- Introduced a new strategies module containing the StrategyManager class to orchestrate multiple trading strategies. - Implemented StrategyBase and StrategySignal as foundational components for strategy development. - Added DefaultStrategy for meta-trend analysis and BBRSStrategy for Bollinger Bands + RSI trading. - Enhanced documentation to provide clear usage examples and configuration guidelines for the new system. - Established a modular architecture to support future strategy additions and improvements.
330 lines
9.1 KiB
Markdown
330 lines
9.1 KiB
Markdown
# TCP Cycles Strategy Management System
|
|
|
|
The Strategy Manager system provides a flexible framework for implementing, combining, and managing multiple trading strategies within the TCP Cycles project.
|
|
|
|
## 🏗️ Architecture
|
|
|
|
### Module Structure
|
|
```
|
|
cycles/
|
|
├── strategies/ # Strategy management module
|
|
│ ├── __init__.py # Module exports and version info
|
|
│ ├── base.py # Base classes (StrategyBase, StrategySignal)
|
|
│ ├── default_strategy.py # Meta-trend strategy implementation
|
|
│ ├── bbrs_strategy.py # Bollinger Bands + RSI strategy
|
|
│ └── manager.py # StrategyManager and orchestration
|
|
├── Analysis/ # Technical analysis tools
|
|
├── utils/ # Utility functions
|
|
├── backtest.py # Backtesting engine
|
|
└── charts.py # Charting and visualization
|
|
```
|
|
|
|
### Core Components
|
|
|
|
1. **`StrategyBase`**: Abstract base class that all strategies inherit from
|
|
2. **`StrategySignal`**: Represents trading signals with confidence levels and metadata
|
|
3. **`DefaultStrategy`**: Implementation of the meta-trend strategy using Supertrend indicators
|
|
4. **`BBRSStrategy`**: Implementation of the Bollinger Bands + RSI strategy with market regime detection
|
|
5. **`StrategyManager`**: Orchestrates multiple strategies and combines their signals
|
|
|
|
### Signal Types
|
|
- **`"ENTRY"`**: Strategy suggests entering a position
|
|
- **`"EXIT"`**: Strategy suggests exiting a position
|
|
- **`"HOLD"`**: Strategy suggests no action
|
|
|
|
## 📋 Configuration
|
|
|
|
### Single Strategy Configuration
|
|
|
|
**Default Strategy Only:**
|
|
```json
|
|
{
|
|
"start_date": "2025-03-01",
|
|
"stop_date": "2025-03-15",
|
|
"initial_usd": 10000,
|
|
"timeframes": ["15min"],
|
|
"stop_loss_pcts": [0.03, 0.05],
|
|
"strategies": [
|
|
{
|
|
"name": "default",
|
|
"weight": 1.0,
|
|
"params": {}
|
|
}
|
|
],
|
|
"combination_rules": {
|
|
"entry": "any",
|
|
"exit": "any",
|
|
"min_confidence": 0.5
|
|
}
|
|
}
|
|
```
|
|
|
|
**BBRS Strategy Only:**
|
|
```json
|
|
{
|
|
"strategies": [
|
|
{
|
|
"name": "bbrs",
|
|
"weight": 1.0,
|
|
"params": {
|
|
"bb_width": 0.05,
|
|
"bb_period": 20,
|
|
"rsi_period": 14,
|
|
"strategy_name": "MarketRegimeStrategy"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
### Multiple Strategy Configuration
|
|
|
|
```json
|
|
{
|
|
"strategies": [
|
|
{
|
|
"name": "default",
|
|
"weight": 0.6,
|
|
"params": {}
|
|
},
|
|
{
|
|
"name": "bbrs",
|
|
"weight": 0.4,
|
|
"params": {
|
|
"bb_width": 0.05,
|
|
"strategy_name": "MarketRegimeStrategy"
|
|
}
|
|
}
|
|
],
|
|
"combination_rules": {
|
|
"entry": "weighted_consensus",
|
|
"exit": "any",
|
|
"min_confidence": 0.6
|
|
}
|
|
}
|
|
```
|
|
|
|
## 🔧 Combination Rules
|
|
|
|
### Entry Signal Combination Methods
|
|
|
|
- **`"any"`**: Enter if ANY strategy signals entry above min_confidence
|
|
- **`"all"`**: Enter only if ALL strategies signal entry above min_confidence
|
|
- **`"majority"`**: Enter if more than 50% of strategies signal entry
|
|
- **`"weighted_consensus"`**: Enter based on weighted average confidence
|
|
|
|
### Exit Signal Combination Methods
|
|
|
|
- **`"any"`**: Exit if ANY strategy signals exit (recommended for risk management)
|
|
- **`"all"`**: Exit only if ALL strategies agree on exit
|
|
- **`"priority"`**: Exit based on priority: STOP_LOSS > SELL_SIGNAL > others
|
|
|
|
### Parameters
|
|
|
|
- **`min_confidence`**: Minimum confidence threshold (0.0 to 1.0)
|
|
- **`weight`**: Strategy weight for weighted calculations
|
|
|
|
## 🚀 Usage Examples
|
|
|
|
### Running with Default Strategy
|
|
```bash
|
|
python main.py config_default.json
|
|
```
|
|
|
|
### Running with BBRS Strategy
|
|
```bash
|
|
python main.py config_bbrs.json
|
|
```
|
|
|
|
### Running with Combined Strategies
|
|
```bash
|
|
python main.py config_combined.json
|
|
```
|
|
|
|
### Running without Config (Interactive)
|
|
```bash
|
|
python main.py
|
|
```
|
|
|
|
### Programmatic Usage
|
|
```python
|
|
from cycles.strategies import create_strategy_manager
|
|
|
|
# Create strategy manager from config
|
|
config = {
|
|
"strategies": [
|
|
{"name": "default", "weight": 0.7, "params": {}},
|
|
{"name": "bbrs", "weight": 0.3, "params": {"bb_width": 0.05}}
|
|
],
|
|
"combination_rules": {
|
|
"entry": "weighted_consensus",
|
|
"exit": "any",
|
|
"min_confidence": 0.6
|
|
}
|
|
}
|
|
|
|
strategy_manager = create_strategy_manager(config)
|
|
```
|
|
|
|
## ⚙️ Strategy Parameters
|
|
|
|
### Default Strategy Parameters
|
|
- **`stop_loss_pct`**: Stop loss percentage (default: 0.03)
|
|
|
|
### BBRS Strategy Parameters
|
|
- **`bb_width`**: Bollinger Band width (default: 0.05)
|
|
- **`bb_period`**: Bollinger Band period (default: 20)
|
|
- **`rsi_period`**: RSI period (default: 14)
|
|
- **`trending_rsi_threshold`**: RSI thresholds for trending market [low, high]
|
|
- **`trending_bb_multiplier`**: BB multiplier for trending market
|
|
- **`sideways_rsi_threshold`**: RSI thresholds for sideways market [low, high]
|
|
- **`sideways_bb_multiplier`**: BB multiplier for sideways market
|
|
- **`strategy_name`**: Strategy implementation name
|
|
- **`SqueezeStrategy`**: Enable squeeze strategy (boolean)
|
|
- **`stop_loss_pct`**: Stop loss percentage (default: 0.05)
|
|
|
|
## 🔌 Adding New Strategies
|
|
|
|
### 1. Create Strategy Class
|
|
|
|
Create a new file in `cycles/strategies/` (e.g., `my_strategy.py`):
|
|
|
|
```python
|
|
from .base import StrategyBase, StrategySignal
|
|
|
|
class MyStrategy(StrategyBase):
|
|
def __init__(self, weight=1.0, params=None):
|
|
super().__init__("my_strategy", weight, params)
|
|
|
|
def initialize(self, backtester):
|
|
# Initialize your strategy indicators
|
|
self.initialized = True
|
|
|
|
def get_entry_signal(self, backtester, df_index):
|
|
# Implement entry logic
|
|
if entry_condition:
|
|
return StrategySignal("ENTRY", confidence=0.8)
|
|
return StrategySignal("HOLD", confidence=0.0)
|
|
|
|
def get_exit_signal(self, backtester, df_index):
|
|
# Implement exit logic
|
|
if exit_condition:
|
|
return StrategySignal("EXIT", confidence=1.0,
|
|
metadata={"type": "MY_EXIT"})
|
|
return StrategySignal("HOLD", confidence=0.0)
|
|
```
|
|
|
|
### 2. Register Strategy
|
|
|
|
Update `cycles/strategies/manager.py` in the `_load_strategies` method:
|
|
|
|
```python
|
|
elif name == "my_strategy":
|
|
from .my_strategy import MyStrategy
|
|
strategies.append(MyStrategy(weight, params))
|
|
```
|
|
|
|
### 3. Export Strategy
|
|
|
|
Update `cycles/strategies/__init__.py`:
|
|
|
|
```python
|
|
from .my_strategy import MyStrategy
|
|
|
|
__all__ = [
|
|
# ... existing exports ...
|
|
'MyStrategy'
|
|
]
|
|
```
|
|
|
|
## 📊 Performance Features
|
|
|
|
### Strategy Analysis
|
|
- Individual strategy performance tracking
|
|
- Combined strategy performance metrics
|
|
- Signal quality analysis
|
|
- Confidence level monitoring
|
|
|
|
### Plotting Support
|
|
- Automatic chart generation for BBRS strategies
|
|
- Meta-trend visualization for default strategy
|
|
- Combined signal overlays
|
|
- Performance comparison charts
|
|
|
|
## 🔄 Backward Compatibility
|
|
|
|
The system maintains full backward compatibility:
|
|
- ✅ Existing code using single strategies works unchanged
|
|
- ✅ Legacy strategy functions are preserved in main.py
|
|
- ✅ Default behavior matches original implementation
|
|
- ✅ Gradual migration path available
|
|
|
|
## 📚 Best Practices
|
|
|
|
### 1. **Risk Management**
|
|
- Use `"any"` exit rule for faster risk exits
|
|
- Set appropriate stop loss percentages per strategy
|
|
- Monitor combined drawdown vs individual strategies
|
|
|
|
### 2. **Signal Quality**
|
|
- Set appropriate `min_confidence` based on strategy reliability
|
|
- Test individual strategies thoroughly before combining
|
|
- Monitor signal frequency and quality
|
|
|
|
### 3. **Weight Distribution**
|
|
- Balance strategy weights based on historical performance
|
|
- Consider strategy correlation when setting weights
|
|
- Regularly rebalance based on changing market conditions
|
|
|
|
### 4. **Testing & Validation**
|
|
- Backtest individual strategies first
|
|
- Test combinations on historical data
|
|
- Validate on out-of-sample data
|
|
|
|
### 5. **Monitoring**
|
|
- Log strategy initialization and errors
|
|
- Track individual vs combined performance
|
|
- Monitor signal generation frequency
|
|
|
|
## 🔍 Troubleshooting
|
|
|
|
### Strategy Not Found Error
|
|
```
|
|
ValueError: Unknown strategy: my_strategy
|
|
```
|
|
**Solution**: Ensure strategy is registered in `manager.py` `_load_strategies` method
|
|
|
|
### No Signals Generated
|
|
**Possible Causes**:
|
|
- Strategy initialization failed
|
|
- Data insufficient for strategy requirements
|
|
- `min_confidence` threshold too high
|
|
|
|
**Solution**: Check logs, verify data, adjust confidence threshold
|
|
|
|
### Poor Combined Performance
|
|
**Analysis Steps**:
|
|
1. Review individual strategy performance
|
|
2. Check strategy correlation and overlap
|
|
3. Adjust weights and combination rules
|
|
4. Consider market regime compatibility
|
|
|
|
### Import Errors
|
|
```
|
|
ImportError: cannot import name 'StrategyManager'
|
|
```
|
|
**Solution**: Use correct import path: `from cycles.strategies import StrategyManager`
|
|
|
|
## 📞 Support
|
|
|
|
For issues, feature requests, or contributions:
|
|
1. Check existing documentation and examples
|
|
2. Review troubleshooting section
|
|
3. Examine configuration files for proper syntax
|
|
4. Ensure all dependencies are installed
|
|
|
|
---
|
|
|
|
**Version**: 1.0.0
|
|
**Last Updated**: January 2025
|
|
**TCP Cycles Project** |