4.0 strategies

This commit is contained in:
Vasily.onl 2025-06-12 14:04:46 +08:00
parent a93bc8e7ce
commit 571d583a5b

View File

@ -0,0 +1,97 @@
## Relevant Files
- `strategies/__init__.py` - Strategy package initialization and exports
- `strategies/base.py` - BaseStrategy abstract class following BaseIndicator pattern
- `strategies/factory.py` - Strategy factory/registry system for dynamic strategy loading
- `strategies/manager.py` - StrategyManager class for user-defined strategies (mirrors IndicatorManager)
- `strategies/implementations/__init__.py` - Strategy implementations package initialization
- `strategies/implementations/ema_crossover.py` - EMA Crossover strategy implementation
- `strategies/implementations/rsi.py` - RSI-based momentum strategy implementation
- `strategies/implementations/macd.py` - MACD trend following strategy implementation
- `strategies/utils.py` - Strategy utility functions and helpers
- `strategies/data_types.py` - Strategy-specific data types and signal definitions
- `config/strategies/templates/` - Directory for JSON strategy templates
- `config/strategies/user_strategies/` - Directory for user-defined strategy configurations
- `config/strategies/config_utils.py` - Strategy configuration utilities and validation
- `database/models.py` - Updated to include strategy signals table definition
- `database/repositories/strategy_repository.py` - Strategy signals repository following repository pattern
- `database/operations.py` - Updated to include strategy operations access
- `database/migrations/versions/add_strategy_signals_table.py` - Alembic migration for strategy signals table
- `components/charts/layers/strategy_signals.py` - Strategy signal chart layer for visualization
- `components/charts/data_integration.py` - Updated to include strategy data integration
- `tests/strategies/test_base_strategy.py` - Unit tests for BaseStrategy abstract class
- `tests/strategies/test_strategy_factory.py` - Unit tests for strategy factory system
- `tests/strategies/test_strategy_manager.py` - Unit tests for StrategyManager class
- `tests/strategies/implementations/test_ema_crossover.py` - Unit tests for EMA Crossover strategy
- `tests/strategies/implementations/test_rsi.py` - Unit tests for RSI strategy
- `tests/strategies/implementations/test_macd.py` - Unit tests for MACD strategy
- `tests/database/test_strategy_repository.py` - Unit tests for strategy repository
### Notes
- **Strict Adherence to Indicator Patterns**: The strategy engine components (BaseStrategy, StrategyFactory, StrategyManager, Strategy implementations, and configurations) MUST strictly mirror the existing `data/common/indicators/` module's structure, factory approach, and configuration management. This ensures consistency and simplifies development.
- **Database Segregation for Signals**: The newly created `strategy_signals` table is exclusively for strategy analysis and backtesting results, distinct from the existing `signals` table which is for live bot trading operations. Maintain this clear separation.
- **Initial Full Recalculation**: For real-time strategy execution, strategies will initially recalculate completely on each new candle, similar to how technical indicators currently operate. Optimizations for incremental updates can be considered in a later phase.
- **Multi-timeframe Support**: Strategies should be designed to support and utilize market data from multiple timeframes, following the pattern established by indicators that can consume data from different timeframes.
- **Exclusive Use of Repository Pattern**: All database interactions, including storing and retrieving strategy signals and run data, must be performed exclusively through the `StrategyRepository` and other existing repositories. Avoid raw SQL queries.
- **JSON-based Configuration**: Strategy parameters and configurations are to be managed via JSON files within `config/strategies/`, aligning with the existing configuration system for indicators and other components.
- **Layered Chart Integration**: Strategy signals and performance visualizations will be integrated into the dashboard as a new chart layer, utilizing the existing modular chart system.
- **Comprehensive Testing**: Ensure that all new classes, functions, and modules within the strategy engine have corresponding unit tests placed in the `tests/strategies/` directory, following established testing conventions.
## Tasks
- [ ] 1.0 Core Strategy Foundation Setup
- [ ] 1.1 Create `strategies/` directory structure following indicators pattern
- [ ] 1.2 Implement `BaseStrategy` abstract class in `strategies/base.py` with `calculate()` and `get_required_indicators()` methods
- [ ] 1.3 Create `strategies/data_types.py` with `StrategySignal`, `SignalType`, and `StrategyResult` classes
- [ ] 1.4 Implement `StrategyFactory` class in `strategies/factory.py` for dynamic strategy loading and registration
- [ ] 1.5 Create strategy implementations directory `strategies/implementations/`
- [ ] 1.6 Implement `EMAStrategy` in `strategies/implementations/ema_crossover.py` as reference implementation
- [ ] 1.7 Implement `RSIStrategy` in `strategies/implementations/rsi.py` for momentum-based signals
- [ ] 1.8 Implement `MACDStrategy` in `strategies/implementations/macd.py` for trend-following signals
- [ ] 1.9 Create `strategies/utils.py` with helper functions for signal validation and processing
- [ ] 1.10 Create comprehensive unit tests for all strategy foundation components
- [ ] 2.0 Strategy Configuration System
- [ ] 2.1 Create `config/strategies/` directory structure mirroring indicators configuration
- [ ] 2.2 Implement `config/strategies/config_utils.py` with configuration validation and loading functions
- [ ] 2.3 Create JSON schema definitions for strategy parameters and validation rules
- [ ] 2.4 Create strategy templates in `config/strategies/templates/` for common strategy configurations
- [ ] 2.5 Implement `StrategyManager` class in `strategies/manager.py` following `IndicatorManager` pattern
- [ ] 2.6 Add strategy configuration loading and saving functionality with file-based storage
- [ ] 2.7 Create user strategies directory `config/strategies/user_strategies/` for custom configurations
- [ ] 2.8 Implement strategy parameter validation and default value handling
- [ ] 2.9 Add configuration export/import functionality for strategy sharing
- [ ] 3.0 Database Schema and Repository Layer
- [ ] 3.1 Create new `strategy_signals` table migration (separate from existing `signals` table for bot operations)
- [ ] 3.2 Design `strategy_signals` table with fields: strategy_name, strategy_config, symbol, timeframe, timestamp, signal_type, price, confidence, metadata, run_id
- [ ] 3.3 Create `strategy_runs` table to track strategy execution sessions for backtesting and analysis
- [ ] 3.4 Implement `StrategyRepository` class in `database/repositories/strategy_repository.py` following repository pattern
- [ ] 3.5 Add strategy repository methods for signal storage, retrieval, and batch operations
- [ ] 3.6 Update `database/operations.py` to include strategy operations access
- [ ] 3.7 Create database indexes for optimal strategy signal queries (strategy_name, symbol, timeframe, timestamp)
- [ ] 3.8 Add data retention policies for strategy signals (configurable cleanup of old analysis data)
- [ ] 3.9 Implement strategy signal aggregation queries for performance analysis
- [ ] 4.0 Strategy Data Integration
- [ ] 4.1 Create `StrategyDataIntegrator` class in new `strategies/data_integration.py` module
- [ ] 4.2 Implement data loading interface that leverages existing `TechnicalIndicators` class for indicator dependencies
- [ ] 4.3 Add multi-timeframe data handling for strategies that require indicators from different timeframes
- [ ] 4.4 Implement strategy calculation orchestration with proper indicator dependency resolution
- [ ] 4.5 Create caching layer for computed indicator results to avoid recalculation across strategies
- [ ] 4.6 Add strategy signal generation and validation pipeline
- [ ] 4.7 Implement batch processing capabilities for backtesting large datasets
- [ ] 4.8 Create real-time strategy execution pipeline that integrates with existing chart data refresh
- [ ] 4.9 Add error handling and recovery mechanisms for strategy calculation failures
- [ ] 5.0 Chart Integration and Visualization
- [ ] 5.1 Create `StrategySignalLayer` class in `components/charts/layers/strategy_signals.py`
- [ ] 5.2 Implement strategy signal visualization with different markers for entry/exit/hold signals
- [ ] 5.3 Add strategy signal layer configuration following existing chart layer patterns
- [ ] 5.4 Update `components/charts/data_integration.py` to include strategy data loading for charts
- [ ] 5.5 Create strategy selection controls in dashboard for chart overlay
- [ ] 5.6 Implement real-time strategy signal updates in chart refresh cycle
- [ ] 5.7 Add strategy performance metrics display (win rate, signal accuracy, etc.)
- [ ] 5.8 Create strategy signal filtering and display options (signal types, confidence thresholds)
- [ ] 5.9 Implement strategy comparison visualization for multiple strategies on same chart