Cycles/main.py

401 lines
15 KiB
Python
Raw Normal View History

2025-05-06 15:24:36 +08:00
import pandas as pd
import numpy as np
2025-05-06 15:24:36 +08:00
from trend_detector_simple import TrendDetectorSimple
import csv
import logging
import concurrent.futures
import os
import psutil
import datetime
import gspread
from google.oauth2.service_account import Credentials
from collections import defaultdict
import threading
import queue
import time
import math
2025-05-06 15:24:36 +08:00
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("backtest.log"),
logging.StreamHandler()
]
)
# Global queue for batching Google Sheets updates
results_queue = queue.Queue()
# Background thread function to push updates every minute
class GSheetBatchPusher(threading.Thread):
def __init__(self, queue, timestamp, spreadsheet_name, interval=60):
super().__init__(daemon=True)
self.queue = queue
self.timestamp = timestamp
self.spreadsheet_name = spreadsheet_name
self.interval = interval
self._stop_event = threading.Event()
def run(self):
while not self._stop_event.is_set():
self.push_all()
time.sleep(self.interval)
# Final push on stop
self.push_all()
def stop(self):
self._stop_event.set()
def push_all(self):
batch_results = []
batch_trades = []
while True:
try:
results, trades = self.queue.get_nowait()
batch_results.extend(results)
batch_trades.extend(trades)
except queue.Empty:
break
if batch_results or batch_trades:
write_results_per_combination_gsheet(batch_results, batch_trades, self.timestamp, self.spreadsheet_name)
def get_optimal_workers():
"""Determine optimal number of worker processes based on system resources"""
cpu_count = os.cpu_count() or 4
memory_gb = psutil.virtual_memory().total / (1024**3)
# Heuristic: Use 75% of cores, but cap based on available memory
# Assume each worker needs ~2GB for large datasets
workers_by_memory = max(1, int(memory_gb / 2))
workers_by_cpu = max(1, int(cpu_count * 0.75))
return min(workers_by_cpu, workers_by_memory)
def load_data(file_path, start_date, stop_date):
"""Load data with optimized dtypes and filtering"""
# Define optimized dtypes
dtypes = {
'Open': 'float32',
'High': 'float32',
'Low': 'float32',
'Close': 'float32',
'Volume': 'float32'
}
# Read data with original capitalized column names
data = pd.read_csv(file_path, dtype=dtypes)
# Convert timestamp to datetime
data['Timestamp'] = pd.to_datetime(data['Timestamp'], unit='s')
# Filter by date range
data = data[(data['Timestamp'] >= start_date) & (data['Timestamp'] <= stop_date)]
# Now convert column names to lowercase
data.columns = data.columns.str.lower()
return data.set_index('timestamp')
def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd, debug=False):
"""Process the entire timeframe with all stop loss values (no monthly split)"""
df = df.copy().reset_index(drop=True)
trend_detector = TrendDetectorSimple(df, verbose=False)
results_rows = []
trade_rows = []
for stop_loss_pct in stop_loss_pcts:
results = trend_detector.backtest_meta_supertrend(
min1_df,
initial_usd=initial_usd,
stop_loss_pct=stop_loss_pct,
debug=debug
)
n_trades = results["n_trades"]
trades = results.get('trades', [])
n_winning_trades = sum(1 for trade in trades if trade['profit_pct'] > 0)
total_profit = sum(trade['profit_pct'] for trade in trades)
total_loss = sum(-trade['profit_pct'] for trade in trades if trade['profit_pct'] < 0)
win_rate = n_winning_trades / n_trades if n_trades > 0 else 0
avg_trade = total_profit / n_trades if n_trades > 0 else 0
profit_ratio = total_profit / total_loss if total_loss > 0 else float('inf')
cumulative_profit = 0
max_drawdown = 0
peak = 0
for trade in trades:
cumulative_profit += trade['profit_pct']
if cumulative_profit > peak:
peak = cumulative_profit
drawdown = peak - cumulative_profit
if drawdown > max_drawdown:
max_drawdown = drawdown
final_usd = initial_usd
for trade in trades:
final_usd *= (1 + trade['profit_pct'])
row = {
"timeframe": rule_name,
"stop_loss_pct": stop_loss_pct,
"n_trades": n_trades,
"n_stop_loss": sum(1 for trade in trades if 'type' in trade and trade['type'] == 'STOP'),
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"profit_ratio": profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
}
results_rows.append(row)
for trade in trades:
trade_rows.append({
"timeframe": rule_name,
"stop_loss_pct": stop_loss_pct,
"entry_time": trade.get("entry_time"),
"exit_time": trade.get("exit_time"),
"entry_price": trade.get("entry"),
"exit_price": trade.get("exit"),
"profit_pct": trade.get("profit_pct"),
"type": trade.get("type", ""),
})
logging.info(f"Timeframe: {rule_name}, Stop Loss: {stop_loss_pct}, Trades: {n_trades}")
if debug:
for trade in trades:
if trade['type'] == 'STOP':
print(trade)
for trade in trades:
if trade['profit_pct'] < -0.09: # or whatever is close to -0.10
print("Large loss trade:", trade)
return results_rows, trade_rows
2025-05-06 15:24:36 +08:00
def process_timeframe(timeframe_info, debug=False):
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
if rule == "1T":
df = data_1min.copy()
else:
df = data_1min.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
df = df.reset_index()
# Only process one stop loss
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
return results_rows, all_trade_rows
def write_results_chunk(filename, fieldnames, rows, write_header=False):
"""Write a chunk of results to a CSV file"""
mode = 'w' if write_header else 'a'
with open(filename, mode, newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if write_header:
csvfile.write(f"# initial_usd: {initial_usd}\n")
writer.writeheader()
for row in rows:
# Only keep keys that are in fieldnames
filtered_row = {k: v for k, v in row.items() if k in fieldnames}
writer.writerow(filtered_row)
def aggregate_results(all_rows):
"""Aggregate results per stop_loss_pct and per rule (timeframe)"""
from collections import defaultdict
grouped = defaultdict(list)
for row in all_rows:
key = (row['timeframe'], row['stop_loss_pct'])
grouped[key].append(row)
summary_rows = []
for (rule, stop_loss_pct), rows in grouped.items():
n_months = len(rows)
total_trades = sum(r['n_trades'] for r in rows)
total_stop_loss = sum(r['n_stop_loss'] for r in rows)
avg_win_rate = np.mean([r['win_rate'] for r in rows])
avg_max_drawdown = np.mean([r['max_drawdown'] for r in rows])
avg_avg_trade = np.mean([r['avg_trade'] for r in rows])
avg_profit_ratio = np.mean([r['profit_ratio'] for r in rows])
# Calculate final USD
final_usd = np.mean([r.get('final_usd', initial_usd) for r in rows])
summary_rows.append({
"timeframe": rule,
"stop_loss_pct": stop_loss_pct,
"n_trades": total_trades,
"n_stop_loss": total_stop_loss,
"win_rate": avg_win_rate,
"max_drawdown": avg_max_drawdown,
"avg_trade": avg_avg_trade,
"profit_ratio": avg_profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
})
return summary_rows
def write_results_per_combination_gsheet(results_rows, trade_rows, timestamp, spreadsheet_name="GlimBit Backtest Results"):
scopes = [
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive"
]
creds = Credentials.from_service_account_file('credentials/service_account.json', scopes=scopes)
gc = gspread.authorize(creds)
sh = gc.open(spreadsheet_name)
try:
worksheet = sh.worksheet("Results")
except gspread.exceptions.WorksheetNotFound:
worksheet = sh.add_worksheet(title="Results", rows="1000", cols="20")
# Clear the worksheet before writing new results
worksheet.clear()
# Updated fieldnames to match your data rows
fieldnames = [
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
"max_drawdown", "avg_trade", "profit_ratio", "initial_usd", "final_usd"
]
def to_native(val):
if isinstance(val, (np.generic, np.ndarray)):
val = val.item()
if hasattr(val, 'isoformat'):
return val.isoformat()
# Handle inf, -inf, nan
if isinstance(val, float):
if math.isinf(val):
return "" if val > 0 else "-∞"
if math.isnan(val):
return ""
return val
# Write header if sheet is empty
if len(worksheet.get_all_values()) == 0:
worksheet.append_row(fieldnames)
for row in results_rows:
values = [to_native(row.get(field, "")) for field in fieldnames]
worksheet.append_row(values)
trades_fieldnames = [
"entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type"
]
trades_by_combo = defaultdict(list)
for trade in trade_rows:
tf = trade.get("timeframe")
sl = trade.get("stop_loss_pct")
trades_by_combo[(tf, sl)].append(trade)
for (tf, sl), trades in trades_by_combo.items():
sl_percent = int(round(sl * 100))
sheet_name = f"Trades_{tf}_ST{sl_percent}%"
try:
trades_ws = sh.worksheet(sheet_name)
except gspread.exceptions.WorksheetNotFound:
trades_ws = sh.add_worksheet(title=sheet_name, rows="1000", cols="20")
# Clear the trades worksheet before writing new trades
trades_ws.clear()
if len(trades_ws.get_all_values()) == 0:
trades_ws.append_row(trades_fieldnames)
for trade in trades:
trade_row = [to_native(trade.get(field, "")) for field in trades_fieldnames]
try:
trades_ws.append_row(trade_row)
except gspread.exceptions.APIError as e:
if '429' in str(e):
logging.warning(f"Google Sheets API quota exceeded (429). Please wait one minute. Will retry on next batch push. Sheet: {sheet_name}")
# Re-queue the failed batch for retry
results_queue.put((results_rows, trade_rows))
return # Stop pushing for this batch, will retry next interval
else:
raise
if __name__ == "__main__":
# Configuration
start_date = '2020-01-01'
stop_date = '2025-05-15'
initial_usd = 10000
debug = False
results_dir = "results"
os.makedirs(results_dir, exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
timeframes = ["15min", "30min", "1h", "6h", "1D"]
stop_loss_pcts = [0.02, 0.03, 0.05]
# Load data once
data_1min = load_data('./data/btcusd_1-min_data.csv', start_date, stop_date)
logging.info(f"1min rows: {len(data_1min)}")
# Prepare tasks
tasks = [
(name, data_1min, stop_loss_pct, initial_usd)
for name in timeframes
for stop_loss_pct in stop_loss_pcts
]
# Determine optimal worker count
workers = get_optimal_workers()
logging.info(f"Using {workers} workers for processing")
# Start the background batch pusher
spreadsheet_name = "GlimBit Backtest Results"
batch_pusher = GSheetBatchPusher(results_queue, timestamp, spreadsheet_name, interval=65)
batch_pusher.start()
# Process tasks with optimized concurrency
with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor:
futures = {executor.submit(process_timeframe, task, debug): task for task in tasks}
all_results_rows = []
for future in concurrent.futures.as_completed(futures):
results, trades = future.result()
if results or trades:
all_results_rows.extend(results)
results_queue.put((results, trades)) # Enqueue for batch update
# After all tasks, flush any remaining updates
batch_pusher.stop()
batch_pusher.join()
# Ensure all batches are pushed, even after 429 errors
while not results_queue.empty():
logging.info("Waiting for Google Sheets quota to reset. Retrying batch push in 60 seconds...")
time.sleep(65)
batch_pusher.push_all()
# Write all results to a single CSV file
combined_filename = os.path.join(results_dir, f"{timestamp}_backtest_combined.csv")
combined_fieldnames = [
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
"max_drawdown", "avg_trade", "profit_ratio", "final_usd"
]
def format_row(row):
# Format percentages and floats as in your example
return {
"timeframe": row["timeframe"],
"stop_loss_pct": f"{row['stop_loss_pct']*100:.2f}%",
"n_trades": row["n_trades"],
"n_stop_loss": row["n_stop_loss"],
"win_rate": f"{row['win_rate']*100:.2f}%",
"max_drawdown": f"{row['max_drawdown']*100:.2f}%",
"avg_trade": f"{row['avg_trade']*100:.2f}%",
"profit_ratio": f"{row['profit_ratio']*100:.2f}%",
"final_usd": f"{row['final_usd']:.2f}",
}
with open(combined_filename, "w", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=combined_fieldnames, delimiter='\t')
writer.writeheader()
for row in all_results_rows:
writer.writerow(format_row(row))
logging.info(f"Combined results written to {combined_filename}")