800 B
800 B
OHLCV Predictor - Inference (Quick Reference)
For full instructions, see the main README.
Minimal usage
from predictor import OHLCVPredictor
predictor = OHLCVPredictor('../data/xgboost_model_all_features.json')
predictions = predictor.predict(your_ohlcv_dataframe)
Your DataFrame needs these columns:
Timestamp,Open,High,Low,Close,Volume,log_return
Note: If you are only running inference (not training with main.py), compute log_return first:
import numpy as np
df['log_return'] = np.log(df['Close'] / df['Close'].shift(1))
Files to reuse in other projects
predictor.pycustom_xgboost.pyfeature_engineering.pytechnical_indicator_functions.py- your trained model file (e.g.,
xgboost_model_all_features.json)