OHLCVPredictor/plot_results.py
Simon Moisy 8d3f045a92 init
2025-05-31 00:57:31 +08:00

319 lines
11 KiB
Python

import numpy as np
import dash
from dash import dcc, html
import plotly.graph_objs as go
import threading
def display_actual_vs_predicted(y_test, test_preds, timestamps, n_plot=200):
import plotly.offline as pyo
n_plot = min(n_plot, len(y_test))
plot_indices = timestamps[:n_plot]
actual = y_test[:n_plot]
predicted = test_preds[:n_plot]
trace_actual = go.Scatter(x=plot_indices, y=actual, mode='lines', name='Actual')
trace_predicted = go.Scatter(x=plot_indices, y=predicted, mode='lines', name='Predicted')
data = [trace_actual, trace_predicted]
layout = go.Layout(
title='Actual vs. Predicted BTC Close Prices (Test Set)',
xaxis={'title': 'Timestamp'},
yaxis={'title': 'BTC Close Price'},
legend={'x': 0, 'y': 1},
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
hovermode='closest'
)
fig = go.Figure(data=data, layout=layout)
pyo.plot(fig, auto_open=False)
def plot_target_distribution(y_train, y_test):
import plotly.offline as pyo
trace_train = go.Histogram(
x=y_train,
nbinsx=100,
opacity=0.5,
name='Train',
marker=dict(color='blue')
)
trace_test = go.Histogram(
x=y_test,
nbinsx=100,
opacity=0.5,
name='Test',
marker=dict(color='orange')
)
data = [trace_train, trace_test]
layout = go.Layout(
title='Distribution of Target Variable (Close Price)',
xaxis=dict(title='BTC Close Price'),
yaxis=dict(title='Frequency'),
barmode='overlay'
)
fig = go.Figure(data=data, layout=layout)
pyo.plot(fig, auto_open=False)
def plot_predicted_vs_actual_log_returns(y_test, test_preds, timestamps=None, n_plot=200):
import plotly.offline as pyo
import plotly.graph_objs as go
n_plot = min(n_plot, len(y_test))
actual = y_test[:n_plot]
predicted = test_preds[:n_plot]
if timestamps is not None:
x_axis = timestamps[:n_plot]
x_label = 'Timestamp'
else:
x_axis = list(range(n_plot))
x_label = 'Index'
# Line plot: Actual vs Predicted over time
trace_actual = go.Scatter(x=x_axis, y=actual, mode='lines', name='Actual')
trace_predicted = go.Scatter(x=x_axis, y=predicted, mode='lines', name='Predicted')
data_line = [trace_actual, trace_predicted]
layout_line = go.Layout(
title='Actual vs. Predicted Log Returns (Test Set)',
xaxis={'title': x_label},
yaxis={'title': 'Log Return'},
legend={'x': 0, 'y': 1},
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
hovermode='closest'
)
fig_line = go.Figure(data=data_line, layout=layout_line)
pyo.plot(fig_line, filename='charts/log_return_line_plot.html', auto_open=False)
# Scatter plot: Predicted vs Actual
trace_scatter = go.Scatter(
x=actual,
y=predicted,
mode='markers',
name='Predicted vs Actual',
opacity=0.5
)
# Diagonal reference line
min_val = min(np.min(actual), np.min(predicted))
max_val = max(np.max(actual), np.max(predicted))
trace_diag = go.Scatter(
x=[min_val, max_val],
y=[min_val, max_val],
mode='lines',
name='Ideal',
line=dict(dash='dash', color='red')
)
data_scatter = [trace_scatter, trace_diag]
layout_scatter = go.Layout(
title='Predicted vs Actual Log Returns (Scatter)',
xaxis={'title': 'Actual Log Return'},
yaxis={'title': 'Predicted Log Return'},
showlegend=True,
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
hovermode='closest'
)
fig_scatter = go.Figure(data=data_scatter, layout=layout_scatter)
pyo.plot(fig_scatter, filename='charts/log_return_scatter_plot.html', auto_open=False)
def plot_predicted_vs_actual_prices(actual_prices, predicted_prices, timestamps=None, n_plot=200):
import plotly.offline as pyo
import plotly.graph_objs as go
n_plot = min(n_plot, len(actual_prices))
actual = actual_prices[:n_plot]
predicted = predicted_prices[:n_plot]
if timestamps is not None:
x_axis = timestamps[:n_plot]
x_label = 'Timestamp'
else:
x_axis = list(range(n_plot))
x_label = 'Index'
# Line plot: Actual vs Predicted over time
trace_actual = go.Scatter(x=x_axis, y=actual, mode='lines', name='Actual Price')
trace_predicted = go.Scatter(x=x_axis, y=predicted, mode='lines', name='Predicted Price')
data_line = [trace_actual, trace_predicted]
layout_line = go.Layout(
title='Actual vs. Predicted BTC Prices (Test Set)',
xaxis={'title': x_label},
yaxis={'title': 'BTC Price'},
legend={'x': 0, 'y': 1},
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
hovermode='closest'
)
fig_line = go.Figure(data=data_line, layout=layout_line)
pyo.plot(fig_line, filename='charts/price_line_plot.html', auto_open=False)
# Scatter plot: Predicted vs Actual
trace_scatter = go.Scatter(
x=actual,
y=predicted,
mode='markers',
name='Predicted vs Actual',
opacity=0.5
)
# Diagonal reference line
min_val = min(np.min(actual), np.min(predicted))
max_val = max(np.max(actual), np.max(predicted))
trace_diag = go.Scatter(
x=[min_val, max_val],
y=[min_val, max_val],
mode='lines',
name='Ideal',
line=dict(dash='dash', color='red')
)
data_scatter = [trace_scatter, trace_diag]
layout_scatter = go.Layout(
title='Predicted vs Actual Prices (Scatter)',
xaxis={'title': 'Actual Price'},
yaxis={'title': 'Predicted Price'},
showlegend=True,
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
hovermode='closest'
)
fig_scatter = go.Figure(data=data_scatter, layout=layout_scatter)
pyo.plot(fig_scatter, filename='charts/price_scatter_plot.html', auto_open=False)
def plot_prediction_error_distribution(predicted_prices, actual_prices, nbins=100, prefix=""):
"""
Plots the distribution of signed prediction errors between predicted and actual prices,
coloring negative errors (under-prediction) and positive errors (over-prediction) differently.
"""
import plotly.offline as pyo
import plotly.graph_objs as go
errors = np.array(predicted_prices) - np.array(actual_prices)
# Separate negative and positive errors
neg_errors = errors[errors < 0]
pos_errors = errors[errors >= 0]
# Calculate common bin edges
min_error = np.min(errors)
max_error = np.max(errors)
bin_edges = np.linspace(min_error, max_error, nbins + 1)
xbins = dict(start=min_error, end=max_error, size=(max_error - min_error) / nbins)
trace_neg = go.Histogram(
x=neg_errors,
opacity=0.75,
marker=dict(color='blue'),
name='Negative Error (Under-prediction)',
xbins=xbins
)
trace_pos = go.Histogram(
x=pos_errors,
opacity=0.75,
marker=dict(color='orange'),
name='Positive Error (Over-prediction)',
xbins=xbins
)
layout = go.Layout(
title='Distribution of Prediction Errors (Signed)',
xaxis=dict(title='Prediction Error (Predicted - Actual)'),
yaxis=dict(title='Frequency'),
barmode='overlay',
bargap=0.05
)
fig = go.Figure(data=[trace_neg, trace_pos], layout=layout)
filename = f'charts/{prefix}_prediction_error_distribution.html'
pyo.plot(fig, filename=filename, auto_open=False)
def plot_directional_accuracy(actual_prices, predicted_prices, timestamps=None, n_plot=200):
"""
Plots the directional accuracy of predictions compared to actual price movements.
Shows whether the predicted direction matches the actual direction of price movement.
Args:
actual_prices: Array of actual price values
predicted_prices: Array of predicted price values
timestamps: Optional array of timestamps for x-axis
n_plot: Number of points to plot (default 200, plots last n_plot points)
"""
import plotly.graph_objs as go
import plotly.offline as pyo
import numpy as np
# Calculate price changes
actual_changes = np.diff(actual_prices)
predicted_changes = np.diff(predicted_prices)
# Determine if directions match
actual_direction = np.sign(actual_changes)
predicted_direction = np.sign(predicted_changes)
correct_direction = actual_direction == predicted_direction
# Get last n_plot points
actual_changes = actual_changes[-n_plot:]
predicted_changes = predicted_changes[-n_plot:]
correct_direction = correct_direction[-n_plot:]
if timestamps is not None:
x_values = timestamps[1:] # Skip first since we took diff
x_values = x_values[-n_plot:] # Get last n_plot points
else:
x_values = list(range(len(actual_changes)))
# Create traces for correct and incorrect predictions
correct_trace = go.Scatter(
x=np.array(x_values)[correct_direction],
y=actual_changes[correct_direction],
mode='markers',
name='Correct Direction',
marker=dict(color='green', size=8)
)
incorrect_trace = go.Scatter(
x=np.array(x_values)[~correct_direction],
y=actual_changes[~correct_direction],
mode='markers',
name='Incorrect Direction',
marker=dict(color='red', size=8)
)
# Calculate accuracy percentage
accuracy = np.mean(correct_direction) * 100
layout = go.Layout(
title=f'Directional Accuracy (Overall: {accuracy:.1f}%)',
xaxis=dict(title='Time' if timestamps is not None else 'Sample'),
yaxis=dict(title='Price Change'),
showlegend=True
)
fig = go.Figure(data=[correct_trace, incorrect_trace], layout=layout)
pyo.plot(fig, filename='charts/directional_accuracy.html', auto_open=False)
def plot_direction_transition_heatmap(actual_prices, predicted_prices, prefix=""):
"""
Plots a heatmap showing the frequency of each (actual, predicted) direction pair.
"""
import numpy as np
import plotly.graph_objs as go
import plotly.offline as pyo
# Calculate directions
actual_direction = np.sign(np.diff(actual_prices))
predicted_direction = np.sign(np.diff(predicted_prices))
# Build 3x3 matrix: rows=actual, cols=predicted, values=counts
# Map -1 -> 0, 0 -> 1, 1 -> 2 for indexing
mapping = {-1: 0, 0: 1, 1: 2}
matrix = np.zeros((3, 3), dtype=int)
for a, p in zip(actual_direction, predicted_direction):
matrix[mapping[a], mapping[p]] += 1
# Axis labels
directions = ['Down (-1)', 'No Change (0)', 'Up (+1)']
# Plot heatmap
heatmap = go.Heatmap(
z=matrix,
x=directions, # predicted
y=directions, # actual
colorscale='Viridis',
colorbar=dict(title='Count')
)
layout = go.Layout(
title='Direction Prediction Transition Matrix',
xaxis=dict(title='Predicted Direction'),
yaxis=dict(title='Actual Direction')
)
fig = go.Figure(data=[heatmap], layout=layout)
filename = f'charts/{prefix}_direction_transition_heatmap.html'
pyo.plot(fig, filename=filename, auto_open=False)