# OHLCV Predictor - Inference (Quick Reference) For full instructions, see the main README. ## Minimal usage ```python from predictor import OHLCVPredictor predictor = OHLCVPredictor('../data/xgboost_model_all_features.json') predictions = predictor.predict(your_ohlcv_dataframe) ``` Your DataFrame needs these columns: - `Timestamp`, `Open`, `High`, `Low`, `Close`, `Volume`, `log_return` Note: If you are only running inference (not training with `main.py`), compute `log_return` first: ```python import numpy as np df['log_return'] = np.log(df['Close'] / df['Close'].shift(1)) ``` ## Files to reuse in other projects - `predictor.py` - `custom_xgboost.py` - `feature_engineering.py` - `technical_indicator_functions.py` - your trained model file (e.g., `xgboost_model_all_features.json`)