Vasily.onl ec8f5514bb Refactor technical indicators to return DataFrames and enhance documentation
- Updated all technical indicators to return pandas DataFrames instead of lists, improving consistency and usability.
- Modified the `calculate` method in `TechnicalIndicators` to directly return DataFrames with relevant indicator values.
- Enhanced the `data_integration.py` to utilize the new DataFrame outputs for better integration with charting.
- Updated documentation to reflect the new DataFrame-centric approach, including usage examples and output structures.
- Improved error handling to ensure empty DataFrames are returned when insufficient data is available.

These changes streamline the indicator calculations and improve the overall architecture, aligning with project standards for maintainability and performance.
2025-06-09 16:28:16 +08:00

51 lines
1.8 KiB
Python

"""
Relative Strength Index (RSI) indicator implementation.
"""
from typing import List
import pandas as pd
import numpy as np
from ..base import BaseIndicator
from ..result import IndicatorResult
class RSIIndicator(BaseIndicator):
"""
Relative Strength Index (RSI) technical indicator.
Measures momentum by comparing the magnitude of recent gains to recent losses.
Handles sparse data appropriately without interpolation.
"""
def calculate(self, df: pd.DataFrame, period: int = 14,
price_column: str = 'close') -> pd.DataFrame:
"""
Calculate Relative Strength Index (RSI).
Args:
df: DataFrame with OHLCV data
period: Number of periods for RSI calculation (default: 14)
price_column: Price column to use ('open', 'high', 'low', 'close')
Returns:
DataFrame with RSI values and metadata, indexed by timestamp
"""
# Validate input data
if not self.validate_dataframe(df, period):
return pd.DataFrame()
try:
df = df.copy()
delta = df[price_column].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rs = rs.replace([np.inf, -np.inf], np.nan)
df['rsi'] = 100 - (100 / (1 + rs))
# Only keep rows with valid RSI, and only 'timestamp' and 'rsi' columns
result_df = df.loc[df['rsi'].notna(), ['timestamp', 'rsi']].copy()
result_df = result_df.iloc[period-1:]
result_df.set_index('timestamp', inplace=True)
return result_df
except Exception:
return pd.DataFrame()