TCPDashboard/docs/modules/charts/configuration.md

810 lines
23 KiB
Markdown
Raw Normal View History

# Chart Configuration System
The Chart Configuration System provides comprehensive management of chart settings, indicator definitions, and trading strategy configurations. It includes schema validation, default presets, and extensible configuration patterns.
## Table of Contents
- [Overview](#overview)
- [Indicator Definitions](#indicator-definitions)
- [Default Configurations](#default-configurations)
- [Strategy Configurations](#strategy-configurations)
- [Validation System](#validation-system)
- [Configuration Files](#configuration-files)
- [Usage Examples](#usage-examples)
- [Extension Guide](#extension-guide)
## Overview
The configuration system is built around three core concepts:
1. **Indicator Definitions** - Schema and validation for technical indicators
2. **Default Configurations** - Pre-built indicator presets organized by category
3. **Strategy Configurations** - Complete chart setups for trading strategies
### Architecture
```
components/charts/config/
├── indicator_defs.py # Core schemas and validation
├── defaults.py # Default indicator presets
├── strategy_charts.py # Strategy configurations
├── validation.py # Validation system
├── example_strategies.py # Real-world examples
└── __init__.py # Package exports
```
## Indicator Definitions
The indicator definitions are now primarily managed through **JSON template files** located in `config/indicators/templates/`. These JSON files define the schema, default parameters, display properties, and styling for each technical indicator. This approach allows for easy addition and modification of indicators without requiring code changes.
### Core Schema Fields (defined in JSON templates)
Each indicator JSON template includes the following key fields:
- **`name`**: Display name of the indicator (e.g., "Simple Moving Average")
- **`description`**: Brief explanation of the indicator.
- **`type`**: Unique identifier for the indicator (e.g., "sma", "ema"). This is used for internal mapping.
- **`display_type`**: How the indicator is rendered on the chart ("overlay" or "subplot").
- **`timeframe`**: Optional default timeframe for the indicator (can be null for chart timeframe).
- **`default_parameters`**: Default values for the indicator's calculation parameters.
- **`parameter_schema`**: Defines the type, validation rules (min/max), default values, and descriptions for each parameter.
- **`default_styling`**: Default color, line width, and other visual properties.
**Example JSON Template (`config/indicators/templates/sma_template.json`):**
```json
{
"name": "Simple Moving Average",
"description": "Simple Moving Average indicator",
"type": "sma",
"display_type": "overlay",
"timeframe": null,
"default_parameters": {
"period": 20
},
"parameter_schema": {
"period": {
"type": "int",
"min": 1,
"max": 200,
"default": 20,
"description": "Period for SMA calculation"
},
"timeframe": {
"type": "string",
"default": null,
"description": "Indicator timeframe (e.g., '1h', '4h'). Null for chart timeframe."
}
},
"default_styling": {
"color": "#007bff",
"line_width": 2
}
}
```
### `ChartIndicatorConfig` (Python representation)
The `ChartIndicatorConfig` Python dataclass in `components/charts/config/indicator_defs.py` serves as the runtime representation of an indicator's configuration, parsed from the JSON templates.
```python
@dataclass
class ChartIndicatorConfig:
2025-06-06 20:33:29 +08:00
name: str
indicator_type: str
parameters: Dict[str, Any]
2025-06-06 20:33:29 +08:00
display_type: str # 'overlay', 'subplot'
color: str
2025-06-06 20:33:29 +08:00
line_style: str = 'solid' # 'solid', 'dash', 'dot'
line_width: int = 2
opacity: float = 1.0
2025-06-06 20:33:29 +08:00
visible: bool = True
subplot_height_ratio: float = 0.3 # For subplot indicators
```
### Enums (for internal type safety)
Enums like `IndicatorType`, `DisplayType`, `LineStyle` are still used internally for type safety and consistent value representation within the Python codebase.
**IndicatorType**
```python
class IndicatorType(str, Enum):
SMA = "sma"
EMA = "ema"
RSI = "rsi"
MACD = "macd"
BOLLINGER_BANDS = "bollinger_bands"
VOLUME = "volume"
# ... new indicator types should be added here for internal consistency
```
**DisplayType**
```python
class DisplayType(str, Enum):
OVERLAY = "overlay" # Overlaid on price chart
SUBPLOT = "subplot" # Separate subplot
HISTOGRAM = "histogram" # Histogram display
```
**LineStyle**
```python
class LineStyle(str, Enum):
SOLID = "solid"
DASHED = "dash"
DOTTED = "dot"
DASH_DOT = "dashdot"
```
**PriceColumn**
```python
class PriceColumn(str, Enum):
OPEN = "open"
HIGH = "high"
LOW = "low"
CLOSE = "close"
VOLUME = "volume"
```
### Schema Validation (driven by JSON templates)
The validation system now primarily reads parameter schemas from the JSON templates. The `IndicatorParameterSchema` and `IndicatorSchema` dataclasses are used for internal representation when parsing and validating these JSON definitions.
#### `IndicatorParameterSchema`
Defines validation rules for indicator parameters:
```python
@dataclass
class IndicatorParameterSchema:
name: str
type: type
required: bool = True
2025-06-06 20:33:29 +08:00
default: Any = None
min_value: Optional[Union[int, float]] = None
max_value: Optional[Union[int, float]] = None
description: str = ""
```
#### `IndicatorSchema`
Complete schema for an indicator type:
```python
@dataclass
class IndicatorSchema:
indicator_type: IndicatorType
display_type: DisplayType
2025-06-06 20:33:29 +08:00
required_parameters: List[IndicatorParameterSchema]
optional_parameters: List[IndicatorParameterSchema] = field(default_factory=list)
min_data_points: int = 1
description: str = ""
```
### Schema Definitions (now loaded dynamically)
The `INDICATOR_SCHEMAS` dictionary is now populated dynamically at runtime by loading and parsing the JSON template files. Manual definitions in `indicator_defs.py` are deprecated.
### Utility Functions
#### Validation Functions
```python
# Validate individual indicator configuration
def validate_indicator_configuration(config: ChartIndicatorConfig) -> tuple[bool, List[str]]
# Create indicator configuration with validation
def create_indicator_config(
2025-06-06 20:33:29 +08:00
name: str,
indicator_type: str,
parameters: Dict[str, Any],
2025-06-06 20:33:29 +08:00
display_type: Optional[str] = None,
color: str = "#007bff",
**display_options
) -> tuple[Optional[ChartIndicatorConfig], List[str]]
# Get schema for indicator type
2025-06-06 20:33:29 +08:00
def get_indicator_schema(indicator_type: str) -> Optional[IndicatorSchema]
# Get available indicator types
2025-06-06 20:33:29 +08:00
def get_available_indicator_types() -> List[str]
# Validate parameters for specific type
def validate_parameters_for_type(
2025-06-06 20:33:29 +08:00
indicator_type: str,
parameters: Dict[str, Any]
) -> tuple[bool, List[str]]
```
## Default Configurations
### Organization
Default configurations are organized by category and trading strategy:
#### Categories
```python
class IndicatorCategory(str, Enum):
TREND = "trend"
MOMENTUM = "momentum"
VOLATILITY = "volatility"
VOLUME = "volume"
SUPPORT_RESISTANCE = "support_resistance"
```
#### Trading Strategies
```python
class TradingStrategy(str, Enum):
SCALPING = "scalping"
DAY_TRADING = "day_trading"
SWING_TRADING = "swing_trading"
POSITION_TRADING = "position_trading"
MOMENTUM = "momentum"
MEAN_REVERSION = "mean_reversion"
```
### Indicator Presets
#### `IndicatorPreset`
Container for pre-configured indicators:
```python
@dataclass
class IndicatorPreset:
name: str
config: ChartIndicatorConfig
category: IndicatorCategory
description: str
recommended_timeframes: List[str]
suitable_strategies: List[TradingStrategy]
notes: List[str] = field(default_factory=list)
```
### Available Presets
**Trend Indicators (13 presets)**
- `sma_5`, `sma_10`, `sma_20`, `sma_50`, `sma_100`, `sma_200`
- `ema_5`, `ema_12`, `ema_21`, `ema_26`, `ema_50`, `ema_100`, `ema_200`
**Momentum Indicators (9 presets)**
- `rsi_7`, `rsi_14`, `rsi_21`
- `macd_5_13_4`, `macd_8_17_6`, `macd_12_26_9`, `macd_19_39_13`
**Volatility Indicators (4 presets)**
- `bb_10_15`, `bb_20_15`, `bb_20_20`, `bb_50_20`
### Color Schemes
Organized color palettes by category:
```python
CATEGORY_COLORS = {
IndicatorCategory.TREND: {
"primary": "#2E86C1", # Blue
"secondary": "#5DADE2", # Light Blue
"accent": "#1F618D" # Dark Blue
},
IndicatorCategory.MOMENTUM: {
"primary": "#E74C3C", # Red
"secondary": "#F1948A", # Light Red
"accent": "#C0392B" # Dark Red
},
# ... more colors
}
```
### Access Functions
```python
# Get all default indicators
def get_all_default_indicators() -> Dict[str, IndicatorPreset]
# Filter by category
def get_indicators_by_category(category: IndicatorCategory) -> Dict[str, IndicatorPreset]
# Filter by timeframe
def get_indicators_for_timeframe(timeframe: str) -> Dict[str, IndicatorPreset]
# Get strategy-specific indicators
def get_strategy_indicators(strategy: TradingStrategy) -> Dict[str, IndicatorPreset]
# Create custom preset
def create_custom_preset(
name: str,
indicator_type: IndicatorType,
parameters: Dict[str, Any],
category: IndicatorCategory,
**kwargs
) -> tuple[Optional[IndicatorPreset], List[str]]
```
## Strategy Configurations
### Core Classes
#### `StrategyChartConfig`
Complete chart configuration for a trading strategy:
```python
@dataclass
class StrategyChartConfig:
strategy_name: str
strategy_type: TradingStrategy
description: str
timeframes: List[str]
# Chart layout
layout: ChartLayout = ChartLayout.MAIN_WITH_SUBPLOTS
main_chart_height: float = 0.7
# Indicators
overlay_indicators: List[str] = field(default_factory=list)
subplot_configs: List[SubplotConfig] = field(default_factory=list)
# Style
chart_style: ChartStyle = field(default_factory=ChartStyle)
# Metadata
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
version: str = "1.0"
tags: List[str] = field(default_factory=list)
```
#### `SubplotConfig`
Configuration for chart subplots:
```python
@dataclass
class SubplotConfig:
subplot_type: SubplotType
height_ratio: float = 0.3
indicators: List[str] = field(default_factory=list)
title: Optional[str] = None
y_axis_label: Optional[str] = None
show_grid: bool = True
show_legend: bool = True
background_color: Optional[str] = None
```
#### `ChartStyle`
Comprehensive chart styling:
```python
@dataclass
class ChartStyle:
theme: str = "plotly_white"
background_color: str = "#ffffff"
grid_color: str = "#e6e6e6"
text_color: str = "#2c3e50"
font_family: str = "Arial, sans-serif"
font_size: int = 12
candlestick_up_color: str = "#26a69a"
candlestick_down_color: str = "#ef5350"
volume_color: str = "#78909c"
show_volume: bool = True
show_grid: bool = True
show_legend: bool = True
show_toolbar: bool = True
```
### Default Strategy Configurations
Pre-built strategy configurations for common trading approaches:
1. **Scalping Strategy**
- Ultra-fast indicators (EMA 5, 12, 21)
- Fast RSI (7) and MACD (5,13,4)
- 1m-5m timeframes
2. **Day Trading Strategy**
- Balanced indicators (SMA 20, EMA 12/26, BB 20,2.0)
- Standard RSI (14) and MACD (12,26,9)
- 5m-1h timeframes
3. **Swing Trading Strategy**
- Longer-term indicators (SMA 50, EMA 21/50, BB 20,2.0)
- Standard momentum indicators
- 1h-1d timeframes
### Configuration Functions
```python
# Create default strategy configurations
def create_default_strategy_configurations() -> Dict[str, StrategyChartConfig]
# Create custom strategy
def create_custom_strategy_config(
strategy_name: str,
strategy_type: TradingStrategy,
description: str,
timeframes: List[str],
overlay_indicators: List[str],
subplot_configs: List[Dict[str, Any]],
**kwargs
) -> tuple[Optional[StrategyChartConfig], List[str]]
# JSON import/export
def load_strategy_config_from_json(json_data: Union[str, Dict[str, Any]]) -> tuple[Optional[StrategyChartConfig], List[str]]
def export_strategy_config_to_json(config: StrategyChartConfig) -> str
# Access functions
def get_strategy_config(strategy_name: str) -> Optional[StrategyChartConfig]
def get_all_strategy_configs() -> Dict[str, StrategyChartConfig]
def get_available_strategy_names() -> List[str]
```
## Validation System
### Validation Rules
The system includes 10 comprehensive validation rules:
1. **REQUIRED_FIELDS** - Validates essential configuration fields
2. **HEIGHT_RATIOS** - Ensures chart height ratios sum correctly
3. **INDICATOR_EXISTENCE** - Checks indicator availability
4. **TIMEFRAME_FORMAT** - Validates timeframe patterns
5. **CHART_STYLE** - Validates styling options
6. **SUBPLOT_CONFIG** - Validates subplot configurations
7. **STRATEGY_CONSISTENCY** - Checks strategy-timeframe alignment
8. **PERFORMANCE_IMPACT** - Warns about performance issues
9. **INDICATOR_CONFLICTS** - Detects redundant indicators
10. **RESOURCE_USAGE** - Estimates resource consumption
### Validation Classes
#### `ValidationReport`
Comprehensive validation results:
```python
@dataclass
class ValidationReport:
is_valid: bool
errors: List[ValidationIssue] = field(default_factory=list)
warnings: List[ValidationIssue] = field(default_factory=list)
info: List[ValidationIssue] = field(default_factory=list)
debug: List[ValidationIssue] = field(default_factory=list)
validation_time: Optional[datetime] = None
rules_applied: Set[ValidationRule] = field(default_factory=set)
```
#### `ValidationIssue`
Individual validation issue:
```python
@dataclass
class ValidationIssue:
level: ValidationLevel
rule: ValidationRule
message: str
field_path: str = ""
suggestion: Optional[str] = None
auto_fix: Optional[str] = None
context: Dict[str, Any] = field(default_factory=dict)
```
### Validation Usage
```python
from components.charts.config import validate_configuration
# Comprehensive validation
report = validate_configuration(config)
# Check results
if report.is_valid:
print("✅ Configuration is valid")
else:
print("❌ Configuration has errors:")
for error in report.errors:
print(f" • {error}")
# Handle warnings
if report.warnings:
print("⚠️ Warnings:")
for warning in report.warnings:
print(f" • {warning}")
```
## Configuration Files
### File Structure
```
components/charts/config/
├── __init__.py # Package exports and public API
├── indicator_defs.py # Core indicator schemas and validation
├── defaults.py # Default indicator presets and categories
├── strategy_charts.py # Strategy configuration classes and defaults
├── validation.py # Validation system and rules
└── example_strategies.py # Real-world trading strategy examples
```
### Key Exports
From `__init__.py`:
```python
# Core classes
from .indicator_defs import (
IndicatorType, DisplayType, LineStyle, PriceColumn,
IndicatorParameterSchema, IndicatorSchema, ChartIndicatorConfig
)
# Default configurations
from .defaults import (
IndicatorCategory, TradingStrategy, IndicatorPreset,
get_all_default_indicators, get_indicators_by_category
)
# Strategy configurations
from .strategy_charts import (
ChartLayout, SubplotType, SubplotConfig, ChartStyle, StrategyChartConfig,
create_default_strategy_configurations
)
# Validation system
from .validation import (
ValidationLevel, ValidationRule, ValidationIssue, ValidationReport,
validate_configuration
)
2025-06-06 20:33:29 +08:00
# Utility functions from indicator_defs
from .indicator_defs import (
create_indicator_config, get_indicator_schema, get_available_indicator_types
)
```
## Usage Examples
### Example 1: Creating Custom Indicator
```python
from components.charts.config import (
create_indicator_config, IndicatorType
)
# Create custom EMA configuration
config, errors = create_indicator_config(
2025-06-06 20:33:29 +08:00
name="EMA 21",
indicator_type=IndicatorType.EMA,
parameters={"period": 21, "price_column": "close"},
color="#2E86C1",
line_width=2
)
if config:
2025-06-06 20:33:29 +08:00
print(f"Created: {config.name}")
else:
print(f"Errors: {errors}")
```
### Example 2: Using Default Presets
```python
from components.charts.config import (
get_all_default_indicators,
get_indicators_by_category,
IndicatorCategory
)
# Get all available indicators
all_indicators = get_all_default_indicators()
print(f"Available indicators: {len(all_indicators)}")
# Get trend indicators only
trend_indicators = get_indicators_by_category(IndicatorCategory.TREND)
for name, preset in trend_indicators.items():
print(f"{name}: {preset.description}")
```
### Example 3: Strategy Configuration
```python
from components.charts.config import (
create_custom_strategy_config,
TradingStrategy
)
# Create custom momentum strategy
config, errors = create_custom_strategy_config(
strategy_name="Custom Momentum",
strategy_type=TradingStrategy.MOMENTUM,
description="Fast momentum trading strategy",
timeframes=["5m", "15m"],
overlay_indicators=["ema_8", "ema_21"],
subplot_configs=[{
"subplot_type": "rsi",
"height_ratio": 0.2,
"indicators": ["rsi_7"]
}]
)
if config:
print(f"Created strategy: {config.strategy_name}")
is_valid, validation_errors = config.validate()
if is_valid:
print("Strategy is valid!")
else:
print(f"Validation errors: {validation_errors}")
```
### Example 4: Comprehensive Validation
```python
from components.charts.config import (
validate_configuration,
ValidationRule
)
# Validate with specific rules
rules = {ValidationRule.REQUIRED_FIELDS, ValidationRule.HEIGHT_RATIOS}
report = validate_configuration(config, rules=rules)
# Detailed error handling
for error in report.errors:
print(f"ERROR: {error.message}")
if error.suggestion:
print(f" Suggestion: {error.suggestion}")
if error.auto_fix:
print(f" Auto-fix: {error.auto_fix}")
# Performance warnings
performance_issues = report.get_issues_by_rule(ValidationRule.PERFORMANCE_IMPACT)
if performance_issues:
print(f"Performance concerns: {len(performance_issues)}")
```
## Extension Guide
### Adding New Indicators
1. **Define Indicator Type**
- Add to `IndicatorType` enum (if not already present)
2. **Create JSON Template**
- Create a new JSON file in `config/indicators/templates/` (e.g., `stochastic_template.json`)
- Define the indicator's name, type, display type, default parameters, parameter schema, and default styling.
- **Example (`stochastic_template.json`):**
```json
{
"name": "Stochastic Oscillator",
"description": "Stochastic momentum oscillator indicator",
"type": "stochastic",
"display_type": "subplot",
"timeframe": null,
"default_parameters": {
"k_period": 14,
"d_period": 3,
"smooth_k": 1
},
"parameter_schema": {
"k_period": {
"type": "int",
"min": 2,
"max": 50,
"default": 14,
"description": "Period for %K calculation"
},
"d_period": {
"type": "int",
"min": 1,
"max": 20,
"default": 3,
"description": "Period for %D (moving average of %K)"
},
"smooth_k": {
"type": "int",
"min": 1,
"max": 10,
"default": 1,
"description": "Smoothing factor for %K"
},
"timeframe": {
"type": "string",
"default": null,
"description": "Indicator timeframe (e.g., '1h', '4h'). Null for chart timeframe."
}
},
"default_styling": {
"color": "#e83e8c",
"line_width": 2
}
}
```
3. **Create Default Presets**
```python
# Add to defaults.py
def create_momentum_indicators():
# ... existing indicators
indicators["stoch_14"] = IndicatorPreset(
name="stoch_14",
config=create_indicator_config(
IndicatorType.STOCHASTIC,
{"k_period": 14, "d_period": 3},
display_name="Stochastic %K(14,%D(3))",
color=CATEGORY_COLORS[IndicatorCategory.MOMENTUM]["primary"]
)[0],
category=IndicatorCategory.MOMENTUM,
description="Standard Stochastic oscillator",
recommended_timeframes=["15m", "1h", "4h"],
suitable_strategies=[TradingStrategy.SWING_TRADING]
)
```
### Adding New Validation Rules
1. **Define Rule**
```python
# Add to ValidationRule enum
class ValidationRule(str, Enum):
# ... existing rules
CUSTOM_RULE = "custom_rule"
```
2. **Implement Validation**
```python
# Add to ConfigurationValidator
def _validate_custom_rule(self, config: StrategyChartConfig, report: ValidationReport) -> None:
# Custom validation logic
if some_condition:
report.add_issue(ValidationIssue(
level=ValidationLevel.WARNING,
rule=ValidationRule.CUSTOM_RULE,
message="Custom validation message",
suggestion="Suggested fix"
))
```
3. **Add to Validator**
```python
# Add to validate_strategy_config method
if ValidationRule.CUSTOM_RULE in self.enabled_rules:
self._validate_custom_rule(config, report)
```
### Adding New Strategy Types
1. **Define Strategy Type**
```python
# Add to TradingStrategy enum
class TradingStrategy(str, Enum):
# ... existing strategies
GRID_TRADING = "grid_trading"
```
2. **Create Strategy Configuration**
```python
# Add to create_default_strategy_configurations()
strategy_configs["grid_trading"] = StrategyChartConfig(
strategy_name="Grid Trading Strategy",
strategy_type=TradingStrategy.GRID_TRADING,
description="Grid trading with support/resistance levels",
timeframes=["1h", "4h"],
overlay_indicators=["sma_20", "sma_50"],
# ... complete configuration
)
```
3. **Add Example Strategy**
```python
# Create in example_strategies.py
def create_grid_trading_strategy() -> StrategyExample:
config = StrategyChartConfig(...)
return StrategyExample(
config=config,
description="Grid trading strategy description...",
difficulty="Intermediate",
risk_level="Medium"
)
```
The configuration system is designed to be highly extensible while maintaining type safety and comprehensive validation. All additions should follow the established patterns and include appropriate tests.