ALL}, 'value')],
[State('subplot-indicators-checklist', 'options')],
prevent_initial_call=True
)
def sync_subplot_indicators(checkbox_values, subplot_options):
"""Sync individual indicator checkboxes with main subplot checklist."""
if not checkbox_values or not subplot_options:
return []
selected_indicators = []
subplot_ids = [opt['value'] for opt in subplot_options]
# Flatten the checkbox values and filter for subplot indicators
for values in checkbox_values:
if values: # values is a list, check if not empty
for indicator_id in values:
if indicator_id in subplot_ids:
selected_indicators.append(indicator_id)
# Remove duplicates
return list(set(selected_indicators))
# Handle delete indicator
@app.callback(
[Output('save-indicator-feedback', 'children', allow_duplicate=True),
Output('overlay-indicators-checklist', 'options', allow_duplicate=True),
Output('subplot-indicators-checklist', 'options', allow_duplicate=True)],
[Input({'type': 'delete-indicator-btn', 'index': dash.ALL}, 'n_clicks')],
[State({'type': 'delete-indicator-btn', 'index': dash.ALL}, 'id')],
prevent_initial_call=True
)
def delete_indicator(delete_clicks, button_ids):
"""Delete an indicator when delete button is clicked."""
ctx = callback_context
if not ctx.triggered or not any(delete_clicks):
return no_update, no_update, no_update
# Find which button was clicked
triggered_id = ctx.triggered[0]['prop_id']
button_info = json.loads(triggered_id.split('.')[0])
indicator_id = button_info['index']
try:
# Get indicator manager and delete the indicator
from components.charts.indicator_manager import get_indicator_manager
manager = get_indicator_manager()
# Load indicator to get its name before deletion
indicator = manager.load_indicator(indicator_id)
indicator_name = indicator.name if indicator else indicator_id
if manager.delete_indicator(indicator_id):
# Refresh the indicator options
overlay_indicators = manager.get_indicators_by_type('overlay')
subplot_indicators = manager.get_indicators_by_type('subplot')
overlay_options = []
for indicator in overlay_indicators:
display_name = f"{indicator.name} ({indicator.type.upper()})"
overlay_options.append({'label': display_name, 'value': indicator.id})
subplot_options = []
for indicator in subplot_indicators:
display_name = f"{indicator.name} ({indicator.type.upper()})"
subplot_options.append({'label': display_name, 'value': indicator.id})
success_msg = dbc.Alert(f"Indicator '{indicator_name}' deleted.", color="warning")
return success_msg, overlay_options, subplot_options
else:
error_msg = dbc.Alert("Failed to delete indicator.", color="danger")
return error_msg, no_update, no_update
except Exception as e:
logger.error(f"Indicator callback: Error deleting indicator: {e}")
error_msg = dbc.Alert(f"Error: {str(e)}", color="danger")
return error_msg, no_update, no_update
# Handle edit indicator - open modal with existing data - now fully dynamic!
@app.callback(
[Output('modal-title', 'children'),
Output('indicator-name-input', 'value'),
Output('indicator-type-dropdown', 'value'),
Output('indicator-description-input', 'value'),
Output('indicator-timeframe-dropdown', 'value'),
Output('indicator-color-input', 'value'),
Output('edit-indicator-store', 'data')] + get_parameter_field_edit_outputs(),
[Input({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'n_clicks')],
[State({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'id')],
prevent_initial_call=True
)
def edit_indicator(edit_clicks, button_ids):
"""Load indicator data for editing."""
ctx = callback_context
if not ctx.triggered or not any(edit_clicks):
# Return the correct number of no_updates for all outputs
basic_outputs = 7 # Modal title, name, type, description, timeframe, color, edit_data
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
# Find which button was clicked
triggered_id = ctx.triggered[0]['prop_id']
button_info = json.loads(triggered_id.split('.')[0])
indicator_id = button_info['index']
try:
# Load the indicator data
from components.charts.indicator_manager import get_indicator_manager
manager = get_indicator_manager()
indicator = manager.load_indicator(indicator_id)
if indicator:
# Store indicator ID for update
edit_data = {'indicator_id': indicator_id, 'mode': 'edit'}
# Generate parameter values for all fields
parameter_values = set_parameter_values(indicator.type, indicator.parameters)
# Return all values: basic fields + dynamic parameter fields
return (
[f"✏️ Edit Indicator: {indicator.name}",
indicator.name,
indicator.type,
indicator.description,
indicator.timeframe,
indicator.styling.color,
edit_data] + parameter_values
)
else:
basic_outputs = 7
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
except Exception as e:
logger.error(f"Indicator callback: Error loading indicator for edit: {e}")
basic_outputs = 7
parameter_outputs = len(get_parameter_field_edit_outputs())
return [no_update] * (basic_outputs + parameter_outputs)
# Reset modal form when closed or saved - now fully dynamic!
@app.callback(
[Output('indicator-name-input', 'value', allow_duplicate=True),
Output('indicator-type-dropdown', 'value', allow_duplicate=True),
Output('indicator-description-input', 'value', allow_duplicate=True),
Output('indicator-timeframe-dropdown', 'value', allow_duplicate=True),
Output('indicator-color-input', 'value', allow_duplicate=True),
Output('indicator-line-width-slider', 'value'),
Output('modal-title', 'children', allow_duplicate=True),
Output('edit-indicator-store', 'data', allow_duplicate=True)] + get_parameter_field_reset_outputs(),
[Input('cancel-indicator-btn', 'n_clicks'),
Input('save-indicator-btn', 'n_clicks')], # Also reset on successful save
prevent_initial_call=True
)
def reset_modal_form(cancel_clicks, save_clicks):
"""Reset the modal form to its default state."""
# Basic form reset values
basic_values = ["", "", "", "", "", 2, "📊 Add New Indicator", None]
# Dynamic parameter reset values
parameter_values = reset_parameter_values()
return basic_values + parameter_values
logger.info("Indicator callbacks: registered successfully")