8.3 KiB
Quick Guide: Adding New Indicators
Overview
This guide provides a step-by-step checklist for adding new technical indicators to the Crypto Trading Bot Dashboard, updated for the new modular dashboard structure.
Prerequisites
- Understanding of Python and technical analysis
- Familiarity with the project structure and Dash callbacks
- Knowledge of the indicator type (overlay vs subplot)
Step-by-Step Checklist
✅ Step 1: Plan Your Indicator
- Determine indicator type (overlay or subplot)
- Define required parameters
- Choose default styling
- Research calculation formula
✅ Step 2: Create Indicator Class
File: components/charts/layers/indicators.py (overlay) or components/charts/layers/subplots.py (subplot)
Create a class for your indicator that inherits from IndicatorLayer.
class StochasticLayer(IndicatorLayer):
def __init__(self, config: Dict[str, Any]):
super().__init__(config)
self.name = "stochastic"
self.display_type = "subplot"
def calculate_values(self, df: pd.DataFrame) -> Dict[str, pd.Series]:
k_period = self.config.get('k_period', 14)
d_period = self.config.get('d_period', 3)
lowest_low = df['low'].rolling(window=k_period).min()
highest_high = df['high'].rolling(window=k_period).max()
k_percent = 100 * ((df['close'] - lowest_low) / (highest_high - lowest_low))
d_percent = k_percent.rolling(window=d_period).mean()
return {'k_percent': k_percent, 'd_percent': d_percent}
def create_traces(self, df: pd.DataFrame, values: Dict[str, pd.Series]) -> List[go.Scatter]:
traces = []
traces.append(go.Scatter(x=df.index, y=values['k_percent'], mode='lines', name=f"%K ({self.config.get('k_period', 14)})", line=dict(color=self.config.get('color', '#007bff'), width=self.config.get('line_width', 2))))
traces.append(go.Scatter(x=df.index, y=values['d_percent'], mode='lines', name=f"%D ({self.config.get('d_period', 3)})", line=dict(color=self.config.get('secondary_color', '#ff6b35'), width=self.config.get('line_width', 2))))
return traces
✅ Step 3: Register Indicator
File: components/charts/layers/__init__.py
Register your new indicator class in the appropriate registry.
from .subplots import StochasticLayer
SUBPLOT_REGISTRY = {
'rsi': RSILayer,
'macd': MACDLayer,
'stochastic': StochasticLayer,
}
INDICATOR_REGISTRY = {
'sma': SMALayer,
'ema': EMALayer,
'bollinger_bands': BollingerBandsLayer,
}
✅ Step 4: Add UI Dropdown Option
File: dashboard/components/indicator_modal.py
Add your new indicator to the indicator-type-dropdown options.
dcc.Dropdown(
id='indicator-type-dropdown',
options=[
{'label': 'Simple Moving Average (SMA)', 'value': 'sma'},
{'label': 'Exponential Moving Average (EMA)', 'value': 'ema'},
{'label': 'Relative Strength Index (RSI)', 'value': 'rsi'},
{'label': 'MACD', 'value': 'macd'},
{'label': 'Bollinger Bands', 'value': 'bollinger_bands'},
{'label': 'Stochastic Oscillator', 'value': 'stochastic'},
],
placeholder='Select indicator type',
)
✅ Step 5: Add Parameter Fields to Modal
File: dashboard/components/indicator_modal.py
In create_parameter_fields, add the dcc.Input components for your indicator's parameters.
def create_parameter_fields():
return html.Div([
# ... existing parameter fields ...
html.Div([
dbc.Row([
dbc.Col([dbc.Label("%K Period:"), dcc.Input(id='stochastic-k-period-input', type='number', value=14)], width=6),
dbc.Col([dbc.Label("%D Period:"), dcc.Input(id='stochastic-d-period-input', type='number', value=3)], width=6),
]),
dbc.FormText("Stochastic oscillator periods for %K and %D lines")
], id='stochastic-parameters', style={'display': 'none'}, className="mb-3")
])
✅ Step 6: Update Parameter Visibility Callback
File: dashboard/callbacks/indicators.py
In update_parameter_fields, add an Output and logic to show/hide your new parameter fields.
@app.callback(
[Output('indicator-parameters-message', 'style'),
Output('sma-parameters', 'style'),
Output('ema-parameters', 'style'),
Output('rsi-parameters', 'style'),
Output('macd-parameters', 'style'),
Output('bb-parameters', 'style'),
Output('stochastic-parameters', 'style')],
Input('indicator-type-dropdown', 'value'),
)
def update_parameter_fields(indicator_type):
styles = { 'sma': {'display': 'none'}, 'ema': {'display': 'none'}, 'rsi': {'display': 'none'}, 'macd': {'display': 'none'}, 'bb': {'display': 'none'}, 'stochastic': {'display': 'none'} }
message_style = {'display': 'block'} if not indicator_type else {'display': 'none'}
if indicator_type:
styles[indicator_type] = {'display': 'block'}
return [message_style] + list(styles.values())
✅ Step 7: Update Save Indicator Callback
File: dashboard/callbacks/indicators.py
In save_new_indicator, add State inputs for your parameters and logic to collect them.
@app.callback(
# ... Outputs ...
Input('save-indicator-btn', 'n_clicks'),
[# ... States ...
State('stochastic-k-period-input', 'value'),
State('stochastic-d-period-input', 'value'),
State('edit-indicator-store', 'data')],
)
def save_new_indicator(n_clicks, name, indicator_type, ..., stochastic_k, stochastic_d, edit_data):
# ...
elif indicator_type == 'stochastic':
parameters = {'k_period': stochastic_k or 14, 'd_period': stochastic_d or 3}
# ...
✅ Step 8: Update Edit Callback Parameters
File: dashboard/callbacks/indicators.py
In edit_indicator, add Outputs for your parameter fields and logic to load values.
@app.callback(
[# ... Outputs ...
Output('stochastic-k-period-input', 'value'),
Output('stochastic-d-period-input', 'value')],
Input({'type': 'edit-indicator-btn', 'index': dash.ALL}, 'n_clicks'),
)
def edit_indicator(edit_clicks, button_ids):
# ...
stochastic_k, stochastic_d = 14, 3
if indicator:
# ...
elif indicator.type == 'stochastic':
stochastic_k = params.get('k_period', 14)
stochastic_d = params.get('d_period', 3)
return (..., stochastic_k, stochastic_d)
✅ Step 9: Update Reset Callback
File: dashboard/callbacks/indicators.py
In reset_modal_form, add Outputs for your parameter fields and their default values.
@app.callback(
[# ... Outputs ...
Output('stochastic-k-period-input', 'value', allow_duplicate=True),
Output('stochastic-d-period-input', 'value', allow_duplicate=True)],
Input('cancel-indicator-btn', 'n_clicks'),
)
def reset_modal_form(cancel_clicks):
# ...
return ..., 14, 3
✅ Step 10: Create Default Template
File: components/charts/indicator_defaults.py
Create a default template for your indicator.
def create_stochastic_template() -> UserIndicator:
return UserIndicator(
id=f"stochastic_{generate_short_id()}",
name="Stochastic 14,3",
type="stochastic",
display_type="subplot",
parameters={"k_period": 14, "d_period": 3},
styling=IndicatorStyling(color="#9c27b0", line_width=2)
)
DEFAULT_TEMPLATES = {
# ...
"stochastic": create_stochastic_template,
}
✅ Step 11: Add Calculation Function (Optional)
File: data/common/indicators.py
Add a standalone calculation function.
def calculate_stochastic(df: pd.DataFrame, k_period: int = 14, d_period: int = 3) -> tuple:
lowest_low = df['low'].rolling(window=k_period).min()
highest_high = df['high'].rolling(window=k_period).max()
k_percent = 100 * ((df['close'] - lowest_low) / (highest_high - lowest_low))
d_percent = k_percent.rolling(window=d_period).mean()
return k_percent, d_percent
File Change Summary
When adding a new indicator, you'll typically modify these files:
components/charts/layers/indicators.pyorsubplots.pycomponents/charts/layers/__init__.pydashboard/components/indicator_modal.pydashboard/callbacks/indicators.pycomponents/charts/indicator_defaults.pydata/common/indicators.py(optional)