2025-05-06 15:24:36 +08:00
|
|
|
import pandas as pd
|
|
|
|
|
from trend_detector_macd import TrendDetectorMACD
|
|
|
|
|
from trend_detector_simple import TrendDetectorSimple
|
|
|
|
|
from cycle_detector import CycleDetector
|
|
|
|
|
|
|
|
|
|
# Load data from CSV file instead of database
|
|
|
|
|
data = pd.read_csv('data/btcusd_1-day_data.csv')
|
2025-05-06 16:20:43 +08:00
|
|
|
|
2025-05-09 12:23:45 +08:00
|
|
|
|
2025-05-06 15:24:36 +08:00
|
|
|
# Convert datetime column to datetime type
|
2025-05-09 15:17:30 +08:00
|
|
|
start_date = pd.to_datetime('2024-04-06')
|
2025-05-06 16:20:43 +08:00
|
|
|
stop_date = pd.to_datetime('2025-05-06')
|
|
|
|
|
|
|
|
|
|
daily_data = data[(pd.to_datetime(data['datetime']) >= start_date) &
|
|
|
|
|
(pd.to_datetime(data['datetime']) < stop_date)]
|
2025-05-06 15:24:36 +08:00
|
|
|
print(f"Number of data points: {len(daily_data)}")
|
|
|
|
|
|
|
|
|
|
trend_detector = TrendDetectorSimple(daily_data, verbose=True)
|
2025-05-08 16:23:25 +08:00
|
|
|
trends, analysis_results = trend_detector.detect_trends()
|
2025-05-09 15:24:10 +08:00
|
|
|
trend_detector.plot_trends(trends, analysis_results, "supertrend")
|