cleanup
This commit is contained in:
parent
666a58e799
commit
c1118eaf2b
@ -1,156 +0,0 @@
|
||||
# Task 3.4: Modular Chart Layers System
|
||||
|
||||
## Overview
|
||||
Implementation of a flexible, strategy-driven chart system that supports technical indicator overlays, subplot management, and future bot signal integration. This system will replace the basic chart functionality with a modular architecture that can adapt to different trading strategies and their specific indicator requirements.
|
||||
|
||||
## Relevant Files
|
||||
|
||||
- `components/charts/__init__.py` - Public API exports for the new modular chart system
|
||||
- `components/charts/builder.py` - Main ChartBuilder class orchestrating chart creation and layer management
|
||||
- `components/charts/utils.py` - Chart utilities and helper functions for data processing and validation
|
||||
- `components/charts/config/__init__.py` - Configuration package initialization
|
||||
- `components/charts/config/indicator_defs.py` - Base indicator definitions, schemas, and default parameters
|
||||
- `components/charts/config/strategy_charts.py` - Strategy-specific chart configurations and presets
|
||||
- `components/charts/config/defaults.py` - Default chart configurations and fallback settings
|
||||
- `components/charts/config/validation.py` - Configuration validation and error handling system
|
||||
- `components/charts/config/example_strategies.py` - Real-world trading strategy examples (EMA crossover, momentum, etc.)
|
||||
- `components/charts/config/error_handling.py` - Enhanced error handling and user guidance system
|
||||
- `components/charts/layers/__init__.py` - Chart layers package initialization with base layer exports
|
||||
- `components/charts/layers/base.py` - Base layer system with CandlestickLayer, VolumeLayer, and LayerManager
|
||||
- `components/charts/layers/indicators.py` - Indicator overlay rendering (SMA, EMA, Bollinger Bands)
|
||||
- `components/charts/layers/subplots.py` - Subplot management for indicators like RSI and MACD
|
||||
- `components/charts/layers/signals.py` - Strategy signal overlays and trade markers with database integration
|
||||
- `dashboard/` - **NEW: Modular dashboard structure with separated layouts and callbacks**
|
||||
- `dashboard/layouts/market_data.py` - Enhanced market data layout with chart configuration UI
|
||||
- `dashboard/callbacks/charts.py` - **NEW: Modular chart callbacks with strategy handling**
|
||||
- `dashboard/components/chart_controls.py` - **NEW: Reusable chart control components**
|
||||
- `tests/test_chart_builder.py` - Unit tests for ChartBuilder class functionality
|
||||
- `tests/test_chart_layers.py` - Unit tests for individual chart layer components
|
||||
- `tests/test_chart_integration.py` - Integration tests for full chart creation workflow
|
||||
- `tests/test_indicator_schema.py` - Schema validation tests (16 tests)
|
||||
- `tests/test_defaults.py` - Defaults system tests (19 tests)
|
||||
- `tests/test_strategy_charts.py` - Strategy configuration tests (28 tests)
|
||||
- `tests/test_validation.py` - Validation system tests (28 tests)
|
||||
- `tests/test_example_strategies.py` - Example strategy tests (20 tests)
|
||||
- `tests/test_error_handling.py` - Error handling tests (28 tests)
|
||||
- `tests/test_configuration_integration.py` - Comprehensive integration tests (18 tests)
|
||||
|
||||
### Notes
|
||||
|
||||
- The modular design allows each chart layer to be tested independently
|
||||
- Strategy configurations are JSON-based for easy modification without code changes
|
||||
- Integration with existing `data/common/indicators.py` for technical indicator calculations
|
||||
- Backward compatibility maintained with existing `components/charts.py` API
|
||||
- Use `uv run pytest tests/test_chart_*.py` to run chart-specific tests
|
||||
- **Modular dashboard structure implemented with complete separation of concerns**
|
||||
- **Signal layer architecture implemented with database integration for bot signals**
|
||||
- Create documentation with important components in ./docs/components/charts/ folder without redundancy
|
||||
|
||||
## Tasks
|
||||
|
||||
- [x] 1.0 Foundation Infrastructure Setup
|
||||
- [x] 1.1 Create components/charts directory structure and package files
|
||||
- [x] 1.2 Implement ChartBuilder class with basic candlestick chart creation
|
||||
- [x] 1.3 Create chart utilities for data processing and validation
|
||||
- [x] 1.4 Integrate with existing data/common/indicators.py module
|
||||
- [x] 1.5 Setup backward compatibility with existing components/charts.py API
|
||||
- [x] 1.6 Create basic unit tests for ChartBuilder class
|
||||
|
||||
- [x] 2.0 Indicator Layer System Implementation
|
||||
- [x] 2.1 Create base candlestick chart layer with volume subplot
|
||||
- [x] 2.2 Implement overlay indicator rendering (SMA, EMA)
|
||||
- [x] 2.3 Add Bollinger Bands overlay functionality
|
||||
- [x] 2.4 Create subplot management system for secondary indicators
|
||||
- [x] 2.5 Implement RSI subplot with proper scaling and styling
|
||||
- [x] 2.6 Add MACD subplot with signal line and histogram
|
||||
- [x] 2.7 Create indicator calculation integration with market data
|
||||
- [x] 2.8 Add comprehensive error handling for insufficient data scenarios
|
||||
- [x] 2.9 Unit test all indicator layer components
|
||||
|
||||
- [x] 3.0 Strategy Configuration System
|
||||
- [x] 3.1 Design indicator definition schema and validation
|
||||
- [x] 3.2 Create default indicator configurations and parameters
|
||||
- [x] 3.3 Implement strategy-specific chart configuration system
|
||||
- [x] 3.4 Add configuration validation and error handling
|
||||
- [x] 3.5 Create example strategy configurations (EMA crossover, momentum)
|
||||
- [x] 3.6 Add enhanced error handling and user guidance for missing strategies and indicators
|
||||
- [x] 3.7 Unit test configuration system and validation
|
||||
|
||||
- [x] 4.0 Dashboard Integration and UI Controls
|
||||
- [x] 4.1 Add indicator selection checkboxes to dashboard layout
|
||||
- [x] 4.2 Create real-time chart updates with indicator toggling
|
||||
- [x] 4.3 Implement parameter adjustment controls for indicators
|
||||
- [x] 4.4 Add strategy selection dropdown for predefined configurations
|
||||
- [x] 4.5 Update chart callback functions to handle new layer system
|
||||
- [x] 4.6 Ensure backward compatibility with existing dashboard features
|
||||
- [x] 4.7 Test dashboard integration with real market data
|
||||
|
||||
- [x] 5.0 Signal Layer Foundation for Future Bot Integration
|
||||
- [x] 5.1 Create signal layer architecture for buy/sell markers
|
||||
- [x] 5.2 Implement trade entry/exit point visualization
|
||||
- [x] 5.3 Add support/resistance line drawing capabilities
|
||||
- [x] 5.4 Create extensible interface for custom strategy signals
|
||||
- [x] 5.5 Add signal color and style customization options
|
||||
- [x] 5.6 Prepare integration points for bot management system
|
||||
- [x] 5.7 Create foundation tests for signal layer functionality
|
||||
|
||||
- [x] 6.0 Documentation **✅ COMPLETED**
|
||||
- [x] 6.1 Create documentation for the chart layers system
|
||||
- [x] 6.2 Add documentation to the README
|
||||
- [x] 6.3 Create documentation for the ChartBuilder class
|
||||
- [x] 6.4 Create documentation for the ChartUtils class
|
||||
- [x] 6.5 Create documentation for the ChartConfig package
|
||||
- [x] 6.6 Create documentation how to add new indicators
|
||||
- [x] 6.7 Create documentation how to add new strategies
|
||||
- [x] 6.8 Create documentation how to add new bot integration
|
||||
|
||||
## Current Status
|
||||
|
||||
### ✅ **COMPLETED SECTIONS**
|
||||
- **1.0 Foundation Infrastructure**: Fully implemented with modular charts system
|
||||
- **2.0 Indicator Layer System**: Complete implementation with all indicator types
|
||||
- **3.0 Strategy Configuration**: Comprehensive strategy system with validation
|
||||
- **4.0 Dashboard Integration**: Including modular dashboard structure
|
||||
- **5.0 Signal Layer Foundation**: Complete implementation with bot integration ready
|
||||
- **6.0 Documentation**: Complete documentation suite with bot integration guide
|
||||
|
||||
### 🎯 **KEY ACHIEVEMENTS**
|
||||
- **Strategy dropdown**: Fully functional with auto-loading of strategy indicators
|
||||
- **Modular dashboard**: Complete separation of layouts, callbacks, and components
|
||||
- **Chart callbacks**: Updated to handle new layer system with strategy support
|
||||
- **Real-time updates**: Working chart updates with indicator toggling
|
||||
- **Market data integration**: Confirmed working with live data
|
||||
- **Signal layer architecture**: Complete foundation for bot signal visualization
|
||||
- **Bot integration**: Ready-to-use integration points for bot management system
|
||||
- **Foundation tests**: Comprehensive test suite for signal layer functionality
|
||||
- **Complete documentation**: Comprehensive documentation suite with bot integration guide
|
||||
|
||||
### 📋 **NEXT PHASES**
|
||||
- **Chart Layers System**: ✅ **FULLY COMPLETED** - Ready for production use!
|
||||
|
||||
The entire Chart Layers System is now **FULLY COMPLETED and production-ready**! 🚀
|
||||
|
||||
**Latest Completion:**
|
||||
- **Task 5.6**: Bot integration points created with:
|
||||
- `BotDataService` for fetching bot/signal/trade data
|
||||
- `BotSignalLayerIntegration` for chart-specific integration
|
||||
- `BotIntegratedSignalLayer` and `BotIntegratedTradeLayer` for automatic data fetching
|
||||
- Complete bot filtering and performance analytics
|
||||
- **Task 5.7**: Comprehensive foundation tests covering:
|
||||
- Signal layer functionality testing (24 tests - ALL PASSING ✅)
|
||||
- Trade execution layer testing
|
||||
- Support/resistance detection testing
|
||||
- Custom strategy signal testing
|
||||
- Signal styling and theming testing
|
||||
- Bot integration functionality testing
|
||||
- Foundation integration and error handling testing
|
||||
|
||||
**Test Coverage Summary:**
|
||||
- **Signal Layer Tests**: 24/24 tests passing ✅
|
||||
- **Chart Builder Tests**: 17/17 tests passing ✅
|
||||
- **Chart Layer Tests**: 26/26 tests passing ✅
|
||||
- **Configuration Tests**: 18/18 tests passing ✅
|
||||
- **Total Foundation Tests**: 85+ tests covering all signal layer functionality
|
||||
|
||||
**Ready for Production**: The signal layer system is fully tested and production-ready!
|
||||
|
||||
@ -1,205 +0,0 @@
|
||||
# Task 3.5 - Market Data Monitoring Dashboard
|
||||
|
||||
**Status**: ✅ **COMPLETED**
|
||||
|
||||
## Overview
|
||||
Implemented a comprehensive market data monitoring dashboard with real-time data feed status monitoring, database health tracking, Redis monitoring, and system performance metrics.
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### Key Features Implemented
|
||||
|
||||
1. **Real-time Status Overview**
|
||||
- Quick status cards for Data Collection, Database, Redis, and Performance
|
||||
- Color-coded badges (green/yellow/red) for instant status recognition
|
||||
- Auto-refreshing status indicators every 30 seconds
|
||||
|
||||
2. **Data Collection Service Monitoring**
|
||||
- Service running status detection
|
||||
- Data collection metrics (candles, tickers collected)
|
||||
- Data freshness indicators
|
||||
- Service control buttons (refresh, view details, view logs)
|
||||
|
||||
3. **Individual Collectors Health**
|
||||
- Placeholder for collector health monitoring
|
||||
- Ready for integration with data collection service health API
|
||||
- Instructions for starting monitoring
|
||||
|
||||
4. **Database Health Monitoring**
|
||||
- Connection status verification
|
||||
- PostgreSQL version and connection count
|
||||
- Database statistics (table sizes, recent activity)
|
||||
- Performance metrics
|
||||
|
||||
5. **Redis Status Monitoring**
|
||||
- Connection verification
|
||||
- Redis server information
|
||||
- Memory usage and client statistics
|
||||
- Uptime tracking
|
||||
|
||||
6. **System Performance Metrics**
|
||||
- CPU usage with color-coded warnings
|
||||
- Memory utilization
|
||||
- Disk usage monitoring
|
||||
- Network I/O statistics
|
||||
|
||||
7. **Interactive Features**
|
||||
- Data collection details modal
|
||||
- Service logs viewer modal
|
||||
- Refresh controls for real-time updates
|
||||
|
||||
### UI Framework
|
||||
- **Mantine Components**: Used Mantine UI library for consistency with existing dashboard
|
||||
- **Responsive Layout**: Grid-based layout for optimal viewing
|
||||
- **Modern Design**: Cards, badges, alerts, and modals for professional appearance
|
||||
|
||||
### Files Modified/Created
|
||||
|
||||
1. **`dashboard/layouts/system_health.py`**
|
||||
- Complete rewrite using Mantine components
|
||||
- Comprehensive layout with monitoring sections
|
||||
- Modal dialogs for detailed views
|
||||
|
||||
2. **`dashboard/callbacks/system_health.py`**
|
||||
- Enhanced callbacks with comprehensive monitoring
|
||||
- Real-time status updates
|
||||
- Error handling and graceful degradation
|
||||
- Integration with database and Redis managers
|
||||
|
||||
## Technical Implementation
|
||||
|
||||
### Real-time Monitoring Architecture
|
||||
```python
|
||||
# Status Update Flow
|
||||
Interval Component (30s) → Callbacks → Status Checkers → UI Updates
|
||||
```
|
||||
|
||||
### Status Checking Functions
|
||||
- `_get_data_collection_quick_status()` - Service running detection
|
||||
- `_get_database_quick_status()` - Database connectivity
|
||||
- `_get_redis_quick_status()` - Redis connectivity
|
||||
- `_get_performance_quick_status()` - System metrics
|
||||
|
||||
### Detailed Monitoring Functions
|
||||
- `_get_data_collection_service_status()` - Service details
|
||||
- `_get_data_collection_metrics()` - Collection statistics
|
||||
- `_get_database_status()` & `_get_database_statistics()` - DB health
|
||||
- `_get_redis_status()` & `_get_redis_statistics()` - Redis health
|
||||
- `_get_system_performance_metrics()` - System performance
|
||||
|
||||
### Error Handling
|
||||
- Graceful degradation when services are unavailable
|
||||
- User-friendly error messages with troubleshooting hints
|
||||
- Fallback status indicators for unknown states
|
||||
|
||||
## Integration Points
|
||||
|
||||
### Database Integration
|
||||
- Uses `DatabaseManager` for connection testing
|
||||
- Queries `market_data` table for collection statistics
|
||||
- Monitors database performance metrics
|
||||
|
||||
### Redis Integration
|
||||
- Uses `RedisManager` for connection verification
|
||||
- Retrieves Redis server information and statistics
|
||||
- Monitors memory usage and client connections
|
||||
|
||||
### System Integration
|
||||
- Uses `psutil` for system performance monitoring
|
||||
- Process detection for data collection service
|
||||
- Resource utilization tracking
|
||||
|
||||
## Usage
|
||||
|
||||
### Dashboard Access
|
||||
1. Navigate to "⚙️ System Health" tab in the main dashboard
|
||||
2. View real-time status cards at the top
|
||||
3. Explore detailed monitoring sections below
|
||||
|
||||
### Service Controls
|
||||
- **Refresh Status**: Manually refresh data collection status
|
||||
- **View Details**: Open modal with comprehensive service information
|
||||
- **View Logs**: Access service logs in scrollable modal
|
||||
|
||||
### Status Indicators
|
||||
- 🟢 **Green**: Healthy/Connected/Good performance
|
||||
- 🟡 **Yellow**: Warning/Checking/Moderate usage
|
||||
- 🔴 **Red**: Error/Disconnected/High usage
|
||||
- ❓ **Gray**: Unknown status
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
### Planned Improvements (Section 3.7)
|
||||
1. **Real-time Updates via Redis**: Replace polling with Redis pub/sub
|
||||
2. **Advanced Metrics**: Historical performance trends
|
||||
3. **Alerting System**: Notifications for critical issues
|
||||
4. **Service Management**: Start/stop controls for data collection
|
||||
|
||||
### Integration with Data Collection Service
|
||||
- Real-time collector health reporting
|
||||
- Performance metrics streaming
|
||||
- Service configuration management
|
||||
- Log aggregation and filtering
|
||||
|
||||
## Testing
|
||||
|
||||
### Manual Testing
|
||||
1. **Service Detection**: Start/stop data collection service to verify detection
|
||||
2. **Database Connectivity**: Test with database running/stopped
|
||||
3. **Redis Connectivity**: Test with Redis running/stopped
|
||||
4. **Performance Monitoring**: Verify metrics under different system loads
|
||||
|
||||
### Integration Testing
|
||||
- Database manager integration
|
||||
- Redis manager integration
|
||||
- System metrics accuracy
|
||||
- Error handling scenarios
|
||||
|
||||
## Dependencies
|
||||
|
||||
### UI Framework
|
||||
- `dash-mantine-components` - Modern UI components
|
||||
- `dash` - Core dashboard framework
|
||||
- `plotly` - Charts and visualizations
|
||||
|
||||
### System Monitoring
|
||||
- `psutil` - System performance metrics
|
||||
- `subprocess` - Process management
|
||||
- `datetime` - Time handling
|
||||
|
||||
### Database/Redis
|
||||
- `database.connection.DatabaseManager` - Database operations
|
||||
- `database.redis_manager.RedisManager` - Redis operations
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **"Service Stopped" Status**
|
||||
- Solution: Run `python scripts/start_data_collection.py`
|
||||
|
||||
2. **Database Connection Failed**
|
||||
- Check Docker containers: `docker-compose ps`
|
||||
- Verify database configuration in `.env`
|
||||
|
||||
3. **Redis Connection Failed**
|
||||
- Ensure Redis container is running
|
||||
- Check Redis configuration
|
||||
|
||||
4. **Performance Metrics Unavailable**
|
||||
- Usually permissions issue on system metrics
|
||||
- Check if `psutil` has necessary permissions
|
||||
|
||||
### Logs and Debugging
|
||||
- Check dashboard logs for callback errors
|
||||
- Use browser developer tools for frontend issues
|
||||
- Monitor system logs for resource issues
|
||||
|
||||
## Documentation Updates
|
||||
|
||||
### Files Updated
|
||||
- `tasks/tasks-crypto-bot-prd.md` - Marked Task 3.5 as completed
|
||||
- Added this documentation file
|
||||
|
||||
### Next Task
|
||||
Ready to proceed with **Task 3.6**: Build simple data analysis tools (volume analysis, price movement statistics)
|
||||
@ -1,157 +0,0 @@
|
||||
# Chart Improvements - Immediate Tasks
|
||||
|
||||
## Overview
|
||||
This document outlines immediate improvements for chart functionality, time range selection, and performance optimization to address current issues with page refreshing and chart state preservation.
|
||||
|
||||
## Current Issues Identified
|
||||
- Frequent page refreshing due to debug mode hot-reload (every 2-3 minutes)
|
||||
- Chart zoom/pan state resets when callbacks trigger
|
||||
- No time range control for historical data analysis
|
||||
- Statistics reset when changing parameters
|
||||
- No way to "lock" time range for analysis without real-time updates
|
||||
|
||||
## Immediate Tasks (Priority Order)
|
||||
|
||||
- [x] **Task 1: Fix Page Refresh Issues** (Priority: HIGH - 5 minutes)
|
||||
- [x] 1.1 Choose debug mode option (Option A: debug=False OR Option B: debug=True, use_reloader=False)
|
||||
- [x] 1.2 Update app_new.py with selected debug settings
|
||||
- [x] 1.3 Test app stability (no frequent restarts)
|
||||
|
||||
- [x] **Task 2: Add Time Range Selector** (Priority: HIGH - 45 minutes) ✅ COMPLETED + ENHANCED
|
||||
- [x] 2.1 Create time range control components
|
||||
- [x] 2.1.1 Add quick select dropdown (1h, 4h, 6h, 12h, 1d, 3d, 7d, 30d, real-time)
|
||||
- [x] 2.1.2 Add custom date picker component
|
||||
- [x] 2.1.3 Add analysis mode toggle (real-time vs locked)
|
||||
- [x] 2.2 Update dashboard layout with time range controls
|
||||
- [x] 2.3 Modify chart callbacks to handle time range inputs
|
||||
- [x] 2.4 Test time range functionality
|
||||
- [x] 2.5 **ENHANCEMENT**: Fixed sub-day time period precision (1h, 4h working correctly)
|
||||
- [x] 2.6 **ENHANCEMENT**: Added 6h and 12h options per user request
|
||||
- [x] 2.7 **ENHANCEMENT**: Fixed custom date range and dropdown interaction logic with Clear button and explicit "Custom Range" dropdown option.
|
||||
|
||||
- [ ] **Task 3: Prevent Chart State Reset** (Priority: MEDIUM - 45 minutes)
|
||||
- [x] 3.1 Add relayoutData state preservation to chart callbacks (Completed as part of Task 2)
|
||||
- [x] 3.2 Implement smart partial updates using Patch() (Initial implementation for basic charts completed)
|
||||
- [x] 3.3 Preserve zoom/pan during data updates (Completed as part of Task 2 & 3.1)
|
||||
- [x] 3.4 Test chart state preservation (Visual testing by user indicates OK)
|
||||
- [x] 3.5 Refine Patching: More robust trace identification (New sub-task) (Completed)
|
||||
|
||||
- [x] **Task 4: Enhanced Statistics Integration** (Priority: MEDIUM - 30 minutes)
|
||||
- [x] 4.1 Make statistics respect selected time range
|
||||
- [x] 4.2 Add time range context to statistics display
|
||||
- [x] 4.3 Implement real-time vs historical analysis modes
|
||||
- [x] 4.4 Test statistics integration with time controls
|
||||
|
||||
- [ ] **Task 5: Advanced Chart Controls** (Priority: LOW - Future)
|
||||
- [ ] 5.1 Chart annotation tools
|
||||
- [ ] 5.2 Export functionality (PNG, SVG, data)
|
||||
- [-] 3.6 Refine Patching: Optimize data fetching for patches (fetch only new data) (New sub-task)
|
||||
- [-] 3.7 Refine Patching: Enable for simple overlay indicators (New sub-task)
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Immediate Fixes (Day 1)
|
||||
1. **Fix refresh issues** (5 minutes)
|
||||
2. **Add basic time range dropdown** (30 minutes)
|
||||
3. **Test and validate** (15 minutes)
|
||||
|
||||
### Phase 2: Enhanced Time Controls (Day 1-2)
|
||||
1. **Add date picker component** (30 minutes)
|
||||
2. **Implement analysis mode toggle** (30 minutes)
|
||||
3. **Integrate with statistics** (30 minutes)
|
||||
|
||||
### Phase 3: Chart State Preservation (Day 2)
|
||||
1. **Implement zoom/pan preservation** (45 minutes)
|
||||
2. **Add smart partial updates** (30 minutes)
|
||||
3. **Testing and optimization** (30 minutes)
|
||||
|
||||
## Technical Specifications
|
||||
|
||||
### Time Range Selector UI
|
||||
```python
|
||||
# Quick Select Dropdown
|
||||
dcc.Dropdown(
|
||||
id='time-range-quick-select',
|
||||
options=[
|
||||
{'label': '🕐 Last 1 Hour', 'value': '1h'},
|
||||
{'label': '🕐 Last 4 Hours', 'value': '4h'},
|
||||
{'label': '📅 Last 1 Day', 'value': '1d'},
|
||||
{'label': '📅 Last 3 Days', 'value': '3d'},
|
||||
{'label': '📅 Last 7 Days', 'value': '7d'},
|
||||
{'label': '📅 Last 30 Days', 'value': '30d'},
|
||||
{'label': '🔴 Real-time', 'value': 'realtime'}
|
||||
],
|
||||
value='7d'
|
||||
)
|
||||
|
||||
# Custom Date Range Picker
|
||||
dcc.DatePickerRange(
|
||||
id='custom-date-range',
|
||||
display_format='YYYY-MM-DD',
|
||||
style={'margin': '10px 0'}
|
||||
)
|
||||
|
||||
# Analysis Mode Toggle
|
||||
dcc.RadioItems(
|
||||
id='analysis-mode-toggle',
|
||||
options=[
|
||||
{'label': '🔴 Real-time Updates', 'value': 'realtime'},
|
||||
{'label': '🔒 Analysis Mode (Locked)', 'value': 'locked'}
|
||||
],
|
||||
value='realtime',
|
||||
inline=True
|
||||
)
|
||||
```
|
||||
|
||||
### Enhanced Callback Structure
|
||||
```python
|
||||
@app.callback(
|
||||
[Output('price-chart', 'figure'),
|
||||
Output('market-stats', 'children')],
|
||||
[Input('symbol-dropdown', 'value'),
|
||||
Input('timeframe-dropdown', 'value'),
|
||||
Input('time-range-quick-select', 'value'),
|
||||
Input('custom-date-range', 'start_date'),
|
||||
Input('custom-date-range', 'end_date'),
|
||||
Input('analysis-mode-toggle', 'value'),
|
||||
Input('interval-component', 'n_intervals')],
|
||||
[State('price-chart', 'relayoutData')],
|
||||
prevent_initial_call=False
|
||||
)
|
||||
def update_chart_and_stats_with_time_control(...):
|
||||
# Smart update logic with state preservation
|
||||
# Conditional real-time updates based on analysis mode
|
||||
# Time range validation and data fetching
|
||||
```
|
||||
|
||||
## Success Criteria
|
||||
- ✅ No more frequent page refreshes (app runs stable)
|
||||
- ✅ Chart zoom/pan preserved during updates
|
||||
- ✅ Time range selection works for both quick select and custom dates
|
||||
- ✅ Analysis mode prevents unwanted real-time resets
|
||||
- ✅ Statistics update correctly for selected time ranges
|
||||
- ✅ Smooth user experience without interruptions
|
||||
|
||||
## Files to Modify
|
||||
- `app_new.py` - Debug mode settings
|
||||
- `dashboard/layouts/market_data.py` - Add time range UI
|
||||
- `dashboard/callbacks/charts.py` - Enhanced callbacks with state preservation
|
||||
- `dashboard/components/chart_controls.py` - New time range control components
|
||||
- `components/charts/__init__.py` - Enhanced data fetching with time ranges
|
||||
|
||||
## Testing Checklist
|
||||
- [ ] App runs without frequent refreshes
|
||||
- [ ] Quick time range selection works
|
||||
- [ ] Custom date picker functions correctly
|
||||
- [ ] Analysis mode prevents real-time updates
|
||||
- [ ] Chart zoom/pan preserved during data updates
|
||||
- [ ] Statistics reflect selected time range
|
||||
- [ ] Symbol changes work with custom time ranges
|
||||
- [ ] Timeframe changes work with custom time ranges
|
||||
- [ ] Real-time mode resumes correctly after analysis mode
|
||||
|
||||
## Notes
|
||||
- Prioritize stability and user experience over advanced features
|
||||
- Keep implementation simple and focused on immediate user needs
|
||||
- Consider performance impact of frequent data queries
|
||||
- Ensure backward compatibility with existing functionality
|
||||
@ -1,206 +0,0 @@
|
||||
# OKX Data Collector Implementation Tasks
|
||||
|
||||
## Relevant Files
|
||||
|
||||
- `data/exchanges/okx/collector.py` - Main OKX collector class extending BaseDataCollector (✅ created and tested - moved to new structure)
|
||||
- `data/exchanges/okx/websocket.py` - WebSocket client for OKX API integration (✅ created and tested - moved to new structure)
|
||||
- `data/exchanges/okx/data_processor.py` - Data validation and processing utilities for OKX (✅ created with comprehensive validation)
|
||||
- `data/exchanges/okx/__init__.py` - OKX package exports (✅ created)
|
||||
- `data/exchanges/__init__.py` - Exchange package with factory exports (✅ created)
|
||||
- `data/exchanges/registry.py` - Exchange registry and capabilities (✅ created)
|
||||
- `data/exchanges/factory.py` - Exchange factory pattern for creating collectors (✅ created)
|
||||
- `scripts/test_okx_collector.py` - Testing script for OKX collector functionality (✅ updated for new structure)
|
||||
- `scripts/test_exchange_factory.py` - Testing script for exchange factory pattern (✅ created)
|
||||
- `tests/test_okx_collector.py` - Unit tests for OKX collector (to be created)
|
||||
- `config/okx_config.json` - Configuration file for OKX collector settings (✅ updated with factory support)
|
||||
|
||||
## ✅ **REFACTORING COMPLETED: EXCHANGE-BASED STRUCTURE**
|
||||
|
||||
**New File Structure:**
|
||||
```
|
||||
data/
|
||||
├── base_collector.py # Abstract base classes
|
||||
├── collector_manager.py # Cross-platform collector manager
|
||||
├── aggregator.py # Cross-exchange data aggregation
|
||||
├── exchanges/ # Exchange-specific implementations
|
||||
│ ├── __init__.py # Main exports and factory
|
||||
│ ├── registry.py # Exchange registry and capabilities
|
||||
│ ├── factory.py # Factory pattern for collectors
|
||||
│ └── okx/ # OKX implementation
|
||||
│ ├── __init__.py # OKX exports
|
||||
│ ├── collector.py # OKXCollector class
|
||||
│ └── websocket.py # OKXWebSocketClient class
|
||||
```
|
||||
|
||||
**Benefits Achieved:**
|
||||
✅ **Scalable Architecture**: Ready for Binance, Coinbase, etc.
|
||||
✅ **Clean Organization**: Exchange-specific code isolated
|
||||
✅ **Factory Pattern**: Easy collector creation and management
|
||||
✅ **Backward Compatibility**: All existing functionality preserved
|
||||
✅ **Future-Proof**: Standardized structure for new exchanges
|
||||
|
||||
## Tasks
|
||||
|
||||
- [x] 2.1 Implement OKX WebSocket API connector for real-time data
|
||||
- [x] 2.1.1 Create OKXWebSocketClient class for low-level WebSocket management
|
||||
- [ ] 2.1.2 Implement authentication handling for private channels (future use)
|
||||
- [x] 2.1.3 Add ping/pong keepalive mechanism with proper timeout handling ✅ **FIXED** - OKX uses simple "ping" string, not JSON
|
||||
- [x] 2.1.4 Create message parsing and validation utilities
|
||||
- [x] 2.1.5 Implement connection retry logic with exponential backoff
|
||||
- [x] 2.1.6 Add proper error handling for WebSocket disconnections
|
||||
|
||||
- [x] 2.2 Create OKXCollector class extending BaseDataCollector
|
||||
- [x] 2.2.1 Implement OKXCollector class with single trading pair support
|
||||
- [x] 2.2.2 Add subscription management for trades, orderbook, and ticker data
|
||||
- [x] 2.2.3 Implement data validation and transformation to standard format
|
||||
- [x] 2.2.4 Add integration with database storage (MarketData and RawTrade tables)
|
||||
- [x] 2.2.5 Implement health monitoring and status reporting
|
||||
- [x] 2.2.6 Add proper logging integration with unified logging system
|
||||
|
||||
- [x] 2.3 Create OKXDataProcessor for data handling
|
||||
- [x] 2.3.1 Implement data validation utilities for OKX message formats ✅ **COMPLETED** - Comprehensive validation for trades, orderbook, ticker data in `data/common/validation.py` and OKX-specific validation
|
||||
- [x] 2.3.2 Implement data transformation functions to standardized MarketDataPoint format ✅ **COMPLETED** - Real-time candle processing system in `data/common/transformation.py`
|
||||
- [x] 2.3.3 Add database storage utilities for processed and raw data ✅ **COMPLETED** - Proper storage logic implemented in refactored collector with raw_trades and market_data tables
|
||||
- [x] 2.3.4 Implement data sanitization and error handling ✅ **COMPLETED** - Comprehensive error handling in validation and transformation layers
|
||||
- [x] 2.3.5 Add timestamp handling and timezone conversion utilities ✅ **COMPLETED** - Right-aligned timestamp aggregation system implemented
|
||||
|
||||
- [x] 2.4 Integration and Configuration ✅ **COMPLETED**
|
||||
- [x] 2.4.1 Create JSON configuration system for OKX collectors
|
||||
- [x] 2.4.2 Implement collector factory for easy instantiation ✅ **COMPLETED** - Common framework provides factory pattern through `data/common/` utilities
|
||||
- [x] 2.4.3 Add integration with CollectorManager for multiple pairs ✅ **COMPLETED** - Refactored architecture supports multiple collectors through common framework
|
||||
- [x] 2.4.4 Create setup script for initializing multiple OKX collectors ✅ **COMPLETED** - Test scripts created for single and multiple collector scenarios
|
||||
- [x] 2.4.5 Add environment variable support for OKX API credentials ✅ **COMPLETED** - Environment variable support integrated in configuration system
|
||||
|
||||
- [x] 2.5 Testing and Validation ✅ **COMPLETED SUCCESSFULLY**
|
||||
- [x] 2.5.1 Create unit tests for OKXWebSocketClient
|
||||
- [x] 2.5.2 Create unit tests for OKXCollector class
|
||||
- [x] 2.5.3 Create unit tests for OKXDataProcessor ✅ **COMPLETED** - Comprehensive testing in refactored test scripts
|
||||
- [x] 2.5.4 Create integration test script for end-to-end testing
|
||||
- [x] 2.5.5 Add performance and stress testing for multiple collectors ✅ **COMPLETED** - Multi-collector testing implemented
|
||||
- [x] 2.5.6 Create test script for validating database storage
|
||||
- [x] 2.5.7 Create test script for single collector functionality ✅ **TESTED**
|
||||
- [x] 2.5.8 Verify data collection and database storage ✅ **VERIFIED**
|
||||
- [x] 2.5.9 Test connection resilience and reconnection logic
|
||||
- [x] 2.5.10 Validate ping/pong keepalive mechanism ✅ **FIXED & VERIFIED**
|
||||
- [x] 2.5.11 Create test for collector manager integration ✅ **FIXED** - Statistics access issue resolved
|
||||
|
||||
- [x] 2.6 Documentation and Examples ✅ **COMPLETED**
|
||||
- [x] 2.6.1 Document OKX collector configuration and usage ✅ **COMPLETED** - Comprehensive documentation created in `docs/architecture/data-processing-refactor.md`
|
||||
- [x] 2.6.2 Create example scripts for common use cases ✅ **COMPLETED** - Test scripts demonstrate usage patterns and real-world scenarios
|
||||
- [x] 2.6.3 Add troubleshooting guide for OKX-specific issues ✅ **COMPLETED** - Troubleshooting information included in documentation
|
||||
- [x] 2.6.4 Document data schema and message formats ✅ **COMPLETED** - Detailed aggregation strategy documentation in `docs/reference/aggregation-strategy.md`
|
||||
|
||||
## 🎉 **Implementation Status: COMPLETE WITH MAJOR ARCHITECTURE UPGRADE!**
|
||||
|
||||
**✅ ALL CORE FUNCTIONALITY IMPLEMENTED AND TESTED:**
|
||||
- ✅ Real-time data collection from OKX WebSocket API
|
||||
- ✅ Robust connection management with automatic reconnection
|
||||
- ✅ Proper ping/pong keepalive mechanism (fixed for OKX format)
|
||||
- ✅ **NEW**: Modular data processing architecture with shared utilities
|
||||
- ✅ **NEW**: Right-aligned timestamp aggregation strategy (industry standard)
|
||||
- ✅ **NEW**: Future leakage prevention mechanisms
|
||||
- ✅ **NEW**: Common framework for multi-exchange support
|
||||
- ✅ Data validation and database storage with proper table usage
|
||||
- ✅ Comprehensive error handling and logging
|
||||
- ✅ Configuration system for multiple trading pairs
|
||||
- ✅ **NEW**: Complete documentation and architecture guides
|
||||
|
||||
**📊 Major Architecture Improvements:**
|
||||
- **Modular Design**: Extracted common utilities into `data/common/` package
|
||||
- **Reusable Components**: Validation, transformation, and aggregation work across all exchanges
|
||||
- **Right-Aligned Timestamps**: Industry-standard candle timestamping
|
||||
- **Future Leakage Prevention**: Strict safeguards against data leakage
|
||||
- **Proper Storage**: Raw data in `raw_trades`, completed candles in `market_data`
|
||||
- **Reduced Complexity**: OKX processor reduced from 1343 to ~600 lines
|
||||
- **Enhanced Testing**: Comprehensive test suite with real-world scenarios
|
||||
|
||||
**🚀 PRODUCTION-READY WITH ENTERPRISE ARCHITECTURE!**
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
- **Architecture**: Refactored to modular design with common utilities shared across all exchanges
|
||||
- **Data Processing**: Right-aligned timestamp aggregation with strict future leakage prevention
|
||||
- **WebSocket Management**: Proper connection handling with ping/pong keepalive and reconnection logic
|
||||
- **Data Storage**: Both processed data (market_data table for completed candles) and raw data (raw_trades table) for debugging and compliance
|
||||
- **Error Handling**: Comprehensive error handling with automatic recovery and detailed logging
|
||||
- **Configuration**: JSON-based configuration for easy management of multiple trading pairs
|
||||
- **Testing**: Comprehensive unit tests and integration tests for reliability
|
||||
- **Documentation**: Complete architecture documentation and aggregation strategy guides
|
||||
- **Scalability**: Common framework ready for Binance, Coinbase, and other exchange integrations
|
||||
|
||||
## Trading Pairs to Support Initially
|
||||
|
||||
- BTC-USDT
|
||||
- ETH-USDT
|
||||
- SOL-USDT
|
||||
- DOGE-USDT
|
||||
- TON-USDT
|
||||
- ETH-USDC
|
||||
- BTC-USDC
|
||||
- UNI-USDT
|
||||
- PEPE-USDT
|
||||
|
||||
## Data Types to Collect
|
||||
|
||||
- **Trades**: Real-time trade executions
|
||||
- **Orderbook**: Order book depth (5 levels)
|
||||
- **Ticker**: 24h ticker statistics (optional)
|
||||
- **Candles**: OHLCV data (for aggregation - future enhancement)
|
||||
|
||||
## Real-Time Candle Processing System
|
||||
|
||||
The implementation includes a comprehensive real-time candle processing system:
|
||||
|
||||
### Core Components:
|
||||
1. **StandardizedTrade** - Unified trade format for all scenarios
|
||||
2. **OHLCVCandle** - Complete candle structure with metadata
|
||||
3. **TimeframeBucket** - Incremental OHLCV calculation for time periods
|
||||
4. **RealTimeCandleProcessor** - Event-driven processing for multiple timeframes
|
||||
5. **UnifiedDataTransformer** - Common transformation interface
|
||||
6. **OKXDataProcessor** - Main entry point with integrated real-time processing
|
||||
|
||||
### Processing Flow:
|
||||
1. **Raw Data Input** → WebSocket messages, database records, API responses
|
||||
2. **Validation & Sanitization** → OKXDataValidator with comprehensive checks
|
||||
3. **Transformation** → StandardizedTrade format with normalized fields
|
||||
4. **Real-Time Aggregation** → Immediate processing, incremental candle building
|
||||
5. **Output & Storage** → MarketDataPoint for raw data, OHLCVCandle for aggregated
|
||||
|
||||
### Key Features:
|
||||
- **Event-driven processing** - Every trade processed immediately upon arrival
|
||||
- **Multiple timeframes** - Simultaneous processing for 1m, 5m, 15m, 1h, 4h, 1d
|
||||
- **Time bucket logic** - Automatic candle completion when time boundaries cross
|
||||
- **Unified data sources** - Same processing pipeline for real-time, historical, and backfill data
|
||||
- **Callback system** - Extensible hooks for completed candles and trades
|
||||
- **Processing statistics** - Comprehensive monitoring and metrics
|
||||
|
||||
### Supported Scenarios:
|
||||
- **Real-time processing** - Live trades from WebSocket
|
||||
- **Historical batch processing** - Database records
|
||||
- **Backfill operations** - API responses for missing data
|
||||
- **Re-aggregation** - Data corrections and new timeframes
|
||||
|
||||
### Current Status:
|
||||
- **Data validation system**: ✅ Complete with comprehensive OKX format validation in modular architecture
|
||||
- **Real-time transformation**: ✅ Complete with unified processing for all scenarios using common utilities
|
||||
- **Candle aggregation**: ✅ Complete with event-driven multi-timeframe processing and right-aligned timestamps
|
||||
- **WebSocket integration**: ✅ Complete integration with new processor architecture
|
||||
- **Database storage**: ✅ Complete with proper raw_trades and market_data table usage
|
||||
- **Monitoring**: ✅ Complete with comprehensive statistics and health monitoring
|
||||
- **Documentation**: ✅ Complete with architecture and aggregation strategy documentation
|
||||
- **Testing**: ✅ Complete with comprehensive test suite for all components
|
||||
|
||||
## Next Steps:
|
||||
1. **Multi-Exchange Expansion**: Use common framework to add Binance, Coinbase, and other exchanges with minimal code
|
||||
2. **Strategy Engine Development**: Build trading strategies using the standardized data pipeline
|
||||
3. **Dashboard Integration**: Connect the data collection system to the trading dashboard
|
||||
4. **Performance Optimization**: Fine-tune system for high-frequency trading scenarios
|
||||
5. **Advanced Analytics**: Implement technical indicators and market analysis tools
|
||||
6. **Production Deployment**: Deploy the system to production infrastructure with monitoring
|
||||
|
||||
## Notes:
|
||||
- ✅ **PHASE 1 COMPLETE**: The OKX data collection system is fully implemented with enterprise-grade architecture
|
||||
- ✅ **Architecture Future-Proof**: The modular design makes adding new exchanges straightforward
|
||||
- ✅ **Industry Standards**: Right-aligned timestamps and future leakage prevention ensure data quality
|
||||
- ✅ **Production Ready**: Comprehensive error handling, monitoring, and documentation
|
||||
- 🚀 **Ready for Expansion**: Common framework enables rapid multi-exchange development
|
||||
@ -1,38 +0,0 @@
|
||||
## Relevant Files
|
||||
|
||||
- `config/indicators/templates/*.json` - Indicator configuration templates to be updated with the new `timeframe` field.
|
||||
- `components/charts/indicator_manager.py` - To add `timeframe` to the `UserIndicator` dataclass and related methods.
|
||||
- `dashboard/layouts/market_data.py` - To add UI elements for selecting the indicator timeframe.
|
||||
- `dashboard/callbacks/indicators.py` - To handle the new `timeframe` input from the UI.
|
||||
- `components/charts/data_integration.py` - To implement the core logic for fetching data and calculating indicators on different timeframes.
|
||||
- `components/charts/builder.py` - To ensure the new indicator data is correctly passed to the chart.
|
||||
|
||||
### Notes
|
||||
|
||||
- The core of the changes will be in `components/charts/data_integration.py`.
|
||||
- Careful data alignment (reindexing and forward-filling) will be crucial for correct visualization.
|
||||
|
||||
## Tasks
|
||||
|
||||
- [x] 1.0 Update Indicator Configuration
|
||||
- [x] 1.1 Add an optional `timeframe` field to all JSON templates in `config/indicators/templates/`.
|
||||
- [x] 1.2 Update the `UserIndicator` dataclass in `components/charts/indicator_manager.py` to include `timeframe: Optional[str]`.
|
||||
- [x] 1.3 Modify `create_indicator` in `IndicatorManager` to accept a `timeframe` parameter.
|
||||
- [x] 1.4 Update `UserIndicator.from_dict` and `to_dict` to handle the new `timeframe` field.
|
||||
- [x] 2.0 Implement Multi-Timeframe Data Fetching and Calculation
|
||||
- [x] 2.1 In `components/charts/data_integration.py`, modify `get_indicator_data`.
|
||||
- [x] 2.2 If a custom timeframe is present, call `get_market_data_for_indicators` to fetch new data.
|
||||
- [x] 2.3 If no custom timeframe is set, use the existing `main_df`.
|
||||
- [x] 2.4 Pass the correct DataFrame to `self.indicators.calculate`.
|
||||
- [x] 3.0 Align and Merge Indicator Data for Plotting
|
||||
- [x] 3.1 After calculation, reindex the indicator DataFrame to match the `main_df`'s timestamp index.
|
||||
- [x] 3.2 Use forward-fill (`ffill`) to handle missing values from reindexing.
|
||||
- [x] 3.3 Add the aligned data to `indicator_data_map`.
|
||||
- [x] 4.0 Update UI for Indicator Timeframe Selection
|
||||
- [x] 4.1 In `dashboard/layouts/market_data.py`, add a `dcc.Dropdown` for timeframe selection in the indicator modal.
|
||||
- [x] 4.2 In `dashboard/callbacks/indicators.py`, update the save indicator callback to read the timeframe value.
|
||||
- [x] 4.3 Pass the selected timeframe to `indicator_manager.create_indicator` or `update_indicator`.
|
||||
- [ ] 5.0 Testing and Validation
|
||||
- [x] 5.1 Write unit tests for custom timeframe data fetching and alignment.
|
||||
- [xx] 5.2 Manually test creating and viewing indicators with various timeframes (higher, lower, and same as chart).
|
||||
- [x] 5.3 Verify visual correctness and data integrity on the chart.
|
||||
@ -1,36 +0,0 @@
|
||||
## Relevant Files
|
||||
|
||||
- `data/common/indicators.py` - This is the primary file to be refactored. The `TechnicalIndicators` class will be modified to be DataFrame-centric.
|
||||
- `components/charts/utils.py` - The `prepare_chart_data` function in this file needs to be corrected to ensure it properly creates and returns a DataFrame with a `DatetimeIndex`.
|
||||
- `components/charts/data_integration.py` - This file's `get_indicator_data` method will be simplified to pass the correctly prepared DataFrame to the calculation engine.
|
||||
- `app_new.py` - The main application file, which will be used to run the dashboard and perform end-to-end testing.
|
||||
|
||||
### Notes
|
||||
|
||||
- The goal of this refactoring is to create a more robust and maintainable data pipeline for indicator calculations, preventing recurring data type and index errors.
|
||||
- Pay close attention to ensuring that DataFrames have a consistent `DatetimeIndex` with proper timezone information throughout the pipeline.
|
||||
|
||||
## Tasks
|
||||
|
||||
- [x] 1.0 Refactor `TechnicalIndicators` Class in `data/common/indicators.py` to be DataFrame-centric.
|
||||
- [x] 1.1 Modify `sma`, `ema`, `rsi`, `macd`, and `bollinger_bands` methods to accept a pre-formatted DataFrame as their primary input, not a list of candles.
|
||||
- [x] 1.2 Remove the redundant `prepare_dataframe` call from within each individual indicator method.
|
||||
- [x] 1.3 Rename `prepare_dataframe` to `_prepare_dataframe_from_list` to signify its new role as a private helper for converting list-based data.
|
||||
- [x] 1.4 Update the main `calculate` method to be the single point of data preparation, handling both DataFrame and list inputs.
|
||||
|
||||
- [x] 2.0 Correct DataFrame Preparation in `components/charts/utils.py`.
|
||||
- [x] 2.1 Review the `prepare_chart_data` function to identify why the `DatetimeIndex` is being dropped.
|
||||
- [x] 2.2 Modify the function to ensure it returns a DataFrame with the `timestamp` column correctly set as the index, without a `reset_index()` call at the end.
|
||||
|
||||
- [x] 3.0 Simplify Data Flow in `components/charts/data_integration.py`.
|
||||
- [x] 3.1 In the `get_indicator_data` function, remove the workaround that converts the DataFrame to a list of dictionaries (`to_dict('records')`).
|
||||
- [x] 3.2 Ensure the function correctly handles both main and custom timeframes, passing the appropriate DataFrame to the calculation engine.
|
||||
- [x] 3.3 Verify that the final `reindex` operation works correctly with the consistent DataFrame structure.
|
||||
|
||||
- [x] 4.0 End-to-End Testing and Validation.
|
||||
- [x] 4.1 Run the dashboard and test the indicator plotting functionality with both matching and custom timeframes.
|
||||
- [x] 4.2 Verify that no new errors appear in the console during chart interaction.
|
||||
- [x] 5.0 Update Indicators documentation to reflect the new DataFrame-centric approach.
|
||||
- [x] 5.1 Review the documentation in the `/docs` directory related to indicators.
|
||||
- [x] 5.2 Update the documentation to explain that the calculation engine now uses DataFrames.
|
||||
- [x] 5.3 Provide clear examples of how to use the refactored `TechnicalIndicators` class.
|
||||
Loading…
x
Reference in New Issue
Block a user