- Introduced a comprehensive user indicator management system in `components/charts/indicator_manager.py`, allowing users to create, edit, and manage custom indicators with JSON persistence. - Added new default indicators in `components/charts/indicator_defaults.py` to provide users with immediate options for technical analysis. - Enhanced the chart rendering capabilities by implementing the `create_chart_with_indicators` function in `components/charts/builder.py`, supporting both overlay and subplot indicators. - Updated the main application layout in `app.py` to include a modal for adding and editing indicators, improving user interaction. - Enhanced documentation to cover the new indicator system, including a quick guide for adding new indicators and detailed usage examples. - Added unit tests to ensure the reliability and functionality of the new indicator management features.
12 KiB
12 KiB
Quick Guide: Adding New Indicators
Overview
This guide provides a step-by-step checklist for adding new technical indicators to the Crypto Trading Bot Dashboard.
Prerequisites
- Understanding of Python and technical analysis
- Familiarity with the project structure
- Knowledge of the indicator type (overlay vs subplot)
Step-by-Step Checklist
✅ Step 1: Plan Your Indicator
- Determine indicator type (overlay or subplot)
- Define required parameters
- Choose default styling
- Research calculation formula
✅ Step 2: Create Indicator Class
File: components/charts/layers/indicators.py (overlay) or components/charts/layers/subplots.py (subplot)
class StochasticLayer(IndicatorLayer):
"""Stochastic Oscillator indicator implementation."""
def __init__(self, config: Dict[str, Any]):
super().__init__(config)
self.name = "stochastic"
self.display_type = "subplot" # or "overlay"
def calculate_values(self, df: pd.DataFrame) -> Dict[str, pd.Series]:
"""Calculate stochastic oscillator values."""
k_period = self.config.get('k_period', 14)
d_period = self.config.get('d_period', 3)
# Calculate %K and %D lines
lowest_low = df['low'].rolling(window=k_period).min()
highest_high = df['high'].rolling(window=k_period).max()
k_percent = 100 * ((df['close'] - lowest_low) / (highest_high - lowest_low))
d_percent = k_percent.rolling(window=d_period).mean()
return {
'k_percent': k_percent,
'd_percent': d_percent
}
def create_traces(self, df: pd.DataFrame, values: Dict[str, pd.Series]) -> List[go.Scatter]:
"""Create plotly traces for stochastic oscillator."""
traces = []
# %K line
traces.append(go.Scatter(
x=df.index,
y=values['k_percent'],
mode='lines',
name=f"%K ({self.config.get('k_period', 14)})",
line=dict(
color=self.config.get('color', '#007bff'),
width=self.config.get('line_width', 2)
)
))
# %D line
traces.append(go.Scatter(
x=df.index,
y=values['d_percent'],
mode='lines',
name=f"%D ({self.config.get('d_period', 3)})",
line=dict(
color=self.config.get('secondary_color', '#ff6b35'),
width=self.config.get('line_width', 2)
)
))
return traces
✅ Step 3: Register Indicator
File: components/charts/layers/__init__.py
# Import the new class
from .subplots import StochasticLayer
# Add to appropriate registry
SUBPLOT_REGISTRY = {
'rsi': RSILayer,
'macd': MACDLayer,
'stochastic': StochasticLayer, # Add this line
}
# For overlay indicators, add to INDICATOR_REGISTRY instead
INDICATOR_REGISTRY = {
'sma': SMALayer,
'ema': EMALayer,
'bollinger_bands': BollingerBandsLayer,
'stochastic': StochasticLayer, # Only if overlay
}
✅ Step 4: Add UI Dropdown Option
File: app.py (in the indicator type dropdown)
dcc.Dropdown(
id='indicator-type-dropdown',
options=[
{'label': 'Simple Moving Average (SMA)', 'value': 'sma'},
{'label': 'Exponential Moving Average (EMA)', 'value': 'ema'},
{'label': 'Relative Strength Index (RSI)', 'value': 'rsi'},
{'label': 'MACD', 'value': 'macd'},
{'label': 'Bollinger Bands', 'value': 'bollinger_bands'},
{'label': 'Stochastic Oscillator', 'value': 'stochastic'}, # Add this
]
)
✅ Step 5: Add Parameter Fields to Modal
File: app.py (in the modal parameters section)
# Add parameter section for stochastic
html.Div([
html.Div([
html.Label("%K Period:", style={'font-weight': 'bold', 'margin-bottom': '5px'}),
dcc.Input(
id='stochastic-k-period-input',
type='number',
value=14,
min=5, max=50,
style={'width': '80px', 'padding': '8px', 'border': '1px solid #ddd', 'border-radius': '4px'}
)
], style={'margin-bottom': '10px'}),
html.Div([
html.Label("%D Period:", style={'font-weight': 'bold', 'margin-bottom': '5px'}),
dcc.Input(
id='stochastic-d-period-input',
type='number',
value=3,
min=2, max=10,
style={'width': '80px', 'padding': '8px', 'border': '1px solid #ddd', 'border-radius': '4px'}
)
]),
html.P("Stochastic oscillator periods for %K and %D lines",
style={'color': '#7f8c8d', 'font-size': '12px', 'margin-top': '5px'})
], id='stochastic-parameters', style={'display': 'none', 'margin-bottom': '10px'})
✅ Step 6: Update Parameter Visibility Callback
File: app.py (in update_parameter_fields callback)
@app.callback(
[Output('indicator-parameters-message', 'style'),
Output('sma-parameters', 'style'),
Output('ema-parameters', 'style'),
Output('rsi-parameters', 'style'),
Output('macd-parameters', 'style'),
Output('bb-parameters', 'style'),
Output('stochastic-parameters', 'style')], # Add this output
Input('indicator-type-dropdown', 'value'),
prevent_initial_call=True
)
def update_parameter_fields(indicator_type):
# ... existing code ...
# Add stochastic style
stochastic_style = hidden_style
# Show the relevant parameter section
if indicator_type == 'sma':
sma_style = visible_style
elif indicator_type == 'ema':
ema_style = visible_style
elif indicator_type == 'rsi':
rsi_style = visible_style
elif indicator_type == 'macd':
macd_style = visible_style
elif indicator_type == 'bollinger_bands':
bb_style = visible_style
elif indicator_type == 'stochastic': # Add this
stochastic_style = visible_style
return message_style, sma_style, ema_style, rsi_style, macd_style, bb_style, stochastic_style
✅ Step 7: Update Save Indicator Callback
File: app.py (in save_new_indicator callback)
# Add stochastic parameters to State inputs
State('stochastic-k-period-input', 'value'),
State('stochastic-d-period-input', 'value'),
# Add to parameter collection logic
def save_new_indicator(n_clicks, name, indicator_type, description, color, line_width,
sma_period, ema_period, rsi_period,
macd_fast, macd_slow, macd_signal,
bb_period, bb_stddev,
stochastic_k, stochastic_d, # Add these
edit_data):
# ... existing code ...
elif indicator_type == 'stochastic':
parameters = {
'k_period': stochastic_k or 14,
'd_period': stochastic_d or 3
}
✅ Step 8: Update Edit Callback Parameters
File: app.py (in edit_indicator callback)
# Add output for stochastic parameters
Output('stochastic-k-period-input', 'value'),
Output('stochastic-d-period-input', 'value'),
# Add parameter loading logic
elif indicator.type == 'stochastic':
stochastic_k = params.get('k_period', 14)
stochastic_d = params.get('d_period', 3)
# Add to return statement
return (
"✏️ Edit Indicator",
indicator.name,
indicator.type,
indicator.description,
indicator.styling.color,
edit_data,
sma_period,
ema_period,
rsi_period,
macd_fast,
macd_slow,
macd_signal,
bb_period,
bb_stddev,
stochastic_k, # Add these
stochastic_d
)
✅ Step 9: Update Reset Callback
File: app.py (in reset_modal_form callback)
# Add outputs
Output('stochastic-k-period-input', 'value', allow_duplicate=True),
Output('stochastic-d-period-input', 'value', allow_duplicate=True),
# Add default values to return
return "", None, "", "#007bff", 2, "📊 Add New Indicator", None, 20, 12, 14, 12, 26, 9, 20, 2.0, 14, 3
✅ Step 10: Create Default Template
File: components/charts/indicator_defaults.py
def create_stochastic_template() -> UserIndicator:
"""Create default Stochastic Oscillator template."""
return UserIndicator(
id=f"stochastic_{generate_short_id()}",
name="Stochastic 14,3",
description="14-period %K with 3-period %D smoothing",
type="stochastic",
display_type="subplot",
parameters={
"k_period": 14,
"d_period": 3
},
styling=IndicatorStyling(
color="#9c27b0",
line_width=2
)
)
# Add to DEFAULT_TEMPLATES
DEFAULT_TEMPLATES = {
"sma": create_sma_template,
"ema": create_ema_template,
"rsi": create_rsi_template,
"macd": create_macd_template,
"bollinger_bands": create_bollinger_bands_template,
"stochastic": create_stochastic_template, # Add this
}
✅ Step 11: Add Calculation Function (Optional)
File: data/common/indicators.py
def calculate_stochastic(df: pd.DataFrame, k_period: int = 14, d_period: int = 3) -> tuple:
"""Calculate Stochastic Oscillator (%K and %D)."""
lowest_low = df['low'].rolling(window=k_period).min()
highest_high = df['high'].rolling(window=k_period).max()
k_percent = 100 * ((df['close'] - lowest_low) / (highest_high - lowest_low))
d_percent = k_percent.rolling(window=d_period).mean()
return k_percent, d_percent
Testing Checklist
- Indicator appears in dropdown
- Parameter fields show/hide correctly
- Default values are set properly
- Indicator saves and loads correctly
- Edit functionality works
- Chart updates with indicator
- Delete functionality works
- Error handling works with insufficient data
Common Patterns
Single Line Overlay
# Simple indicators like SMA, EMA
def create_traces(self, df: pd.DataFrame, values: Dict[str, pd.Series]) -> List[go.Scatter]:
return [go.Scatter(
x=df.index,
y=values['indicator_name'],
mode='lines',
name=self.config.get('name', 'Indicator'),
line=dict(color=self.config.get('color', '#007bff'))
)]
Multi-Line Subplot
# Complex indicators like MACD, Stochastic
def create_traces(self, df: pd.DataFrame, values: Dict[str, pd.Series]) -> List[go.Scatter]:
traces = []
for key, series in values.items():
traces.append(go.Scatter(
x=df.index,
y=series,
mode='lines',
name=f"{key.title()}"
))
return traces
Band Indicators
# Indicators with bands like Bollinger Bands
def create_traces(self, df: pd.DataFrame, values: Dict[str, pd.Series]) -> List[go.Scatter]:
return [
# Upper band
go.Scatter(x=df.index, y=values['upper'], name='Upper'),
# Middle line
go.Scatter(x=df.index, y=values['middle'], name='Middle'),
# Lower band with fill
go.Scatter(x=df.index, y=values['lower'], name='Lower',
fill='tonexty', fillcolor='rgba(0,123,255,0.1)')
]
File Change Summary
When adding a new indicator, you'll typically modify these files:
components/charts/layers/indicators.pyorsubplots.py- Indicator classcomponents/charts/layers/__init__.py- Registry registrationapp.py- UI dropdown, parameter fields, callbackscomponents/charts/indicator_defaults.py- Default templatedata/common/indicators.py- Calculation function (optional)
Tips
- Start with a simple single-line indicator first
- Test each step before moving to the next
- Use existing indicators as templates
- Check console/logs for errors
- Test with different parameter values
- Verify calculations with known data