Implement Google Sheets integration in main.py for batch updates of backtest results
- Added GSheetBatchPusher class to handle background updates to Google Sheets. - Refactored write_results_per_combination function to write results directly to Google Sheets instead of CSV files. - Updated process_timeframe function to handle single stop loss percentages. - Introduced a global queue for batching results and trades for efficient updates. - Enhanced error handling for Google Sheets API quota limits. - Adjusted main execution flow to start the batch pusher and ensure all results are pushed after processing.
This commit is contained in:
parent
f7f0fc6dd5
commit
170751db0e
200
main.py
200
main.py
@ -1,16 +1,19 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from trend_detector_macd import TrendDetectorMACD
|
||||
from trend_detector_simple import TrendDetectorSimple
|
||||
from cycle_detector import CycleDetector
|
||||
import csv
|
||||
import logging
|
||||
import concurrent.futures
|
||||
import os
|
||||
import psutil
|
||||
import datetime
|
||||
from charts import BacktestCharts
|
||||
from collections import Counter
|
||||
import gspread
|
||||
from google.oauth2.service_account import Credentials
|
||||
from collections import defaultdict
|
||||
import threading
|
||||
import queue
|
||||
import time
|
||||
import math
|
||||
|
||||
# Set up logging
|
||||
logging.basicConfig(
|
||||
@ -22,6 +25,43 @@ logging.basicConfig(
|
||||
]
|
||||
)
|
||||
|
||||
# Global queue for batching Google Sheets updates
|
||||
results_queue = queue.Queue()
|
||||
|
||||
# Background thread function to push updates every minute
|
||||
class GSheetBatchPusher(threading.Thread):
|
||||
def __init__(self, queue, timestamp, spreadsheet_name, interval=60):
|
||||
super().__init__(daemon=True)
|
||||
self.queue = queue
|
||||
self.timestamp = timestamp
|
||||
self.spreadsheet_name = spreadsheet_name
|
||||
self.interval = interval
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
def run(self):
|
||||
while not self._stop_event.is_set():
|
||||
self.push_all()
|
||||
time.sleep(self.interval)
|
||||
# Final push on stop
|
||||
self.push_all()
|
||||
|
||||
def stop(self):
|
||||
self._stop_event.set()
|
||||
|
||||
def push_all(self):
|
||||
batch_results = []
|
||||
batch_trades = []
|
||||
while True:
|
||||
try:
|
||||
results, trades = self.queue.get_nowait()
|
||||
batch_results.extend(results)
|
||||
batch_trades.extend(trades)
|
||||
except queue.Empty:
|
||||
break
|
||||
|
||||
if batch_results or batch_trades:
|
||||
write_results_per_combination_gsheet(batch_results, batch_trades, self.timestamp, self.spreadsheet_name)
|
||||
|
||||
def get_optimal_workers():
|
||||
"""Determine optimal number of worker processes based on system resources"""
|
||||
cpu_count = os.cpu_count() or 4
|
||||
@ -127,8 +167,8 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
return results_rows, trade_rows
|
||||
|
||||
def process_timeframe(timeframe_info, debug=False):
|
||||
"""Process an entire timeframe (no monthly split)"""
|
||||
rule, data_1min, stop_loss_pcts, initial_usd = timeframe_info
|
||||
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
|
||||
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
|
||||
if rule == "1T":
|
||||
df = data_1min.copy()
|
||||
else:
|
||||
@ -140,13 +180,8 @@ def process_timeframe(timeframe_info, debug=False):
|
||||
'volume': 'sum'
|
||||
}).dropna()
|
||||
df = df.reset_index()
|
||||
|
||||
# --- Add this block to check alignment ---
|
||||
print("1-min data range:", data_1min.index.min(), "to", data_1min.index.max())
|
||||
print(f"{rule} data range:", df['timestamp'].min(), "to", df['timestamp'].max())
|
||||
# -----------------------------------------
|
||||
|
||||
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, stop_loss_pcts, rule, initial_usd, debug=debug)
|
||||
# Only process one stop loss
|
||||
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
|
||||
return results_rows, all_trade_rows
|
||||
|
||||
def write_results_chunk(filename, fieldnames, rows, write_header=False):
|
||||
@ -200,49 +235,101 @@ def aggregate_results(all_rows):
|
||||
})
|
||||
return summary_rows
|
||||
|
||||
def write_results_per_combination(results_rows, trade_rows, timestamp):
|
||||
results_dir = "results"
|
||||
os.makedirs(results_dir, exist_ok=True)
|
||||
def write_results_per_combination_gsheet(results_rows, trade_rows, timestamp, spreadsheet_name="GlimBit Backtest Results"):
|
||||
scopes = [
|
||||
"https://www.googleapis.com/auth/spreadsheets",
|
||||
"https://www.googleapis.com/auth/drive"
|
||||
]
|
||||
creds = Credentials.from_service_account_file('credentials/service_account.json', scopes=scopes)
|
||||
gc = gspread.authorize(creds)
|
||||
sh = gc.open(spreadsheet_name)
|
||||
|
||||
try:
|
||||
worksheet = sh.worksheet("Results")
|
||||
except gspread.exceptions.WorksheetNotFound:
|
||||
worksheet = sh.add_worksheet(title="Results", rows="1000", cols="20")
|
||||
|
||||
# Clear the worksheet before writing new results
|
||||
worksheet.clear()
|
||||
|
||||
# Updated fieldnames to match your data rows
|
||||
fieldnames = [
|
||||
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
|
||||
"max_drawdown", "avg_trade", "profit_ratio", "initial_usd", "final_usd"
|
||||
]
|
||||
|
||||
def to_native(val):
|
||||
if isinstance(val, (np.generic, np.ndarray)):
|
||||
val = val.item()
|
||||
if hasattr(val, 'isoformat'):
|
||||
return val.isoformat()
|
||||
# Handle inf, -inf, nan
|
||||
if isinstance(val, float):
|
||||
if math.isinf(val):
|
||||
return "∞" if val > 0 else "-∞"
|
||||
if math.isnan(val):
|
||||
return ""
|
||||
return val
|
||||
|
||||
# Write header if sheet is empty
|
||||
if len(worksheet.get_all_values()) == 0:
|
||||
worksheet.append_row(fieldnames)
|
||||
|
||||
for row in results_rows:
|
||||
timeframe = row["timeframe"]
|
||||
stop_loss_pct = row["stop_loss_pct"]
|
||||
filename = os.path.join(
|
||||
results_dir,
|
||||
f"{timestamp}_backtest_{timeframe}_{stop_loss_pct}.csv"
|
||||
)
|
||||
fieldnames = ["timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate", "max_drawdown", "avg_trade", "profit_ratio", "initial_usd", "final_usd"]
|
||||
write_results_chunk(filename, fieldnames, [row], write_header=not os.path.exists(filename))
|
||||
values = [to_native(row.get(field, "")) for field in fieldnames]
|
||||
worksheet.append_row(values)
|
||||
|
||||
trades_fieldnames = [
|
||||
"entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type"
|
||||
]
|
||||
trades_by_combo = defaultdict(list)
|
||||
|
||||
for trade in trade_rows:
|
||||
timeframe = trade["timeframe"]
|
||||
stop_loss_pct = trade["stop_loss_pct"]
|
||||
trades_filename = os.path.join(
|
||||
results_dir,
|
||||
f"{timestamp}_trades_{timeframe}_{stop_loss_pct}.csv"
|
||||
)
|
||||
trades_fieldnames = [
|
||||
"timeframe", "stop_loss_pct", "entry_time", "exit_time",
|
||||
"entry_price", "exit_price", "profit_pct", "type"
|
||||
]
|
||||
write_results_chunk(trades_filename, trades_fieldnames, [trade], write_header=not os.path.exists(trades_filename))
|
||||
tf = trade.get("timeframe")
|
||||
sl = trade.get("stop_loss_pct")
|
||||
trades_by_combo[(tf, sl)].append(trade)
|
||||
|
||||
for (tf, sl), trades in trades_by_combo.items():
|
||||
sl_percent = int(round(sl * 100))
|
||||
sheet_name = f"Trades_{tf}_ST{sl_percent}%"
|
||||
|
||||
try:
|
||||
trades_ws = sh.worksheet(sheet_name)
|
||||
except gspread.exceptions.WorksheetNotFound:
|
||||
trades_ws = sh.add_worksheet(title=sheet_name, rows="1000", cols="20")
|
||||
|
||||
# Clear the trades worksheet before writing new trades
|
||||
trades_ws.clear()
|
||||
|
||||
if len(trades_ws.get_all_values()) == 0:
|
||||
trades_ws.append_row(trades_fieldnames)
|
||||
|
||||
for trade in trades:
|
||||
trade_row = [to_native(trade.get(field, "")) for field in trades_fieldnames]
|
||||
try:
|
||||
trades_ws.append_row(trade_row)
|
||||
except gspread.exceptions.APIError as e:
|
||||
if '429' in str(e):
|
||||
logging.warning(f"Google Sheets API quota exceeded (429). Please wait one minute. Will retry on next batch push. Sheet: {sheet_name}")
|
||||
# Re-queue the failed batch for retry
|
||||
results_queue.put((results_rows, trade_rows))
|
||||
return # Stop pushing for this batch, will retry next interval
|
||||
else:
|
||||
raise
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Configuration
|
||||
start_date = '2020-01-01'
|
||||
stop_date = '2025-05-15'
|
||||
initial_usd = 10000
|
||||
debug = False # Set to True to enable debug prints
|
||||
# --- NEW: Prepare results folder and timestamp ---
|
||||
debug = False
|
||||
|
||||
results_dir = "results"
|
||||
os.makedirs(results_dir, exist_ok=True)
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
||||
# --- END NEW ---
|
||||
|
||||
# Replace the dictionary with a list of timeframe names
|
||||
timeframes = ["15min", "1h", "6h", "1D"]
|
||||
# timeframes = ["6h"]
|
||||
|
||||
stop_loss_pcts = [0.01, 0.02, 0.03, 0.05, 0.07, 0.10]
|
||||
# stop_loss_pcts = [0.01]
|
||||
timeframes = ["15min", "30min", "1h", "6h", "1D"]
|
||||
stop_loss_pcts = [0.02, 0.03, 0.05]
|
||||
|
||||
# Load data once
|
||||
data_1min = load_data('./data/btcusd_1-min_data.csv', start_date, stop_date)
|
||||
@ -250,26 +337,39 @@ if __name__ == "__main__":
|
||||
|
||||
# Prepare tasks
|
||||
tasks = [
|
||||
(name, data_1min, stop_loss_pcts, initial_usd)
|
||||
(name, data_1min, stop_loss_pct, initial_usd)
|
||||
for name in timeframes
|
||||
for stop_loss_pct in stop_loss_pcts
|
||||
]
|
||||
|
||||
# Determine optimal worker count
|
||||
workers = get_optimal_workers()
|
||||
logging.info(f"Using {workers} workers for processing")
|
||||
|
||||
# Start the background batch pusher
|
||||
spreadsheet_name = "GlimBit Backtest Results"
|
||||
batch_pusher = GSheetBatchPusher(results_queue, timestamp, spreadsheet_name, interval=65)
|
||||
batch_pusher.start()
|
||||
|
||||
# Process tasks with optimized concurrency
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor:
|
||||
futures = {executor.submit(process_timeframe, task, debug): task[1] for task in tasks}
|
||||
futures = {executor.submit(process_timeframe, task, debug): task for task in tasks}
|
||||
all_results_rows = []
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
#try:
|
||||
results, trades = future.result()
|
||||
if results or trades:
|
||||
all_results_rows.extend(results)
|
||||
write_results_per_combination(results, trades, timestamp)
|
||||
#except Exception as exc:
|
||||
# logging.error(f"generated an exception: {exc}")
|
||||
results_queue.put((results, trades)) # Enqueue for batch update
|
||||
|
||||
# After all tasks, flush any remaining updates
|
||||
batch_pusher.stop()
|
||||
batch_pusher.join()
|
||||
|
||||
# Ensure all batches are pushed, even after 429 errors
|
||||
while not results_queue.empty():
|
||||
logging.info("Waiting for Google Sheets quota to reset. Retrying batch push in 60 seconds...")
|
||||
time.sleep(65)
|
||||
batch_pusher.push_all()
|
||||
|
||||
# Write all results to a single CSV file
|
||||
combined_filename = os.path.join(results_dir, f"{timestamp}_backtest_combined.csv")
|
||||
|
||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user