51 lines
1.8 KiB
Python
Raw Normal View History

2025-06-07 14:01:20 +08:00
"""
Relative Strength Index (RSI) indicator implementation.
"""
from typing import List
import pandas as pd
import numpy as np
2025-06-07 14:01:20 +08:00
from ..base import BaseIndicator
from ..result import IndicatorResult
class RSIIndicator(BaseIndicator):
"""
Relative Strength Index (RSI) technical indicator.
Measures momentum by comparing the magnitude of recent gains to recent losses.
Handles sparse data appropriately without interpolation.
"""
def calculate(self, df: pd.DataFrame, period: int = 14,
price_column: str = 'close') -> pd.DataFrame:
2025-06-07 14:01:20 +08:00
"""
Calculate Relative Strength Index (RSI).
Args:
df: DataFrame with OHLCV data
period: Number of periods for RSI calculation (default: 14)
price_column: Price column to use ('open', 'high', 'low', 'close')
Returns:
DataFrame with RSI values and metadata, indexed by timestamp
2025-06-07 14:01:20 +08:00
"""
# Validate input data
if not self.validate_dataframe(df, period):
return pd.DataFrame()
2025-06-07 14:01:20 +08:00
try:
df = df.copy()
delta = df[price_column].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rs = rs.replace([np.inf, -np.inf], np.nan)
df['rsi'] = 100 - (100 / (1 + rs))
# Only keep rows with valid RSI, and only 'timestamp' and 'rsi' columns
result_df = df.loc[df['rsi'].notna(), ['timestamp', 'rsi']].copy()
result_df = result_df.iloc[period-1:]
result_df.set_index('timestamp', inplace=True)
return result_df
except Exception:
return pd.DataFrame()