Add strategy management system with multiple trading strategies
- Introduced a new strategies module containing the StrategyManager class to orchestrate multiple trading strategies. - Implemented StrategyBase and StrategySignal as foundational components for strategy development. - Added DefaultStrategy for meta-trend analysis and BBRSStrategy for Bollinger Bands + RSI trading. - Enhanced documentation to provide clear usage examples and configuration guidelines for the new system. - Established a modular architecture to support future strategy additions and improvements.
This commit is contained in:
parent
4552d7e6b5
commit
235098c045
40
cycles/strategies/__init__.py
Normal file
40
cycles/strategies/__init__.py
Normal file
@ -0,0 +1,40 @@
|
||||
"""
|
||||
Strategies Module
|
||||
|
||||
This module contains the strategy management system for trading strategies.
|
||||
It provides a flexible framework for implementing, combining, and managing multiple trading strategies.
|
||||
|
||||
Components:
|
||||
- StrategyBase: Abstract base class for all strategies
|
||||
- DefaultStrategy: Meta-trend based strategy
|
||||
- BBRSStrategy: Bollinger Bands + RSI strategy
|
||||
- StrategyManager: Orchestrates multiple strategies
|
||||
- StrategySignal: Represents trading signals with confidence levels
|
||||
|
||||
Usage:
|
||||
from cycles.strategies import StrategyManager, create_strategy_manager
|
||||
|
||||
# Create strategy manager from config
|
||||
strategy_manager = create_strategy_manager(config)
|
||||
|
||||
# Or create individual strategies
|
||||
from cycles.strategies import DefaultStrategy, BBRSStrategy
|
||||
default_strategy = DefaultStrategy(weight=1.0, params={})
|
||||
"""
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
from .default_strategy import DefaultStrategy
|
||||
from .bbrs_strategy import BBRSStrategy
|
||||
from .manager import StrategyManager, create_strategy_manager
|
||||
|
||||
__all__ = [
|
||||
'StrategyBase',
|
||||
'StrategySignal',
|
||||
'DefaultStrategy',
|
||||
'BBRSStrategy',
|
||||
'StrategyManager',
|
||||
'create_strategy_manager'
|
||||
]
|
||||
|
||||
__version__ = '1.0.0'
|
||||
__author__ = 'TCP Cycles Team'
|
||||
162
cycles/strategies/base.py
Normal file
162
cycles/strategies/base.py
Normal file
@ -0,0 +1,162 @@
|
||||
"""
|
||||
Base classes for the strategy management system.
|
||||
|
||||
This module contains the fundamental building blocks for all trading strategies:
|
||||
- StrategySignal: Represents trading signals with confidence and metadata
|
||||
- StrategyBase: Abstract base class that all strategies must inherit from
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
class StrategySignal:
|
||||
"""
|
||||
Represents a trading signal from a strategy.
|
||||
|
||||
A signal encapsulates the strategy's recommendation along with confidence
|
||||
level, optional price target, and additional metadata.
|
||||
|
||||
Attributes:
|
||||
signal_type (str): Type of signal - "ENTRY", "EXIT", or "HOLD"
|
||||
confidence (float): Confidence level from 0.0 to 1.0
|
||||
price (Optional[float]): Optional specific price for the signal
|
||||
metadata (Dict): Additional signal data and context
|
||||
|
||||
Example:
|
||||
# Entry signal with high confidence
|
||||
signal = StrategySignal("ENTRY", confidence=0.8)
|
||||
|
||||
# Exit signal with stop loss price
|
||||
signal = StrategySignal("EXIT", confidence=1.0, price=50000,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
"""
|
||||
|
||||
def __init__(self, signal_type: str, confidence: float = 1.0,
|
||||
price: Optional[float] = None, metadata: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize a strategy signal.
|
||||
|
||||
Args:
|
||||
signal_type: Type of signal ("ENTRY", "EXIT", "HOLD")
|
||||
confidence: Confidence level (0.0 to 1.0)
|
||||
price: Optional specific price for the signal
|
||||
metadata: Additional signal data and context
|
||||
"""
|
||||
self.signal_type = signal_type
|
||||
self.confidence = max(0.0, min(1.0, confidence)) # Clamp to [0,1]
|
||||
self.price = price
|
||||
self.metadata = metadata or {}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the signal."""
|
||||
return (f"StrategySignal(type={self.signal_type}, "
|
||||
f"confidence={self.confidence:.2f}, "
|
||||
f"price={self.price}, metadata={self.metadata})")
|
||||
|
||||
|
||||
class StrategyBase(ABC):
|
||||
"""
|
||||
Abstract base class for all trading strategies.
|
||||
|
||||
This class defines the interface that all strategies must implement:
|
||||
- initialize(): Setup strategy with backtester data
|
||||
- get_entry_signal(): Generate entry signals
|
||||
- get_exit_signal(): Generate exit signals
|
||||
- get_confidence(): Optional confidence calculation
|
||||
|
||||
Attributes:
|
||||
name (str): Strategy name
|
||||
weight (float): Strategy weight for combination
|
||||
params (Dict): Strategy parameters
|
||||
initialized (bool): Whether strategy has been initialized
|
||||
|
||||
Example:
|
||||
class MyStrategy(StrategyBase):
|
||||
def initialize(self, backtester):
|
||||
# Setup strategy indicators
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Return StrategySignal based on analysis
|
||||
if should_enter:
|
||||
return StrategySignal("ENTRY", confidence=0.7)
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, weight: float = 1.0, params: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize the strategy base.
|
||||
|
||||
Args:
|
||||
name: Strategy name/identifier
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy-specific parameters
|
||||
"""
|
||||
self.name = name
|
||||
self.weight = weight
|
||||
self.params = params or {}
|
||||
self.initialized = False
|
||||
|
||||
@abstractmethod
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize strategy with backtester data.
|
||||
|
||||
This method is called once before backtesting begins.
|
||||
Strategies should setup indicators, validate data, and
|
||||
set self.initialized = True when complete.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with data and configuration
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal for the given data index.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal with confidence level
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal for the given data index.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with confidence level
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence for the current market state.
|
||||
|
||||
Default implementation returns 1.0. Strategies can override
|
||||
this to provide dynamic confidence based on market conditions.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
return 1.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the strategy."""
|
||||
return (f"{self.__class__.__name__}(name={self.name}, "
|
||||
f"weight={self.weight}, initialized={self.initialized})")
|
||||
316
cycles/strategies/bbrs_strategy.py
Normal file
316
cycles/strategies/bbrs_strategy.py
Normal file
@ -0,0 +1,316 @@
|
||||
"""
|
||||
Bollinger Bands + RSI Strategy (BBRS)
|
||||
|
||||
This module implements a sophisticated trading strategy that combines Bollinger Bands
|
||||
and RSI indicators with market regime detection. The strategy adapts its parameters
|
||||
based on whether the market is trending or moving sideways.
|
||||
|
||||
Key Features:
|
||||
- Dynamic parameter adjustment based on market regime
|
||||
- Bollinger Band squeeze detection
|
||||
- RSI overbought/oversold conditions
|
||||
- Market regime-specific thresholds
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from typing import Tuple, Optional
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
|
||||
class BBRSStrategy(StrategyBase):
|
||||
"""
|
||||
Bollinger Bands + RSI Strategy implementation.
|
||||
|
||||
This strategy uses Bollinger Bands and RSI indicators with market regime detection
|
||||
to generate trading signals. It adapts its parameters based on whether the market
|
||||
is in a trending or sideways regime.
|
||||
|
||||
Parameters:
|
||||
bb_width (float): Bollinger Band width threshold (default: 0.05)
|
||||
bb_period (int): Bollinger Band period (default: 20)
|
||||
rsi_period (int): RSI calculation period (default: 14)
|
||||
trending_rsi_threshold (list): RSI thresholds for trending market [low, high]
|
||||
trending_bb_multiplier (float): BB multiplier for trending market
|
||||
sideways_rsi_threshold (list): RSI thresholds for sideways market [low, high]
|
||||
sideways_bb_multiplier (float): BB multiplier for sideways market
|
||||
strategy_name (str): Strategy implementation name
|
||||
SqueezeStrategy (bool): Enable squeeze strategy
|
||||
stop_loss_pct (float): Stop loss percentage (default: 0.05)
|
||||
|
||||
Example:
|
||||
params = {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
strategy = BBRSStrategy(weight=1.0, params=params)
|
||||
"""
|
||||
|
||||
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
|
||||
"""
|
||||
Initialize the BBRS strategy.
|
||||
|
||||
Args:
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy parameters for Bollinger Bands and RSI
|
||||
"""
|
||||
super().__init__("bbrs", weight, params)
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize BBRS strategy with signal processing.
|
||||
|
||||
Sets up the strategy by:
|
||||
1. Initializing empty signal series
|
||||
2. Running the BBRS strategy processing if original data is available
|
||||
3. Resampling signals from 15-minute to 1-minute resolution
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
# Initialize empty signal series
|
||||
backtester.strategies["buy_signals"] = pd.Series(False, index=range(len(backtester.df)))
|
||||
backtester.strategies["sell_signals"] = pd.Series(False, index=range(len(backtester.df)))
|
||||
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.05)
|
||||
|
||||
# Run strategy processing if original data is available
|
||||
if hasattr(backtester, 'original_df'):
|
||||
self._run_strategy_processing(backtester)
|
||||
|
||||
self.initialized = True
|
||||
|
||||
def _run_strategy_processing(self, backtester) -> None:
|
||||
"""
|
||||
Run the actual BBRS strategy processing.
|
||||
|
||||
Uses the Strategy class from cycles.Analysis.strategies to process
|
||||
the original dataframe and generate buy/sell signals based on
|
||||
Bollinger Bands, RSI, and market regime detection.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with original_df attribute
|
||||
"""
|
||||
from cycles.Analysis.strategies import Strategy
|
||||
|
||||
# Configure strategy parameters with defaults
|
||||
config_strategy = {
|
||||
"bb_width": self.params.get("bb_width", 0.05),
|
||||
"bb_period": self.params.get("bb_period", 20),
|
||||
"rsi_period": self.params.get("rsi_period", 14),
|
||||
"trending": {
|
||||
"rsi_threshold": self.params.get("trending_rsi_threshold", [30, 70]),
|
||||
"bb_std_dev_multiplier": self.params.get("trending_bb_multiplier", 2.5),
|
||||
},
|
||||
"sideways": {
|
||||
"rsi_threshold": self.params.get("sideways_rsi_threshold", [40, 60]),
|
||||
"bb_std_dev_multiplier": self.params.get("sideways_bb_multiplier", 1.8),
|
||||
},
|
||||
"strategy_name": self.params.get("strategy_name", "MarketRegimeStrategy"),
|
||||
"SqueezeStrategy": self.params.get("SqueezeStrategy", True)
|
||||
}
|
||||
|
||||
# Run strategy processing
|
||||
strategy = Strategy(config=config_strategy, logging=logging)
|
||||
processed_data = strategy.run(backtester.original_df, config_strategy["strategy_name"])
|
||||
|
||||
# Store processed data for plotting and analysis
|
||||
backtester.processed_data = processed_data
|
||||
|
||||
if processed_data.empty:
|
||||
# If strategy processing failed, keep empty signals
|
||||
return
|
||||
|
||||
# Extract signals from processed data
|
||||
buy_signals_raw = processed_data.get('BuySignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
sell_signals_raw = processed_data.get('SellSignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
|
||||
# Resample signals from 15-minute to 1-minute resolution
|
||||
self._resample_signals_to_1min(backtester, buy_signals_raw, sell_signals_raw)
|
||||
|
||||
def _resample_signals_to_1min(self, backtester, buy_signals_raw, sell_signals_raw) -> None:
|
||||
"""
|
||||
Resample signals from 15-minute to 1-minute resolution.
|
||||
|
||||
Takes the 15-minute signals and maps them to 1-minute timestamps
|
||||
using forward-fill to maintain signal consistency.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance
|
||||
buy_signals_raw: Raw buy signals from strategy processing
|
||||
sell_signals_raw: Raw sell signals from strategy processing
|
||||
"""
|
||||
# Get the DatetimeIndex from the original 1-minute data
|
||||
original_datetime_index = backtester.original_df.index
|
||||
|
||||
# Reindex signals from 15-minute to 1-minute resolution using forward-fill
|
||||
buy_signals_1min = buy_signals_raw.reindex(original_datetime_index, method='ffill').fillna(False)
|
||||
sell_signals_1min = sell_signals_raw.reindex(original_datetime_index, method='ffill').fillna(False)
|
||||
|
||||
# Convert to integer index to match backtest DataFrame
|
||||
buy_condition = pd.Series(buy_signals_1min.values, index=range(len(buy_signals_1min)))
|
||||
sell_condition = pd.Series(sell_signals_1min.values, index=range(len(sell_signals_1min)))
|
||||
|
||||
# Ensure same length as backtest DataFrame
|
||||
if len(buy_condition) != len(backtester.df):
|
||||
target_length = len(backtester.df)
|
||||
if len(buy_condition) > target_length:
|
||||
# Truncate if longer
|
||||
buy_condition = buy_condition[:target_length]
|
||||
sell_condition = sell_condition[:target_length]
|
||||
else:
|
||||
# Pad with False if shorter
|
||||
buy_values = buy_condition.values
|
||||
sell_values = sell_condition.values
|
||||
buy_values = np.pad(buy_values, (0, target_length - len(buy_values)), constant_values=False)
|
||||
sell_values = np.pad(sell_values, (0, target_length - len(sell_values)), constant_values=False)
|
||||
buy_condition = pd.Series(buy_values, index=range(target_length))
|
||||
sell_condition = pd.Series(sell_values, index=range(target_length))
|
||||
|
||||
# Store the resampled signals
|
||||
backtester.strategies["buy_signals"] = buy_condition
|
||||
backtester.strategies["sell_signals"] = sell_condition
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal based on BBRS buy signals.
|
||||
|
||||
Entry occurs when the BBRS strategy processing has generated
|
||||
a buy signal based on Bollinger Bands and RSI conditions.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal if buy condition met, hold otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if df_index >= len(backtester.strategies["buy_signals"]):
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if backtester.strategies["buy_signals"].iloc[df_index]:
|
||||
# High confidence for BBRS buy signals
|
||||
return StrategySignal("ENTRY", confidence=1.0)
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal based on BBRS sell signals or stop loss.
|
||||
|
||||
Exit occurs when:
|
||||
1. BBRS strategy generates a sell signal
|
||||
2. Stop loss is triggered based on price movement
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with type and price, or hold signal
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if df_index >= len(backtester.strategies["sell_signals"]):
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
# Check for sell signal
|
||||
if backtester.strategies["sell_signals"].iloc[df_index]:
|
||||
return StrategySignal("EXIT", confidence=1.0,
|
||||
metadata={"type": "SELL_SIGNAL"})
|
||||
|
||||
# Check for stop loss
|
||||
stop_loss_result, sell_price = self._check_stop_loss(backtester)
|
||||
if stop_loss_result:
|
||||
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence based on signal strength and market conditions.
|
||||
|
||||
Confidence is higher when signals are present and market conditions
|
||||
are favorable for the BBRS strategy.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
if not self.initialized:
|
||||
return 0.0
|
||||
|
||||
# Check if we have processed data for confidence calculation
|
||||
if hasattr(backtester, 'processed_data') and not backtester.processed_data.empty:
|
||||
# Could analyze RSI levels, BB position, etc. for dynamic confidence
|
||||
# For now, return high confidence when signals are present
|
||||
if (df_index < len(backtester.strategies["buy_signals"]) and
|
||||
backtester.strategies["buy_signals"].iloc[df_index]):
|
||||
return 1.0
|
||||
elif (df_index < len(backtester.strategies["sell_signals"]) and
|
||||
backtester.strategies["sell_signals"].iloc[df_index]):
|
||||
return 1.0
|
||||
|
||||
# Moderate confidence during neutral periods
|
||||
return 0.5
|
||||
|
||||
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
|
||||
"""
|
||||
Check if stop loss is triggered using BBRS-specific logic.
|
||||
|
||||
Similar to default strategy but uses BBRS-specific stop loss percentage
|
||||
and can be enhanced with additional BBRS-specific exit conditions.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current trade state
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
|
||||
"""
|
||||
# Calculate stop loss price
|
||||
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
|
||||
|
||||
# Get minute-level data for precise stop loss checking
|
||||
min1_df = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
|
||||
min1_index = min1_df.index
|
||||
|
||||
# Find data range from entry to current time
|
||||
start_candidates = min1_index[min1_index >= backtester.entry_time]
|
||||
if len(start_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_trade_min1_start_idx = start_candidates[0]
|
||||
end_candidates = min1_index[min1_index <= backtester.current_date]
|
||||
|
||||
if len(end_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_min1_end_idx = end_candidates[-1]
|
||||
|
||||
# Check if any candle in the range triggered stop loss
|
||||
min1_slice = min1_df.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
|
||||
|
||||
if (min1_slice['low'] <= stop_price).any():
|
||||
# Find the first candle that triggered stop loss
|
||||
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
|
||||
|
||||
# Use open price if it gapped below stop, otherwise use stop price
|
||||
if stop_candle['open'] < stop_price:
|
||||
sell_price = stop_candle['open']
|
||||
else:
|
||||
sell_price = stop_price
|
||||
|
||||
return True, sell_price
|
||||
|
||||
return False, None
|
||||
219
cycles/strategies/default_strategy.py
Normal file
219
cycles/strategies/default_strategy.py
Normal file
@ -0,0 +1,219 @@
|
||||
"""
|
||||
Default Meta-Trend Strategy
|
||||
|
||||
This module implements the default trading strategy based on meta-trend analysis
|
||||
using multiple Supertrend indicators. The strategy enters when trends align
|
||||
and exits on trend reversal or stop loss.
|
||||
|
||||
The meta-trend is calculated by comparing three Supertrend indicators:
|
||||
- Entry: When meta-trend changes from != 1 to == 1
|
||||
- Exit: When meta-trend changes to -1 or stop loss is triggered
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from typing import Tuple, Optional
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
|
||||
class DefaultStrategy(StrategyBase):
|
||||
"""
|
||||
Default meta-trend strategy implementation.
|
||||
|
||||
This strategy uses multiple Supertrend indicators to determine market direction.
|
||||
It generates entry signals when all three Supertrend indicators align in an
|
||||
upward direction, and exit signals when they reverse or stop loss is triggered.
|
||||
|
||||
Parameters:
|
||||
stop_loss_pct (float): Stop loss percentage (default: 0.03)
|
||||
|
||||
Example:
|
||||
strategy = DefaultStrategy(weight=1.0, params={"stop_loss_pct": 0.05})
|
||||
"""
|
||||
|
||||
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
|
||||
"""
|
||||
Initialize the default strategy.
|
||||
|
||||
Args:
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy parameters including stop_loss_pct
|
||||
"""
|
||||
super().__init__("default", weight, params)
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize meta trend calculation using Supertrend indicators.
|
||||
|
||||
Calculates the meta-trend by comparing three Supertrend indicators.
|
||||
When all three agree on direction, meta-trend follows that direction.
|
||||
Otherwise, meta-trend is neutral (0).
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
from cycles.Analysis.supertrend import Supertrends
|
||||
|
||||
# Calculate Supertrend indicators
|
||||
supertrends = Supertrends(backtester.df, verbose=False)
|
||||
supertrend_results_list = supertrends.calculate_supertrend_indicators()
|
||||
|
||||
# Extract trend arrays from each Supertrend
|
||||
trends = [st['results']['trend'] for st in supertrend_results_list]
|
||||
trends_arr = np.stack(trends, axis=1)
|
||||
|
||||
# Calculate meta-trend: all three must agree for direction signal
|
||||
meta_trend = np.where(
|
||||
(trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
|
||||
trends_arr[:,0],
|
||||
0 # Neutral when trends don't agree
|
||||
)
|
||||
|
||||
# Store in backtester for access during trading
|
||||
backtester.strategies["meta_trend"] = meta_trend
|
||||
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.03)
|
||||
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal based on meta-trend direction change.
|
||||
|
||||
Entry occurs when meta-trend changes from != 1 to == 1, indicating
|
||||
all Supertrend indicators now agree on upward direction.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal if trend aligns, hold signal otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
if df_index < 1:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
# Check for meta-trend entry condition
|
||||
prev_trend = backtester.strategies["meta_trend"][df_index - 1]
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index]
|
||||
|
||||
if prev_trend != 1 and curr_trend == 1:
|
||||
# Strong confidence when all indicators align for entry
|
||||
return StrategySignal("ENTRY", confidence=1.0)
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal based on meta-trend reversal or stop loss.
|
||||
|
||||
Exit occurs when:
|
||||
1. Meta-trend changes to -1 (trend reversal)
|
||||
2. Stop loss is triggered based on price movement
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with type and price, or hold signal
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
if df_index < 1:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
# Check for meta-trend exit signal
|
||||
prev_trend = backtester.strategies["meta_trend"][df_index - 1]
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index]
|
||||
|
||||
if prev_trend != 1 and curr_trend == -1:
|
||||
return StrategySignal("EXIT", confidence=1.0,
|
||||
metadata={"type": "META_TREND_EXIT_SIGNAL"})
|
||||
|
||||
# Check for stop loss
|
||||
stop_loss_result, sell_price = self._check_stop_loss(backtester)
|
||||
if stop_loss_result:
|
||||
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence based on meta-trend strength.
|
||||
|
||||
Higher confidence when meta-trend is strongly directional,
|
||||
lower confidence during neutral periods.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
if not self.initialized or df_index >= len(backtester.strategies["meta_trend"]):
|
||||
return 0.0
|
||||
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index]
|
||||
|
||||
# High confidence for strong directional signals
|
||||
if curr_trend == 1 or curr_trend == -1:
|
||||
return 1.0
|
||||
|
||||
# Low confidence for neutral trend
|
||||
return 0.3
|
||||
|
||||
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
|
||||
"""
|
||||
Check if stop loss is triggered based on price movement.
|
||||
|
||||
Calculates stop loss price and checks if any candle since entry
|
||||
has triggered the stop loss condition.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current trade state
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
|
||||
"""
|
||||
# Calculate stop loss price
|
||||
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
|
||||
|
||||
# Get minute-level data for precise stop loss checking
|
||||
min1_df = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
|
||||
min1_index = min1_df.index
|
||||
|
||||
# Find data range from entry to current time
|
||||
start_candidates = min1_index[min1_index >= backtester.entry_time]
|
||||
if len(start_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_trade_min1_start_idx = start_candidates[0]
|
||||
end_candidates = min1_index[min1_index <= backtester.current_date]
|
||||
|
||||
if len(end_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_min1_end_idx = end_candidates[-1]
|
||||
|
||||
# Check if any candle in the range triggered stop loss
|
||||
min1_slice = min1_df.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
|
||||
|
||||
if (min1_slice['low'] <= stop_price).any():
|
||||
# Find the first candle that triggered stop loss
|
||||
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
|
||||
|
||||
# Use open price if it gapped below stop, otherwise use stop price
|
||||
if stop_candle['open'] < stop_price:
|
||||
sell_price = stop_candle['open']
|
||||
else:
|
||||
sell_price = stop_price
|
||||
|
||||
return True, sell_price
|
||||
|
||||
return False, None
|
||||
381
cycles/strategies/manager.py
Normal file
381
cycles/strategies/manager.py
Normal file
@ -0,0 +1,381 @@
|
||||
"""
|
||||
Strategy Manager
|
||||
|
||||
This module contains the StrategyManager class that orchestrates multiple trading strategies
|
||||
and combines their signals using configurable aggregation rules.
|
||||
|
||||
The StrategyManager supports various combination methods for entry and exit signals:
|
||||
- Entry: any, all, majority, weighted_consensus
|
||||
- Exit: any, all, priority (with stop loss prioritization)
|
||||
"""
|
||||
|
||||
from typing import Dict, List, Tuple, Optional
|
||||
import logging
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
from .default_strategy import DefaultStrategy
|
||||
from .bbrs_strategy import BBRSStrategy
|
||||
|
||||
|
||||
class StrategyManager:
|
||||
"""
|
||||
Manages multiple strategies and combines their signals.
|
||||
|
||||
The StrategyManager loads multiple strategies from configuration,
|
||||
initializes them with backtester data, and combines their signals
|
||||
using configurable aggregation rules.
|
||||
|
||||
Attributes:
|
||||
strategies (List[StrategyBase]): List of loaded strategies
|
||||
combination_rules (Dict): Rules for combining signals
|
||||
initialized (bool): Whether manager has been initialized
|
||||
|
||||
Example:
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 0.6, "params": {}},
|
||||
{"name": "bbrs", "weight": 0.4, "params": {"bb_width": 0.05}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
manager = StrategyManager(config["strategies"], config["combination_rules"])
|
||||
"""
|
||||
|
||||
def __init__(self, strategies_config: List[Dict], combination_rules: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize the strategy manager.
|
||||
|
||||
Args:
|
||||
strategies_config: List of strategy configurations
|
||||
combination_rules: Rules for combining signals
|
||||
"""
|
||||
self.strategies = self._load_strategies(strategies_config)
|
||||
self.combination_rules = combination_rules or {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
self.initialized = False
|
||||
|
||||
def _load_strategies(self, strategies_config: List[Dict]) -> List[StrategyBase]:
|
||||
"""
|
||||
Load strategies from configuration.
|
||||
|
||||
Creates strategy instances based on configuration and registers
|
||||
them with the manager. Supports extensible strategy registration.
|
||||
|
||||
Args:
|
||||
strategies_config: List of strategy configurations
|
||||
|
||||
Returns:
|
||||
List[StrategyBase]: List of instantiated strategies
|
||||
|
||||
Raises:
|
||||
ValueError: If unknown strategy name is specified
|
||||
"""
|
||||
strategies = []
|
||||
|
||||
for config in strategies_config:
|
||||
name = config.get("name", "").lower()
|
||||
weight = config.get("weight", 1.0)
|
||||
params = config.get("params", {})
|
||||
|
||||
if name == "default":
|
||||
strategies.append(DefaultStrategy(weight, params))
|
||||
elif name == "bbrs":
|
||||
strategies.append(BBRSStrategy(weight, params))
|
||||
else:
|
||||
raise ValueError(f"Unknown strategy: {name}. "
|
||||
f"Available strategies: default, bbrs")
|
||||
|
||||
return strategies
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize all strategies with backtester data.
|
||||
|
||||
Calls the initialize method on each strategy, allowing them
|
||||
to set up indicators, validate data, and prepare for trading.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
strategy.initialize(backtester)
|
||||
logging.info(f"Initialized strategy: {strategy.name}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to initialize strategy {strategy.name}: {e}")
|
||||
raise
|
||||
|
||||
self.initialized = True
|
||||
logging.info(f"Strategy manager initialized with {len(self.strategies)} strategies")
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> bool:
|
||||
"""
|
||||
Get combined entry signal from all strategies.
|
||||
|
||||
Collects entry signals from all strategies and combines them
|
||||
according to the configured combination rules.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
bool: True if combined signal suggests entry, False otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return False
|
||||
|
||||
# Collect signals from all strategies
|
||||
signals = {}
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
signal = strategy.get_entry_signal(backtester, df_index)
|
||||
signals[strategy.name] = {
|
||||
"signal": signal,
|
||||
"weight": strategy.weight,
|
||||
"confidence": signal.confidence
|
||||
}
|
||||
except Exception as e:
|
||||
logging.warning(f"Strategy {strategy.name} entry signal failed: {e}")
|
||||
signals[strategy.name] = {
|
||||
"signal": StrategySignal("HOLD", 0.0),
|
||||
"weight": strategy.weight,
|
||||
"confidence": 0.0
|
||||
}
|
||||
|
||||
return self._combine_entry_signals(signals)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> Tuple[Optional[str], Optional[float]]:
|
||||
"""
|
||||
Get combined exit signal from all strategies.
|
||||
|
||||
Collects exit signals from all strategies and combines them
|
||||
according to the configured combination rules.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
|
||||
"""
|
||||
if not self.initialized:
|
||||
return None, None
|
||||
|
||||
# Collect signals from all strategies
|
||||
signals = {}
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
signal = strategy.get_exit_signal(backtester, df_index)
|
||||
signals[strategy.name] = {
|
||||
"signal": signal,
|
||||
"weight": strategy.weight,
|
||||
"confidence": signal.confidence
|
||||
}
|
||||
except Exception as e:
|
||||
logging.warning(f"Strategy {strategy.name} exit signal failed: {e}")
|
||||
signals[strategy.name] = {
|
||||
"signal": StrategySignal("HOLD", 0.0),
|
||||
"weight": strategy.weight,
|
||||
"confidence": 0.0
|
||||
}
|
||||
|
||||
return self._combine_exit_signals(signals)
|
||||
|
||||
def _combine_entry_signals(self, signals: Dict) -> bool:
|
||||
"""
|
||||
Combine entry signals based on combination rules.
|
||||
|
||||
Supports multiple combination methods:
|
||||
- any: Enter if ANY strategy signals entry
|
||||
- all: Enter only if ALL strategies signal entry
|
||||
- majority: Enter if majority of strategies signal entry
|
||||
- weighted_consensus: Enter based on weighted average confidence
|
||||
|
||||
Args:
|
||||
signals: Dictionary of strategy signals with weights and confidence
|
||||
|
||||
Returns:
|
||||
bool: Combined entry decision
|
||||
"""
|
||||
method = self.combination_rules.get("entry", "weighted_consensus")
|
||||
min_confidence = self.combination_rules.get("min_confidence", 0.5)
|
||||
|
||||
# Filter for entry signals above minimum confidence
|
||||
entry_signals = [
|
||||
s for s in signals.values()
|
||||
if s["signal"].signal_type == "ENTRY" and s["signal"].confidence >= min_confidence
|
||||
]
|
||||
|
||||
if not entry_signals:
|
||||
return False
|
||||
|
||||
if method == "any":
|
||||
# Enter if any strategy signals entry
|
||||
return len(entry_signals) > 0
|
||||
|
||||
elif method == "all":
|
||||
# Enter only if all strategies signal entry
|
||||
return len(entry_signals) == len(self.strategies)
|
||||
|
||||
elif method == "majority":
|
||||
# Enter if majority of strategies signal entry
|
||||
return len(entry_signals) > len(self.strategies) / 2
|
||||
|
||||
elif method == "weighted_consensus":
|
||||
# Enter based on weighted average confidence
|
||||
total_weight = sum(s["weight"] for s in entry_signals)
|
||||
if total_weight == 0:
|
||||
return False
|
||||
|
||||
weighted_confidence = sum(
|
||||
s["signal"].confidence * s["weight"]
|
||||
for s in entry_signals
|
||||
) / total_weight
|
||||
|
||||
return weighted_confidence >= min_confidence
|
||||
|
||||
else:
|
||||
logging.warning(f"Unknown entry combination method: {method}, using 'any'")
|
||||
return len(entry_signals) > 0
|
||||
|
||||
def _combine_exit_signals(self, signals: Dict) -> Tuple[Optional[str], Optional[float]]:
|
||||
"""
|
||||
Combine exit signals based on combination rules.
|
||||
|
||||
Supports multiple combination methods:
|
||||
- any: Exit if ANY strategy signals exit (recommended for risk management)
|
||||
- all: Exit only if ALL strategies agree on exit
|
||||
- priority: Exit based on priority order (STOP_LOSS > SELL_SIGNAL > others)
|
||||
|
||||
Args:
|
||||
signals: Dictionary of strategy signals with weights and confidence
|
||||
|
||||
Returns:
|
||||
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
|
||||
"""
|
||||
method = self.combination_rules.get("exit", "any")
|
||||
|
||||
# Filter for exit signals
|
||||
exit_signals = [
|
||||
s for s in signals.values()
|
||||
if s["signal"].signal_type == "EXIT"
|
||||
]
|
||||
|
||||
if not exit_signals:
|
||||
return None, None
|
||||
|
||||
if method == "any":
|
||||
# Exit if any strategy signals exit (first one found)
|
||||
for signal_data in exit_signals:
|
||||
signal = signal_data["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
elif method == "all":
|
||||
# Exit only if all strategies agree on exit
|
||||
if len(exit_signals) == len(self.strategies):
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
elif method == "priority":
|
||||
# Priority order: STOP_LOSS > SELL_SIGNAL > others
|
||||
stop_loss_signals = [
|
||||
s for s in exit_signals
|
||||
if s["signal"].metadata.get("type") == "STOP_LOSS"
|
||||
]
|
||||
if stop_loss_signals:
|
||||
signal = stop_loss_signals[0]["signal"]
|
||||
return "STOP_LOSS", signal.price
|
||||
|
||||
sell_signals = [
|
||||
s for s in exit_signals
|
||||
if s["signal"].metadata.get("type") == "SELL_SIGNAL"
|
||||
]
|
||||
if sell_signals:
|
||||
signal = sell_signals[0]["signal"]
|
||||
return "SELL_SIGNAL", signal.price
|
||||
|
||||
# Return first available exit signal
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
else:
|
||||
logging.warning(f"Unknown exit combination method: {method}, using 'any'")
|
||||
# Fallback to 'any' method
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
return None, None
|
||||
|
||||
def get_strategy_summary(self) -> Dict:
|
||||
"""
|
||||
Get summary of loaded strategies and their configuration.
|
||||
|
||||
Returns:
|
||||
Dict: Summary of strategies, weights, and combination rules
|
||||
"""
|
||||
return {
|
||||
"strategies": [
|
||||
{
|
||||
"name": strategy.name,
|
||||
"weight": strategy.weight,
|
||||
"params": strategy.params,
|
||||
"initialized": strategy.initialized
|
||||
}
|
||||
for strategy in self.strategies
|
||||
],
|
||||
"combination_rules": self.combination_rules,
|
||||
"total_strategies": len(self.strategies),
|
||||
"initialized": self.initialized
|
||||
}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the strategy manager."""
|
||||
strategy_names = [s.name for s in self.strategies]
|
||||
return (f"StrategyManager(strategies={strategy_names}, "
|
||||
f"initialized={self.initialized})")
|
||||
|
||||
|
||||
def create_strategy_manager(config: Dict) -> StrategyManager:
|
||||
"""
|
||||
Factory function to create StrategyManager from configuration.
|
||||
|
||||
Provides a convenient way to create a StrategyManager instance
|
||||
from a configuration dictionary.
|
||||
|
||||
Args:
|
||||
config: Configuration dictionary with strategies and combination_rules
|
||||
|
||||
Returns:
|
||||
StrategyManager: Configured strategy manager instance
|
||||
|
||||
Example:
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 1.0, "params": {}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any"
|
||||
}
|
||||
}
|
||||
manager = create_strategy_manager(config)
|
||||
"""
|
||||
strategies_config = config.get("strategies", [])
|
||||
combination_rules = config.get("combination_rules", {})
|
||||
|
||||
if not strategies_config:
|
||||
raise ValueError("No strategies specified in configuration")
|
||||
|
||||
return StrategyManager(strategies_config, combination_rules)
|
||||
330
docs/strategy_manager.md
Normal file
330
docs/strategy_manager.md
Normal file
@ -0,0 +1,330 @@
|
||||
# TCP Cycles Strategy Management System
|
||||
|
||||
The Strategy Manager system provides a flexible framework for implementing, combining, and managing multiple trading strategies within the TCP Cycles project.
|
||||
|
||||
## 🏗️ Architecture
|
||||
|
||||
### Module Structure
|
||||
```
|
||||
cycles/
|
||||
├── strategies/ # Strategy management module
|
||||
│ ├── __init__.py # Module exports and version info
|
||||
│ ├── base.py # Base classes (StrategyBase, StrategySignal)
|
||||
│ ├── default_strategy.py # Meta-trend strategy implementation
|
||||
│ ├── bbrs_strategy.py # Bollinger Bands + RSI strategy
|
||||
│ └── manager.py # StrategyManager and orchestration
|
||||
├── Analysis/ # Technical analysis tools
|
||||
├── utils/ # Utility functions
|
||||
├── backtest.py # Backtesting engine
|
||||
└── charts.py # Charting and visualization
|
||||
```
|
||||
|
||||
### Core Components
|
||||
|
||||
1. **`StrategyBase`**: Abstract base class that all strategies inherit from
|
||||
2. **`StrategySignal`**: Represents trading signals with confidence levels and metadata
|
||||
3. **`DefaultStrategy`**: Implementation of the meta-trend strategy using Supertrend indicators
|
||||
4. **`BBRSStrategy`**: Implementation of the Bollinger Bands + RSI strategy with market regime detection
|
||||
5. **`StrategyManager`**: Orchestrates multiple strategies and combines their signals
|
||||
|
||||
### Signal Types
|
||||
- **`"ENTRY"`**: Strategy suggests entering a position
|
||||
- **`"EXIT"`**: Strategy suggests exiting a position
|
||||
- **`"HOLD"`**: Strategy suggests no action
|
||||
|
||||
## 📋 Configuration
|
||||
|
||||
### Single Strategy Configuration
|
||||
|
||||
**Default Strategy Only:**
|
||||
```json
|
||||
{
|
||||
"start_date": "2025-03-01",
|
||||
"stop_date": "2025-03-15",
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["15min"],
|
||||
"stop_loss_pcts": [0.03, 0.05],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**BBRS Strategy Only:**
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Multiple Strategy Configuration
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 0.6,
|
||||
"params": {}
|
||||
},
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 0.4,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 🔧 Combination Rules
|
||||
|
||||
### Entry Signal Combination Methods
|
||||
|
||||
- **`"any"`**: Enter if ANY strategy signals entry above min_confidence
|
||||
- **`"all"`**: Enter only if ALL strategies signal entry above min_confidence
|
||||
- **`"majority"`**: Enter if more than 50% of strategies signal entry
|
||||
- **`"weighted_consensus"`**: Enter based on weighted average confidence
|
||||
|
||||
### Exit Signal Combination Methods
|
||||
|
||||
- **`"any"`**: Exit if ANY strategy signals exit (recommended for risk management)
|
||||
- **`"all"`**: Exit only if ALL strategies agree on exit
|
||||
- **`"priority"`**: Exit based on priority: STOP_LOSS > SELL_SIGNAL > others
|
||||
|
||||
### Parameters
|
||||
|
||||
- **`min_confidence`**: Minimum confidence threshold (0.0 to 1.0)
|
||||
- **`weight`**: Strategy weight for weighted calculations
|
||||
|
||||
## 🚀 Usage Examples
|
||||
|
||||
### Running with Default Strategy
|
||||
```bash
|
||||
python main.py config_default.json
|
||||
```
|
||||
|
||||
### Running with BBRS Strategy
|
||||
```bash
|
||||
python main.py config_bbrs.json
|
||||
```
|
||||
|
||||
### Running with Combined Strategies
|
||||
```bash
|
||||
python main.py config_combined.json
|
||||
```
|
||||
|
||||
### Running without Config (Interactive)
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
||||
### Programmatic Usage
|
||||
```python
|
||||
from cycles.strategies import create_strategy_manager
|
||||
|
||||
# Create strategy manager from config
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 0.7, "params": {}},
|
||||
{"name": "bbrs", "weight": 0.3, "params": {"bb_width": 0.05}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
|
||||
strategy_manager = create_strategy_manager(config)
|
||||
```
|
||||
|
||||
## ⚙️ Strategy Parameters
|
||||
|
||||
### Default Strategy Parameters
|
||||
- **`stop_loss_pct`**: Stop loss percentage (default: 0.03)
|
||||
|
||||
### BBRS Strategy Parameters
|
||||
- **`bb_width`**: Bollinger Band width (default: 0.05)
|
||||
- **`bb_period`**: Bollinger Band period (default: 20)
|
||||
- **`rsi_period`**: RSI period (default: 14)
|
||||
- **`trending_rsi_threshold`**: RSI thresholds for trending market [low, high]
|
||||
- **`trending_bb_multiplier`**: BB multiplier for trending market
|
||||
- **`sideways_rsi_threshold`**: RSI thresholds for sideways market [low, high]
|
||||
- **`sideways_bb_multiplier`**: BB multiplier for sideways market
|
||||
- **`strategy_name`**: Strategy implementation name
|
||||
- **`SqueezeStrategy`**: Enable squeeze strategy (boolean)
|
||||
- **`stop_loss_pct`**: Stop loss percentage (default: 0.05)
|
||||
|
||||
## 🔌 Adding New Strategies
|
||||
|
||||
### 1. Create Strategy Class
|
||||
|
||||
Create a new file in `cycles/strategies/` (e.g., `my_strategy.py`):
|
||||
|
||||
```python
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
class MyStrategy(StrategyBase):
|
||||
def __init__(self, weight=1.0, params=None):
|
||||
super().__init__("my_strategy", weight, params)
|
||||
|
||||
def initialize(self, backtester):
|
||||
# Initialize your strategy indicators
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Implement entry logic
|
||||
if entry_condition:
|
||||
return StrategySignal("ENTRY", confidence=0.8)
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index):
|
||||
# Implement exit logic
|
||||
if exit_condition:
|
||||
return StrategySignal("EXIT", confidence=1.0,
|
||||
metadata={"type": "MY_EXIT"})
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
### 2. Register Strategy
|
||||
|
||||
Update `cycles/strategies/manager.py` in the `_load_strategies` method:
|
||||
|
||||
```python
|
||||
elif name == "my_strategy":
|
||||
from .my_strategy import MyStrategy
|
||||
strategies.append(MyStrategy(weight, params))
|
||||
```
|
||||
|
||||
### 3. Export Strategy
|
||||
|
||||
Update `cycles/strategies/__init__.py`:
|
||||
|
||||
```python
|
||||
from .my_strategy import MyStrategy
|
||||
|
||||
__all__ = [
|
||||
# ... existing exports ...
|
||||
'MyStrategy'
|
||||
]
|
||||
```
|
||||
|
||||
## 📊 Performance Features
|
||||
|
||||
### Strategy Analysis
|
||||
- Individual strategy performance tracking
|
||||
- Combined strategy performance metrics
|
||||
- Signal quality analysis
|
||||
- Confidence level monitoring
|
||||
|
||||
### Plotting Support
|
||||
- Automatic chart generation for BBRS strategies
|
||||
- Meta-trend visualization for default strategy
|
||||
- Combined signal overlays
|
||||
- Performance comparison charts
|
||||
|
||||
## 🔄 Backward Compatibility
|
||||
|
||||
The system maintains full backward compatibility:
|
||||
- ✅ Existing code using single strategies works unchanged
|
||||
- ✅ Legacy strategy functions are preserved in main.py
|
||||
- ✅ Default behavior matches original implementation
|
||||
- ✅ Gradual migration path available
|
||||
|
||||
## 📚 Best Practices
|
||||
|
||||
### 1. **Risk Management**
|
||||
- Use `"any"` exit rule for faster risk exits
|
||||
- Set appropriate stop loss percentages per strategy
|
||||
- Monitor combined drawdown vs individual strategies
|
||||
|
||||
### 2. **Signal Quality**
|
||||
- Set appropriate `min_confidence` based on strategy reliability
|
||||
- Test individual strategies thoroughly before combining
|
||||
- Monitor signal frequency and quality
|
||||
|
||||
### 3. **Weight Distribution**
|
||||
- Balance strategy weights based on historical performance
|
||||
- Consider strategy correlation when setting weights
|
||||
- Regularly rebalance based on changing market conditions
|
||||
|
||||
### 4. **Testing & Validation**
|
||||
- Backtest individual strategies first
|
||||
- Test combinations on historical data
|
||||
- Validate on out-of-sample data
|
||||
|
||||
### 5. **Monitoring**
|
||||
- Log strategy initialization and errors
|
||||
- Track individual vs combined performance
|
||||
- Monitor signal generation frequency
|
||||
|
||||
## 🔍 Troubleshooting
|
||||
|
||||
### Strategy Not Found Error
|
||||
```
|
||||
ValueError: Unknown strategy: my_strategy
|
||||
```
|
||||
**Solution**: Ensure strategy is registered in `manager.py` `_load_strategies` method
|
||||
|
||||
### No Signals Generated
|
||||
**Possible Causes**:
|
||||
- Strategy initialization failed
|
||||
- Data insufficient for strategy requirements
|
||||
- `min_confidence` threshold too high
|
||||
|
||||
**Solution**: Check logs, verify data, adjust confidence threshold
|
||||
|
||||
### Poor Combined Performance
|
||||
**Analysis Steps**:
|
||||
1. Review individual strategy performance
|
||||
2. Check strategy correlation and overlap
|
||||
3. Adjust weights and combination rules
|
||||
4. Consider market regime compatibility
|
||||
|
||||
### Import Errors
|
||||
```
|
||||
ImportError: cannot import name 'StrategyManager'
|
||||
```
|
||||
**Solution**: Use correct import path: `from cycles.strategies import StrategyManager`
|
||||
|
||||
## 📞 Support
|
||||
|
||||
For issues, feature requests, or contributions:
|
||||
1. Check existing documentation and examples
|
||||
2. Review troubleshooting section
|
||||
3. Examine configuration files for proper syntax
|
||||
4. Ensure all dependencies are installed
|
||||
|
||||
---
|
||||
|
||||
**Version**: 1.0.0
|
||||
**Last Updated**: January 2025
|
||||
**TCP Cycles Project**
|
||||
Loading…
x
Reference in New Issue
Block a user