init
This commit is contained in:
parent
4bad7c365c
commit
8d3f045a92
1
.python-version
Normal file
1
.python-version
Normal file
@ -0,0 +1 @@
|
||||
3.12
|
||||
39
custom_xgboost.py
Normal file
39
custom_xgboost.py
Normal file
@ -0,0 +1,39 @@
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
|
||||
class CustomXGBoostGPU:
|
||||
def __init__(self, X_train, X_test, y_train, y_test):
|
||||
self.X_train = X_train.astype(np.float32)
|
||||
self.X_test = X_test.astype(np.float32)
|
||||
self.y_train = y_train.astype(np.float32)
|
||||
self.y_test = y_test.astype(np.float32)
|
||||
self.model = None
|
||||
self.params = None # Will be set during training
|
||||
|
||||
def train(self, **xgb_params):
|
||||
params = {
|
||||
'tree_method': 'hist',
|
||||
'device': 'cuda',
|
||||
'objective': 'reg:squarederror',
|
||||
'eval_metric': 'rmse',
|
||||
'verbosity': 1,
|
||||
}
|
||||
params.update(xgb_params)
|
||||
self.params = params # Store params for later access
|
||||
dtrain = xgb.DMatrix(self.X_train, label=self.y_train)
|
||||
dtest = xgb.DMatrix(self.X_test, label=self.y_test)
|
||||
evals = [(dtrain, 'train'), (dtest, 'eval')]
|
||||
self.model = xgb.train(params, dtrain, num_boost_round=100, evals=evals, early_stopping_rounds=10)
|
||||
return self.model
|
||||
|
||||
def predict(self, X):
|
||||
if self.model is None:
|
||||
raise ValueError('Model not trained yet.')
|
||||
dmatrix = xgb.DMatrix(X.astype(np.float32))
|
||||
return self.model.predict(dmatrix)
|
||||
|
||||
def save_model(self, file_path):
|
||||
"""Save the trained XGBoost model to the specified file path."""
|
||||
if self.model is None:
|
||||
raise ValueError('Model not trained yet.')
|
||||
self.model.save_model(file_path)
|
||||
804
main.py
Normal file
804
main.py
Normal file
@ -0,0 +1,804 @@
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from custom_xgboost import CustomXGBoostGPU
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
from plot_results import plot_prediction_error_distribution, plot_direction_transition_heatmap
|
||||
import time
|
||||
from numba import njit
|
||||
import csv
|
||||
import ta
|
||||
|
||||
def run_indicator(func, *args):
|
||||
return func(*args)
|
||||
|
||||
def run_indicator_job(job):
|
||||
import time
|
||||
func, *args = job
|
||||
indicator_name = func.__name__
|
||||
start = time.time()
|
||||
result = func(*args)
|
||||
elapsed = time.time() - start
|
||||
print(f'Indicator {indicator_name} computed in {elapsed:.4f} seconds')
|
||||
return result
|
||||
|
||||
def calc_rsi(close):
|
||||
from ta.momentum import RSIIndicator
|
||||
return ('rsi', RSIIndicator(close, window=14).rsi())
|
||||
|
||||
def calc_macd(close):
|
||||
from ta.trend import MACD
|
||||
return ('macd', MACD(close).macd())
|
||||
|
||||
def calc_bollinger(close):
|
||||
from ta.volatility import BollingerBands
|
||||
bb = BollingerBands(close=close, window=20, window_dev=2)
|
||||
return [
|
||||
('bb_bbm', bb.bollinger_mavg()),
|
||||
('bb_bbh', bb.bollinger_hband()),
|
||||
('bb_bbl', bb.bollinger_lband()),
|
||||
('bb_bb_width', bb.bollinger_hband() - bb.bollinger_lband())
|
||||
]
|
||||
|
||||
def calc_stochastic(high, low, close):
|
||||
from ta.momentum import StochasticOscillator
|
||||
stoch = StochasticOscillator(high=high, low=low, close=close, window=14, smooth_window=3)
|
||||
return [
|
||||
('stoch_k', stoch.stoch()),
|
||||
('stoch_d', stoch.stoch_signal())
|
||||
]
|
||||
|
||||
def calc_atr(high, low, close):
|
||||
from ta.volatility import AverageTrueRange
|
||||
atr = AverageTrueRange(high=high, low=low, close=close, window=14)
|
||||
return ('atr', atr.average_true_range())
|
||||
|
||||
def calc_cci(high, low, close):
|
||||
from ta.trend import CCIIndicator
|
||||
cci = CCIIndicator(high=high, low=low, close=close, window=20)
|
||||
return ('cci', cci.cci())
|
||||
|
||||
def calc_williamsr(high, low, close):
|
||||
from ta.momentum import WilliamsRIndicator
|
||||
willr = WilliamsRIndicator(high=high, low=low, close=close, lbp=14)
|
||||
return ('williams_r', willr.williams_r())
|
||||
|
||||
def calc_ema(close):
|
||||
from ta.trend import EMAIndicator
|
||||
ema = EMAIndicator(close=close, window=14)
|
||||
return ('ema_14', ema.ema_indicator())
|
||||
|
||||
def calc_obv(close, volume):
|
||||
from ta.volume import OnBalanceVolumeIndicator
|
||||
obv = OnBalanceVolumeIndicator(close=close, volume=volume)
|
||||
return ('obv', obv.on_balance_volume())
|
||||
|
||||
def calc_cmf(high, low, close, volume):
|
||||
from ta.volume import ChaikinMoneyFlowIndicator
|
||||
cmf = ChaikinMoneyFlowIndicator(high=high, low=low, close=close, volume=volume, window=20)
|
||||
return ('cmf', cmf.chaikin_money_flow())
|
||||
|
||||
def calc_sma(close):
|
||||
from ta.trend import SMAIndicator
|
||||
return [
|
||||
('sma_50', SMAIndicator(close, window=50).sma_indicator()),
|
||||
('sma_200', SMAIndicator(close, window=200).sma_indicator())
|
||||
]
|
||||
|
||||
def calc_roc(close):
|
||||
from ta.momentum import ROCIndicator
|
||||
return ('roc_10', ROCIndicator(close, window=10).roc())
|
||||
|
||||
def calc_momentum(close):
|
||||
return ('momentum_10', close - close.shift(10))
|
||||
|
||||
def calc_psar(high, low, close):
|
||||
# Use the Numba-accelerated fast_psar function for speed
|
||||
psar_values = fast_psar(np.array(high), np.array(low), np.array(close))
|
||||
return [('psar', pd.Series(psar_values, index=close.index))]
|
||||
|
||||
def calc_donchian(high, low, close):
|
||||
from ta.volatility import DonchianChannel
|
||||
donchian = DonchianChannel(high, low, close, window=20)
|
||||
return [
|
||||
('donchian_hband', donchian.donchian_channel_hband()),
|
||||
('donchian_lband', donchian.donchian_channel_lband()),
|
||||
('donchian_mband', donchian.donchian_channel_mband())
|
||||
]
|
||||
|
||||
def calc_keltner(high, low, close):
|
||||
from ta.volatility import KeltnerChannel
|
||||
keltner = KeltnerChannel(high, low, close, window=20)
|
||||
return [
|
||||
('keltner_hband', keltner.keltner_channel_hband()),
|
||||
('keltner_lband', keltner.keltner_channel_lband()),
|
||||
('keltner_mband', keltner.keltner_channel_mband())
|
||||
]
|
||||
|
||||
def calc_dpo(close):
|
||||
from ta.trend import DPOIndicator
|
||||
return ('dpo_20', DPOIndicator(close, window=20).dpo())
|
||||
|
||||
def calc_ultimate(high, low, close):
|
||||
from ta.momentum import UltimateOscillator
|
||||
return ('ultimate_osc', UltimateOscillator(high, low, close).ultimate_oscillator())
|
||||
|
||||
def calc_ichimoku(high, low):
|
||||
from ta.trend import IchimokuIndicator
|
||||
ichimoku = IchimokuIndicator(high, low, window1=9, window2=26, window3=52)
|
||||
return [
|
||||
('ichimoku_a', ichimoku.ichimoku_a()),
|
||||
('ichimoku_b', ichimoku.ichimoku_b()),
|
||||
('ichimoku_base_line', ichimoku.ichimoku_base_line()),
|
||||
('ichimoku_conversion_line', ichimoku.ichimoku_conversion_line())
|
||||
]
|
||||
|
||||
def calc_elder_ray(close, low, high):
|
||||
from ta.trend import EMAIndicator
|
||||
ema = EMAIndicator(close, window=13).ema_indicator()
|
||||
return [
|
||||
('elder_ray_bull', ema - low),
|
||||
('elder_ray_bear', ema - high)
|
||||
]
|
||||
|
||||
def calc_daily_return(close):
|
||||
from ta.others import DailyReturnIndicator
|
||||
return ('daily_return', DailyReturnIndicator(close).daily_return())
|
||||
|
||||
@njit
|
||||
def fast_psar(high, low, close, af=0.02, max_af=0.2):
|
||||
length = len(close)
|
||||
psar = np.zeros(length)
|
||||
bull = True
|
||||
af_step = af
|
||||
ep = low[0]
|
||||
psar[0] = low[0]
|
||||
for i in range(1, length):
|
||||
prev_psar = psar[i-1]
|
||||
if bull:
|
||||
psar[i] = prev_psar + af_step * (ep - prev_psar)
|
||||
if low[i] < psar[i]:
|
||||
bull = False
|
||||
psar[i] = ep
|
||||
af_step = af
|
||||
ep = low[i]
|
||||
else:
|
||||
if high[i] > ep:
|
||||
ep = high[i]
|
||||
af_step = min(af_step + af, max_af)
|
||||
else:
|
||||
psar[i] = prev_psar + af_step * (ep - prev_psar)
|
||||
if high[i] > psar[i]:
|
||||
bull = True
|
||||
psar[i] = ep
|
||||
af_step = af
|
||||
ep = high[i]
|
||||
else:
|
||||
if low[i] < ep:
|
||||
ep = low[i]
|
||||
af_step = min(af_step + af, max_af)
|
||||
return psar
|
||||
|
||||
def compute_lag(df, col, lag):
|
||||
return df[col].shift(lag)
|
||||
|
||||
def compute_rolling(df, col, stat, window):
|
||||
if stat == 'mean':
|
||||
return df[col].rolling(window).mean()
|
||||
elif stat == 'std':
|
||||
return df[col].rolling(window).std()
|
||||
elif stat == 'min':
|
||||
return df[col].rolling(window).min()
|
||||
elif stat == 'max':
|
||||
return df[col].rolling(window).max()
|
||||
|
||||
def compute_log_return(df, horizon):
|
||||
return np.log(df['Close'] / df['Close'].shift(horizon))
|
||||
|
||||
def compute_volatility(df, window):
|
||||
return df['log_return'].rolling(window).std()
|
||||
|
||||
def run_feature_job(job, df):
|
||||
feature_name, func, *args = job
|
||||
print(f'Computing feature: {feature_name}')
|
||||
result = func(df, *args)
|
||||
return feature_name, result
|
||||
|
||||
def calc_adx(high, low, close):
|
||||
from ta.trend import ADXIndicator
|
||||
adx = ADXIndicator(high=high, low=low, close=close, window=14)
|
||||
return [
|
||||
('adx', adx.adx()),
|
||||
('adx_pos', adx.adx_pos()),
|
||||
('adx_neg', adx.adx_neg())
|
||||
]
|
||||
|
||||
def calc_trix(close):
|
||||
from ta.trend import TRIXIndicator
|
||||
trix = TRIXIndicator(close=close, window=15)
|
||||
return ('trix', trix.trix())
|
||||
|
||||
def calc_vortex(high, low, close):
|
||||
from ta.trend import VortexIndicator
|
||||
vortex = VortexIndicator(high=high, low=low, close=close, window=14)
|
||||
return [
|
||||
('vortex_pos', vortex.vortex_indicator_pos()),
|
||||
('vortex_neg', vortex.vortex_indicator_neg())
|
||||
]
|
||||
|
||||
def calc_kama(close):
|
||||
import pandas_ta as ta
|
||||
kama = ta.kama(close, length=10)
|
||||
return ('kama', kama)
|
||||
|
||||
def calc_force_index(close, volume):
|
||||
from ta.volume import ForceIndexIndicator
|
||||
fi = ForceIndexIndicator(close=close, volume=volume, window=13)
|
||||
return ('force_index', fi.force_index())
|
||||
|
||||
def calc_eom(high, low, volume):
|
||||
from ta.volume import EaseOfMovementIndicator
|
||||
eom = EaseOfMovementIndicator(high=high, low=low, volume=volume, window=14)
|
||||
return ('eom', eom.ease_of_movement())
|
||||
|
||||
def calc_mfi(high, low, close, volume):
|
||||
from ta.volume import MFIIndicator
|
||||
mfi = MFIIndicator(high=high, low=low, close=close, volume=volume, window=14)
|
||||
return ('mfi', mfi.money_flow_index())
|
||||
|
||||
def calc_adi(high, low, close, volume):
|
||||
from ta.volume import AccDistIndexIndicator
|
||||
adi = AccDistIndexIndicator(high=high, low=low, close=close, volume=volume)
|
||||
return ('adi', adi.acc_dist_index())
|
||||
|
||||
def calc_tema(close):
|
||||
import pandas_ta as ta
|
||||
tema = ta.tema(close, length=10)
|
||||
return ('tema', tema)
|
||||
|
||||
def calc_stochrsi(close):
|
||||
from ta.momentum import StochRSIIndicator
|
||||
stochrsi = StochRSIIndicator(close=close, window=14, smooth1=3, smooth2=3)
|
||||
return [
|
||||
('stochrsi', stochrsi.stochrsi()),
|
||||
('stochrsi_k', stochrsi.stochrsi_k()),
|
||||
('stochrsi_d', stochrsi.stochrsi_d())
|
||||
]
|
||||
|
||||
def calc_awesome_oscillator(high, low):
|
||||
from ta.momentum import AwesomeOscillatorIndicator
|
||||
ao = AwesomeOscillatorIndicator(high=high, low=low, window1=5, window2=34)
|
||||
return ('awesome_osc', ao.awesome_oscillator())
|
||||
|
||||
if __name__ == '__main__':
|
||||
IMPUTE_NANS = True # Set to True to impute NaNs, False to drop rows with NaNs
|
||||
csv_path = '../data/btcusd_1-min_data.csv'
|
||||
csv_prefix = os.path.splitext(os.path.basename(csv_path))[0]
|
||||
|
||||
print('Reading CSV and filtering data...')
|
||||
df = pd.read_csv(csv_path)
|
||||
df = df[df['Volume'] != 0]
|
||||
|
||||
min_date = '2017-06-01'
|
||||
print('Converting Timestamp and filtering by date...')
|
||||
df['Timestamp'] = pd.to_datetime(df['Timestamp'], unit='s')
|
||||
df = df[df['Timestamp'] >= min_date]
|
||||
|
||||
lags = 3
|
||||
|
||||
print('Calculating log returns as the new target...')
|
||||
df['log_return'] = np.log(df['Close'] / df['Close'].shift(1))
|
||||
|
||||
ohlcv_cols = ['Open', 'High', 'Low', 'Close', 'Volume']
|
||||
window_sizes = [5, 15, 30] # in minutes, adjust as needed
|
||||
|
||||
features_dict = {}
|
||||
|
||||
print('Starting feature computation...')
|
||||
feature_start_time = time.time()
|
||||
|
||||
# --- Technical Indicator Features: Calculate or Load from Cache ---
|
||||
print('Calculating or loading technical indicator features...')
|
||||
# RSI
|
||||
feature_file = f'../data/{csv_prefix}_rsi.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['rsi'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: rsi')
|
||||
_, values = calc_rsi(df['Close'])
|
||||
features_dict['rsi'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# MACD
|
||||
feature_file = f'../data/{csv_prefix}_macd.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['macd'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: macd')
|
||||
_, values = calc_macd(df['Close'])
|
||||
features_dict['macd'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# ATR
|
||||
feature_file = f'../data/{csv_prefix}_atr.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['atr'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: atr')
|
||||
_, values = calc_atr(df['High'], df['Low'], df['Close'])
|
||||
features_dict['atr'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# CCI
|
||||
feature_file = f'../data/{csv_prefix}_cci.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['cci'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: cci')
|
||||
_, values = calc_cci(df['High'], df['Low'], df['Close'])
|
||||
features_dict['cci'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# Williams %R
|
||||
feature_file = f'../data/{csv_prefix}_williams_r.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['williams_r'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: williams_r')
|
||||
_, values = calc_williamsr(df['High'], df['Low'], df['Close'])
|
||||
features_dict['williams_r'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# EMA 14
|
||||
feature_file = f'../data/{csv_prefix}_ema_14.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['ema_14'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: ema_14')
|
||||
_, values = calc_ema(df['Close'])
|
||||
features_dict['ema_14'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# OBV
|
||||
feature_file = f'../data/{csv_prefix}_obv.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['obv'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: obv')
|
||||
_, values = calc_obv(df['Close'], df['Volume'])
|
||||
features_dict['obv'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# CMF
|
||||
feature_file = f'../data/{csv_prefix}_cmf.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['cmf'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: cmf')
|
||||
_, values = calc_cmf(df['High'], df['Low'], df['Close'], df['Volume'])
|
||||
features_dict['cmf'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# ROC 10
|
||||
feature_file = f'../data/{csv_prefix}_roc_10.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['roc_10'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: roc_10')
|
||||
_, values = calc_roc(df['Close'])
|
||||
features_dict['roc_10'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# DPO 20
|
||||
feature_file = f'../data/{csv_prefix}_dpo_20.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['dpo_20'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: dpo_20')
|
||||
_, values = calc_dpo(df['Close'])
|
||||
features_dict['dpo_20'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# Ultimate Oscillator
|
||||
feature_file = f'../data/{csv_prefix}_ultimate_osc.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['ultimate_osc'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: ultimate_osc')
|
||||
_, values = calc_ultimate(df['High'], df['Low'], df['Close'])
|
||||
features_dict['ultimate_osc'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# Daily Return
|
||||
feature_file = f'../data/{csv_prefix}_daily_return.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'A Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['daily_return'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: daily_return')
|
||||
_, values = calc_daily_return(df['Close'])
|
||||
features_dict['daily_return'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# Multi-column indicators
|
||||
# Bollinger Bands
|
||||
print('Calculating multi-column indicator: bollinger')
|
||||
result = calc_bollinger(df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Stochastic Oscillator
|
||||
print('Calculating multi-column indicator: stochastic')
|
||||
result = calc_stochastic(df['High'], df['Low'], df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# SMA
|
||||
print('Calculating multi-column indicator: sma')
|
||||
result = calc_sma(df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# PSAR
|
||||
print('Calculating multi-column indicator: psar')
|
||||
result = calc_psar(df['High'], df['Low'], df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Donchian Channel
|
||||
print('Calculating multi-column indicator: donchian')
|
||||
result = calc_donchian(df['High'], df['Low'], df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Keltner Channel
|
||||
print('Calculating multi-column indicator: keltner')
|
||||
result = calc_keltner(df['High'], df['Low'], df['Close'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Ichimoku
|
||||
print('Calculating multi-column indicator: ichimoku')
|
||||
result = calc_ichimoku(df['High'], df['Low'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Elder Ray
|
||||
print('Calculating multi-column indicator: elder_ray')
|
||||
result = calc_elder_ray(df['Close'], df['Low'], df['High'])
|
||||
for subname, values in result:
|
||||
print(f"Adding subfeature: {subname}")
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
if os.path.exists(sub_feature_file):
|
||||
print(f'B Loading cached feature: {sub_feature_file}')
|
||||
arr = np.load(sub_feature_file)
|
||||
features_dict[subname] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Prepare lags, rolling stats, log returns, and volatility features sequentially
|
||||
# Lags
|
||||
for col in ohlcv_cols:
|
||||
for lag in range(1, lags + 1):
|
||||
feature_name = f'{col}_lag{lag}'
|
||||
feature_file = f'../data/{csv_prefix}_{feature_name}.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'C Loading cached feature: {feature_file}')
|
||||
features_dict[feature_name] = np.load(feature_file)
|
||||
else:
|
||||
print(f'Computing lag feature: {feature_name}')
|
||||
result = compute_lag(df, col, lag)
|
||||
features_dict[feature_name] = result
|
||||
np.save(feature_file, result.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
# Rolling statistics
|
||||
for col in ohlcv_cols:
|
||||
for window in window_sizes:
|
||||
if (col == 'Open' and window == 5):
|
||||
continue
|
||||
if (col == 'High' and window == 5):
|
||||
continue
|
||||
if (col == 'High' and window == 30):
|
||||
continue
|
||||
if (col == 'Low' and window == 15):
|
||||
continue
|
||||
for stat in ['mean', 'std', 'min', 'max']:
|
||||
feature_name = f'{col}_roll_{stat}_{window}'
|
||||
feature_file = f'../data/{csv_prefix}_{feature_name}.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'D Loading cached feature: {feature_file}')
|
||||
features_dict[feature_name] = np.load(feature_file)
|
||||
else:
|
||||
print(f'Computing rolling stat feature: {feature_name}')
|
||||
result = compute_rolling(df, col, stat, window)
|
||||
features_dict[feature_name] = result
|
||||
np.save(feature_file, result.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
# Log returns for different horizons
|
||||
for horizon in [5, 15, 30]:
|
||||
feature_name = f'log_return_{horizon}'
|
||||
feature_file = f'../data/{csv_prefix}_{feature_name}.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'E Loading cached feature: {feature_file}')
|
||||
features_dict[feature_name] = np.load(feature_file)
|
||||
else:
|
||||
print(f'Computing log return feature: {feature_name}')
|
||||
result = compute_log_return(df, horizon)
|
||||
features_dict[feature_name] = result
|
||||
np.save(feature_file, result.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
# Volatility
|
||||
for window in window_sizes:
|
||||
feature_name = f'volatility_{window}'
|
||||
feature_file = f'../data/{csv_prefix}_{feature_name}.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'F Loading cached feature: {feature_file}')
|
||||
features_dict[feature_name] = np.load(feature_file)
|
||||
else:
|
||||
print(f'Computing volatility feature: {feature_name}')
|
||||
result = compute_volatility(df, window)
|
||||
features_dict[feature_name] = result
|
||||
np.save(feature_file, result.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# --- Additional Technical Indicator Features ---
|
||||
# ADX
|
||||
adx_names = ['adx', 'adx_pos', 'adx_neg']
|
||||
adx_files = [f'../data/{csv_prefix}_{name}.npy' for name in adx_names]
|
||||
if all(os.path.exists(f) for f in adx_files):
|
||||
print('G Loading cached features: ADX')
|
||||
for name, f in zip(adx_names, adx_files):
|
||||
arr = np.load(f)
|
||||
features_dict[name] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating multi-column indicator: adx')
|
||||
result = calc_adx(df['High'], df['Low'], df['Close'])
|
||||
for subname, values in result:
|
||||
sub_feature_file = f'../data/{csv_prefix}_{subname}.npy'
|
||||
features_dict[subname] = values
|
||||
np.save(sub_feature_file, values.values)
|
||||
print(f'Saved feature: {sub_feature_file}')
|
||||
|
||||
# Force Index
|
||||
feature_file = f'../data/{csv_prefix}_force_index.npy'
|
||||
if os.path.exists(feature_file):
|
||||
print(f'K Loading cached feature: {feature_file}')
|
||||
arr = np.load(feature_file)
|
||||
features_dict['force_index'] = pd.Series(arr, index=df.index)
|
||||
else:
|
||||
print('Calculating feature: force_index')
|
||||
_, values = calc_force_index(df['Close'], df['Volume'])
|
||||
features_dict['force_index'] = values
|
||||
np.save(feature_file, values.values)
|
||||
print(f'Saved feature: {feature_file}')
|
||||
|
||||
# Supertrend indicators
|
||||
for period, multiplier in [(12, 3.0), (10, 1.0), (11, 2.0)]:
|
||||
st_name = f'supertrend_{period}_{multiplier}'
|
||||
st_trend_name = f'supertrend_trend_{period}_{multiplier}'
|
||||
st_file = f'../data/{csv_prefix}_{st_name}.npy'
|
||||
st_trend_file = f'../data/{csv_prefix}_{st_trend_name}.npy'
|
||||
if os.path.exists(st_file) and os.path.exists(st_trend_file):
|
||||
print(f'L Loading cached features: {st_file}, {st_trend_file}')
|
||||
features_dict[st_name] = pd.Series(np.load(st_file), index=df.index)
|
||||
features_dict[st_trend_name] = pd.Series(np.load(st_trend_file), index=df.index)
|
||||
else:
|
||||
print(f'Calculating Supertrend indicator: {st_name}')
|
||||
st = ta.supertrend(df['High'], df['Low'], df['Close'], length=period, multiplier=multiplier)
|
||||
features_dict[st_name] = st[f'SUPERT_{period}_{multiplier}']
|
||||
features_dict[st_trend_name] = st[f'SUPERTd_{period}_{multiplier}']
|
||||
np.save(st_file, features_dict[st_name].values)
|
||||
np.save(st_trend_file, features_dict[st_trend_name].values)
|
||||
print(f'Saved features: {st_file}, {st_trend_file}')
|
||||
|
||||
# Concatenate all new features at once
|
||||
print('Concatenating all new features to DataFrame...')
|
||||
features_df = pd.DataFrame(features_dict)
|
||||
print("Columns in features_df:", features_df.columns.tolist())
|
||||
print("All-NaN columns in features_df:", features_df.columns[features_df.isna().all()].tolist())
|
||||
df = pd.concat([df, features_df], axis=1)
|
||||
|
||||
# Print all columns after concatenation
|
||||
print("All columns in df after concat:", df.columns.tolist())
|
||||
|
||||
# Downcast all float columns to save memory
|
||||
print('Downcasting float columns to save memory...')
|
||||
for col in df.columns:
|
||||
try:
|
||||
df[col] = pd.to_numeric(df[col], downcast='float')
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Add time features (exclude 'dayofweek')
|
||||
print('Adding hour feature...')
|
||||
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
|
||||
df['hour'] = df['Timestamp'].dt.hour
|
||||
|
||||
# Handle NaNs after all feature engineering
|
||||
if IMPUTE_NANS:
|
||||
print('Imputing NaNs after feature engineering (using mean imputation)...')
|
||||
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
||||
for col in numeric_cols:
|
||||
df[col] = df[col].fillna(df[col].mean())
|
||||
# If you want to impute non-numeric columns differently, add logic here
|
||||
else:
|
||||
print('Dropping NaNs after feature engineering...')
|
||||
df = df.dropna().reset_index(drop=True)
|
||||
|
||||
# Exclude 'Timestamp', 'Close', 'log_return', and any future target columns from features
|
||||
print('Selecting feature columns...')
|
||||
exclude_cols = ['Timestamp', 'Close', 'log_return', 'log_return_5', 'log_return_15', 'log_return_30']
|
||||
feature_cols = [col for col in df.columns if col not in exclude_cols]
|
||||
print('Features used for training:', feature_cols)
|
||||
|
||||
# Prepare CSV for results
|
||||
results_csv = '../data/leave_one_out_results.csv'
|
||||
if not os.path.exists(results_csv):
|
||||
with open(results_csv, 'w', newline='') as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerow(['left_out_feature', 'used_features', 'rmse', 'mae', 'r2', 'mape', 'directional_accuracy'])
|
||||
|
||||
total_features = len(feature_cols)
|
||||
never_leave_out = {'Open', 'High', 'Low', 'Close', 'Volume'}
|
||||
for idx, left_out in enumerate(feature_cols):
|
||||
if left_out in never_leave_out:
|
||||
continue
|
||||
used = [f for f in feature_cols if f != left_out]
|
||||
print(f'\n=== Leave-one-out {idx+1}/{total_features}: left out {left_out} ===')
|
||||
try:
|
||||
# Prepare X and y for this combination
|
||||
X = df[used].values.astype(np.float32)
|
||||
y = df["log_return"].values.astype(np.float32)
|
||||
split_idx = int(len(X) * 0.8)
|
||||
X_train, X_test = X[:split_idx], X[split_idx:]
|
||||
y_train, y_test = y[:split_idx], y[split_idx:]
|
||||
test_timestamps = df['Timestamp'].values[split_idx:]
|
||||
|
||||
model = CustomXGBoostGPU(X_train, X_test, y_train, y_test)
|
||||
booster = model.train()
|
||||
model.save_model(f'../data/xgboost_model_wo_{left_out}.json')
|
||||
|
||||
test_preds = model.predict(X_test)
|
||||
rmse = np.sqrt(mean_squared_error(y_test, test_preds))
|
||||
|
||||
# Reconstruct price series from log returns
|
||||
if 'Close' in df.columns:
|
||||
close_prices = df['Close'].values
|
||||
else:
|
||||
close_prices = pd.read_csv(csv_path)['Close'].values
|
||||
start_price = close_prices[split_idx]
|
||||
actual_prices = [start_price]
|
||||
for r_ in y_test:
|
||||
actual_prices.append(actual_prices[-1] * np.exp(r_))
|
||||
actual_prices = np.array(actual_prices[1:])
|
||||
predicted_prices = [start_price]
|
||||
for r_ in test_preds:
|
||||
predicted_prices.append(predicted_prices[-1] * np.exp(r_))
|
||||
predicted_prices = np.array(predicted_prices[1:])
|
||||
|
||||
mae = mean_absolute_error(actual_prices, predicted_prices)
|
||||
r2 = r2_score(actual_prices, predicted_prices)
|
||||
direction_actual = np.sign(np.diff(actual_prices))
|
||||
direction_pred = np.sign(np.diff(predicted_prices))
|
||||
directional_accuracy = (direction_actual == direction_pred).mean()
|
||||
mape = np.mean(np.abs((actual_prices - predicted_prices) / actual_prices)) * 100
|
||||
|
||||
# Save results to CSV
|
||||
with open(results_csv, 'a', newline='') as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerow([left_out, "|".join(used), rmse, mae, r2, mape, directional_accuracy])
|
||||
print(f'Left out {left_out}: RMSE={rmse:.4f}, MAE={mae:.4f}, R2={r2:.4f}, MAPE={mape:.2f}%, DirAcc={directional_accuracy*100:.2f}%')
|
||||
|
||||
# Plotting for this run
|
||||
plot_prefix = f'loo_{left_out}'
|
||||
print('Plotting distribution of absolute prediction errors...')
|
||||
plot_prediction_error_distribution(predicted_prices, actual_prices, prefix=plot_prefix)
|
||||
|
||||
print('Plotting directional accuracy...')
|
||||
plot_direction_transition_heatmap(actual_prices, predicted_prices, prefix=plot_prefix)
|
||||
except Exception as e:
|
||||
print(f'Leave-one-out failed for {left_out}: {e}')
|
||||
print(f'All leave-one-out runs completed. Results saved to {results_csv}')
|
||||
sys.exit(0)
|
||||
318
plot_results.py
Normal file
318
plot_results.py
Normal file
@ -0,0 +1,318 @@
|
||||
import numpy as np
|
||||
import dash
|
||||
from dash import dcc, html
|
||||
import plotly.graph_objs as go
|
||||
import threading
|
||||
|
||||
|
||||
def display_actual_vs_predicted(y_test, test_preds, timestamps, n_plot=200):
|
||||
import plotly.offline as pyo
|
||||
n_plot = min(n_plot, len(y_test))
|
||||
plot_indices = timestamps[:n_plot]
|
||||
actual = y_test[:n_plot]
|
||||
predicted = test_preds[:n_plot]
|
||||
|
||||
trace_actual = go.Scatter(x=plot_indices, y=actual, mode='lines', name='Actual')
|
||||
trace_predicted = go.Scatter(x=plot_indices, y=predicted, mode='lines', name='Predicted')
|
||||
data = [trace_actual, trace_predicted]
|
||||
layout = go.Layout(
|
||||
title='Actual vs. Predicted BTC Close Prices (Test Set)',
|
||||
xaxis={'title': 'Timestamp'},
|
||||
yaxis={'title': 'BTC Close Price'},
|
||||
legend={'x': 0, 'y': 1},
|
||||
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
|
||||
hovermode='closest'
|
||||
)
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pyo.plot(fig, auto_open=False)
|
||||
|
||||
def plot_target_distribution(y_train, y_test):
|
||||
import plotly.offline as pyo
|
||||
trace_train = go.Histogram(
|
||||
x=y_train,
|
||||
nbinsx=100,
|
||||
opacity=0.5,
|
||||
name='Train',
|
||||
marker=dict(color='blue')
|
||||
)
|
||||
trace_test = go.Histogram(
|
||||
x=y_test,
|
||||
nbinsx=100,
|
||||
opacity=0.5,
|
||||
name='Test',
|
||||
marker=dict(color='orange')
|
||||
)
|
||||
data = [trace_train, trace_test]
|
||||
layout = go.Layout(
|
||||
title='Distribution of Target Variable (Close Price)',
|
||||
xaxis=dict(title='BTC Close Price'),
|
||||
yaxis=dict(title='Frequency'),
|
||||
barmode='overlay'
|
||||
)
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pyo.plot(fig, auto_open=False)
|
||||
|
||||
def plot_predicted_vs_actual_log_returns(y_test, test_preds, timestamps=None, n_plot=200):
|
||||
import plotly.offline as pyo
|
||||
import plotly.graph_objs as go
|
||||
n_plot = min(n_plot, len(y_test))
|
||||
actual = y_test[:n_plot]
|
||||
predicted = test_preds[:n_plot]
|
||||
if timestamps is not None:
|
||||
x_axis = timestamps[:n_plot]
|
||||
x_label = 'Timestamp'
|
||||
else:
|
||||
x_axis = list(range(n_plot))
|
||||
x_label = 'Index'
|
||||
|
||||
# Line plot: Actual vs Predicted over time
|
||||
trace_actual = go.Scatter(x=x_axis, y=actual, mode='lines', name='Actual')
|
||||
trace_predicted = go.Scatter(x=x_axis, y=predicted, mode='lines', name='Predicted')
|
||||
data_line = [trace_actual, trace_predicted]
|
||||
layout_line = go.Layout(
|
||||
title='Actual vs. Predicted Log Returns (Test Set)',
|
||||
xaxis={'title': x_label},
|
||||
yaxis={'title': 'Log Return'},
|
||||
legend={'x': 0, 'y': 1},
|
||||
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
|
||||
hovermode='closest'
|
||||
)
|
||||
fig_line = go.Figure(data=data_line, layout=layout_line)
|
||||
pyo.plot(fig_line, filename='charts/log_return_line_plot.html', auto_open=False)
|
||||
|
||||
# Scatter plot: Predicted vs Actual
|
||||
trace_scatter = go.Scatter(
|
||||
x=actual,
|
||||
y=predicted,
|
||||
mode='markers',
|
||||
name='Predicted vs Actual',
|
||||
opacity=0.5
|
||||
)
|
||||
# Diagonal reference line
|
||||
min_val = min(np.min(actual), np.min(predicted))
|
||||
max_val = max(np.max(actual), np.max(predicted))
|
||||
trace_diag = go.Scatter(
|
||||
x=[min_val, max_val],
|
||||
y=[min_val, max_val],
|
||||
mode='lines',
|
||||
name='Ideal',
|
||||
line=dict(dash='dash', color='red')
|
||||
)
|
||||
data_scatter = [trace_scatter, trace_diag]
|
||||
layout_scatter = go.Layout(
|
||||
title='Predicted vs Actual Log Returns (Scatter)',
|
||||
xaxis={'title': 'Actual Log Return'},
|
||||
yaxis={'title': 'Predicted Log Return'},
|
||||
showlegend=True,
|
||||
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
|
||||
hovermode='closest'
|
||||
)
|
||||
fig_scatter = go.Figure(data=data_scatter, layout=layout_scatter)
|
||||
pyo.plot(fig_scatter, filename='charts/log_return_scatter_plot.html', auto_open=False)
|
||||
|
||||
def plot_predicted_vs_actual_prices(actual_prices, predicted_prices, timestamps=None, n_plot=200):
|
||||
import plotly.offline as pyo
|
||||
import plotly.graph_objs as go
|
||||
n_plot = min(n_plot, len(actual_prices))
|
||||
actual = actual_prices[:n_plot]
|
||||
predicted = predicted_prices[:n_plot]
|
||||
if timestamps is not None:
|
||||
x_axis = timestamps[:n_plot]
|
||||
x_label = 'Timestamp'
|
||||
else:
|
||||
x_axis = list(range(n_plot))
|
||||
x_label = 'Index'
|
||||
|
||||
# Line plot: Actual vs Predicted over time
|
||||
trace_actual = go.Scatter(x=x_axis, y=actual, mode='lines', name='Actual Price')
|
||||
trace_predicted = go.Scatter(x=x_axis, y=predicted, mode='lines', name='Predicted Price')
|
||||
data_line = [trace_actual, trace_predicted]
|
||||
layout_line = go.Layout(
|
||||
title='Actual vs. Predicted BTC Prices (Test Set)',
|
||||
xaxis={'title': x_label},
|
||||
yaxis={'title': 'BTC Price'},
|
||||
legend={'x': 0, 'y': 1},
|
||||
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
|
||||
hovermode='closest'
|
||||
)
|
||||
fig_line = go.Figure(data=data_line, layout=layout_line)
|
||||
pyo.plot(fig_line, filename='charts/price_line_plot.html', auto_open=False)
|
||||
|
||||
# Scatter plot: Predicted vs Actual
|
||||
trace_scatter = go.Scatter(
|
||||
x=actual,
|
||||
y=predicted,
|
||||
mode='markers',
|
||||
name='Predicted vs Actual',
|
||||
opacity=0.5
|
||||
)
|
||||
# Diagonal reference line
|
||||
min_val = min(np.min(actual), np.min(predicted))
|
||||
max_val = max(np.max(actual), np.max(predicted))
|
||||
trace_diag = go.Scatter(
|
||||
x=[min_val, max_val],
|
||||
y=[min_val, max_val],
|
||||
mode='lines',
|
||||
name='Ideal',
|
||||
line=dict(dash='dash', color='red')
|
||||
)
|
||||
data_scatter = [trace_scatter, trace_diag]
|
||||
layout_scatter = go.Layout(
|
||||
title='Predicted vs Actual Prices (Scatter)',
|
||||
xaxis={'title': 'Actual Price'},
|
||||
yaxis={'title': 'Predicted Price'},
|
||||
showlegend=True,
|
||||
margin={'l': 40, 'b': 40, 't': 40, 'r': 10},
|
||||
hovermode='closest'
|
||||
)
|
||||
fig_scatter = go.Figure(data=data_scatter, layout=layout_scatter)
|
||||
pyo.plot(fig_scatter, filename='charts/price_scatter_plot.html', auto_open=False)
|
||||
|
||||
def plot_prediction_error_distribution(predicted_prices, actual_prices, nbins=100, prefix=""):
|
||||
"""
|
||||
Plots the distribution of signed prediction errors between predicted and actual prices,
|
||||
coloring negative errors (under-prediction) and positive errors (over-prediction) differently.
|
||||
"""
|
||||
import plotly.offline as pyo
|
||||
import plotly.graph_objs as go
|
||||
errors = np.array(predicted_prices) - np.array(actual_prices)
|
||||
|
||||
# Separate negative and positive errors
|
||||
neg_errors = errors[errors < 0]
|
||||
pos_errors = errors[errors >= 0]
|
||||
|
||||
# Calculate common bin edges
|
||||
min_error = np.min(errors)
|
||||
max_error = np.max(errors)
|
||||
bin_edges = np.linspace(min_error, max_error, nbins + 1)
|
||||
xbins = dict(start=min_error, end=max_error, size=(max_error - min_error) / nbins)
|
||||
|
||||
trace_neg = go.Histogram(
|
||||
x=neg_errors,
|
||||
opacity=0.75,
|
||||
marker=dict(color='blue'),
|
||||
name='Negative Error (Under-prediction)',
|
||||
xbins=xbins
|
||||
)
|
||||
trace_pos = go.Histogram(
|
||||
x=pos_errors,
|
||||
opacity=0.75,
|
||||
marker=dict(color='orange'),
|
||||
name='Positive Error (Over-prediction)',
|
||||
xbins=xbins
|
||||
)
|
||||
layout = go.Layout(
|
||||
title='Distribution of Prediction Errors (Signed)',
|
||||
xaxis=dict(title='Prediction Error (Predicted - Actual)'),
|
||||
yaxis=dict(title='Frequency'),
|
||||
barmode='overlay',
|
||||
bargap=0.05
|
||||
)
|
||||
fig = go.Figure(data=[trace_neg, trace_pos], layout=layout)
|
||||
filename = f'charts/{prefix}_prediction_error_distribution.html'
|
||||
pyo.plot(fig, filename=filename, auto_open=False)
|
||||
|
||||
def plot_directional_accuracy(actual_prices, predicted_prices, timestamps=None, n_plot=200):
|
||||
"""
|
||||
Plots the directional accuracy of predictions compared to actual price movements.
|
||||
Shows whether the predicted direction matches the actual direction of price movement.
|
||||
|
||||
Args:
|
||||
actual_prices: Array of actual price values
|
||||
predicted_prices: Array of predicted price values
|
||||
timestamps: Optional array of timestamps for x-axis
|
||||
n_plot: Number of points to plot (default 200, plots last n_plot points)
|
||||
"""
|
||||
import plotly.graph_objs as go
|
||||
import plotly.offline as pyo
|
||||
import numpy as np
|
||||
|
||||
# Calculate price changes
|
||||
actual_changes = np.diff(actual_prices)
|
||||
predicted_changes = np.diff(predicted_prices)
|
||||
|
||||
# Determine if directions match
|
||||
actual_direction = np.sign(actual_changes)
|
||||
predicted_direction = np.sign(predicted_changes)
|
||||
correct_direction = actual_direction == predicted_direction
|
||||
|
||||
# Get last n_plot points
|
||||
actual_changes = actual_changes[-n_plot:]
|
||||
predicted_changes = predicted_changes[-n_plot:]
|
||||
correct_direction = correct_direction[-n_plot:]
|
||||
|
||||
if timestamps is not None:
|
||||
x_values = timestamps[1:] # Skip first since we took diff
|
||||
x_values = x_values[-n_plot:] # Get last n_plot points
|
||||
else:
|
||||
x_values = list(range(len(actual_changes)))
|
||||
|
||||
# Create traces for correct and incorrect predictions
|
||||
correct_trace = go.Scatter(
|
||||
x=np.array(x_values)[correct_direction],
|
||||
y=actual_changes[correct_direction],
|
||||
mode='markers',
|
||||
name='Correct Direction',
|
||||
marker=dict(color='green', size=8)
|
||||
)
|
||||
|
||||
incorrect_trace = go.Scatter(
|
||||
x=np.array(x_values)[~correct_direction],
|
||||
y=actual_changes[~correct_direction],
|
||||
mode='markers',
|
||||
name='Incorrect Direction',
|
||||
marker=dict(color='red', size=8)
|
||||
)
|
||||
|
||||
# Calculate accuracy percentage
|
||||
accuracy = np.mean(correct_direction) * 100
|
||||
|
||||
layout = go.Layout(
|
||||
title=f'Directional Accuracy (Overall: {accuracy:.1f}%)',
|
||||
xaxis=dict(title='Time' if timestamps is not None else 'Sample'),
|
||||
yaxis=dict(title='Price Change'),
|
||||
showlegend=True
|
||||
)
|
||||
|
||||
fig = go.Figure(data=[correct_trace, incorrect_trace], layout=layout)
|
||||
pyo.plot(fig, filename='charts/directional_accuracy.html', auto_open=False)
|
||||
|
||||
def plot_direction_transition_heatmap(actual_prices, predicted_prices, prefix=""):
|
||||
"""
|
||||
Plots a heatmap showing the frequency of each (actual, predicted) direction pair.
|
||||
"""
|
||||
import numpy as np
|
||||
import plotly.graph_objs as go
|
||||
import plotly.offline as pyo
|
||||
|
||||
# Calculate directions
|
||||
actual_direction = np.sign(np.diff(actual_prices))
|
||||
predicted_direction = np.sign(np.diff(predicted_prices))
|
||||
|
||||
# Build 3x3 matrix: rows=actual, cols=predicted, values=counts
|
||||
# Map -1 -> 0, 0 -> 1, 1 -> 2 for indexing
|
||||
mapping = {-1: 0, 0: 1, 1: 2}
|
||||
matrix = np.zeros((3, 3), dtype=int)
|
||||
for a, p in zip(actual_direction, predicted_direction):
|
||||
matrix[mapping[a], mapping[p]] += 1
|
||||
|
||||
# Axis labels
|
||||
directions = ['Down (-1)', 'No Change (0)', 'Up (+1)']
|
||||
|
||||
# Plot heatmap
|
||||
heatmap = go.Heatmap(
|
||||
z=matrix,
|
||||
x=directions, # predicted
|
||||
y=directions, # actual
|
||||
colorscale='Viridis',
|
||||
colorbar=dict(title='Count')
|
||||
)
|
||||
layout = go.Layout(
|
||||
title='Direction Prediction Transition Matrix',
|
||||
xaxis=dict(title='Predicted Direction'),
|
||||
yaxis=dict(title='Actual Direction')
|
||||
)
|
||||
fig = go.Figure(data=[heatmap], layout=layout)
|
||||
filename = f'charts/{prefix}_direction_transition_heatmap.html'
|
||||
pyo.plot(fig, filename=filename, auto_open=False)
|
||||
|
||||
14
pyproject.toml
Normal file
14
pyproject.toml
Normal file
@ -0,0 +1,14 @@
|
||||
[project]
|
||||
name = "ohlcvpredictor"
|
||||
version = "0.1.0"
|
||||
description = "Add your description here"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"dash>=3.0.4",
|
||||
"numba>=0.61.2",
|
||||
"pandas>=2.2.3",
|
||||
"scikit-learn>=1.6.1",
|
||||
"ta>=0.11.0",
|
||||
"xgboost>=3.0.2",
|
||||
]
|
||||
37
requirements.txt
Normal file
37
requirements.txt
Normal file
@ -0,0 +1,37 @@
|
||||
blinker==1.9.0
|
||||
certifi==2025.4.26
|
||||
charset-normalizer==3.4.2
|
||||
click==8.2.1
|
||||
dash==3.0.4
|
||||
flask==3.0.3
|
||||
idna==3.10
|
||||
importlib-metadata==8.7.0
|
||||
itsdangerous==2.2.0
|
||||
jinja2==3.1.6
|
||||
joblib==1.5.1
|
||||
llvmlite==0.44.0
|
||||
markupsafe==3.0.2
|
||||
narwhals==1.41.0
|
||||
nest-asyncio==1.6.0
|
||||
numba==0.61.2
|
||||
numpy==2.2.6
|
||||
nvidia-nccl-cu12==2.26.5
|
||||
packaging==25.0
|
||||
pandas==2.2.3
|
||||
plotly==6.1.2
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2025.2
|
||||
requests==2.32.3
|
||||
retrying==1.3.4
|
||||
scikit-learn==1.6.1
|
||||
scipy==1.15.3
|
||||
setuptools==80.9.0
|
||||
six==1.17.0
|
||||
ta==0.11.0
|
||||
threadpoolctl==3.6.0
|
||||
typing-extensions==4.13.2
|
||||
tzdata==2025.2
|
||||
urllib3==2.4.0
|
||||
werkzeug==3.0.6
|
||||
xgboost==3.0.2
|
||||
zipp==3.22.0
|
||||
605
uv.lock
generated
Normal file
605
uv.lock
generated
Normal file
@ -0,0 +1,605 @@
|
||||
version = 1
|
||||
revision = 2
|
||||
requires-python = ">=3.12"
|
||||
|
||||
[[package]]
|
||||
name = "blinker"
|
||||
version = "1.9.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/21/28/9b3f50ce0e048515135495f198351908d99540d69bfdc8c1d15b73dc55ce/blinker-1.9.0.tar.gz", hash = "sha256:b4ce2265a7abece45e7cc896e98dbebe6cead56bcf805a3d23136d145f5445bf", size = 22460, upload-time = "2024-11-08T17:25:47.436Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/10/cb/f2ad4230dc2eb1a74edf38f1a38b9b52277f75bef262d8908e60d957e13c/blinker-1.9.0-py3-none-any.whl", hash = "sha256:ba0efaa9080b619ff2f3459d1d500c57bddea4a6b424b60a91141db6fd2f08bc", size = 8458, upload-time = "2024-11-08T17:25:46.184Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "certifi"
|
||||
version = "2025.4.26"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e8/9e/c05b3920a3b7d20d3d3310465f50348e5b3694f4f88c6daf736eef3024c4/certifi-2025.4.26.tar.gz", hash = "sha256:0a816057ea3cdefcef70270d2c515e4506bbc954f417fa5ade2021213bb8f0c6", size = 160705, upload-time = "2025-04-26T02:12:29.51Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4a/7e/3db2bd1b1f9e95f7cddca6d6e75e2f2bd9f51b1246e546d88addca0106bd/certifi-2025.4.26-py3-none-any.whl", hash = "sha256:30350364dfe371162649852c63336a15c70c6510c2ad5015b21c2345311805f3", size = 159618, upload-time = "2025-04-26T02:12:27.662Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "charset-normalizer"
|
||||
version = "3.4.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e4/33/89c2ced2b67d1c2a61c19c6751aa8902d46ce3dacb23600a283619f5a12d/charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63", size = 126367, upload-time = "2025-05-02T08:34:42.01Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/a4/37f4d6035c89cac7930395a35cc0f1b872e652eaafb76a6075943754f095/charset_normalizer-3.4.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0c29de6a1a95f24b9a1aa7aefd27d2487263f00dfd55a77719b530788f75cff7", size = 199936, upload-time = "2025-05-02T08:32:33.712Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/8a/1a5e33b73e0d9287274f899d967907cd0bf9c343e651755d9307e0dbf2b3/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cddf7bd982eaa998934a91f69d182aec997c6c468898efe6679af88283b498d3", size = 143790, upload-time = "2025-05-02T08:32:35.768Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/66/52/59521f1d8e6ab1482164fa21409c5ef44da3e9f653c13ba71becdd98dec3/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcbe676a55d7445b22c10967bceaaf0ee69407fbe0ece4d032b6eb8d4565982a", size = 153924, upload-time = "2025-05-02T08:32:37.284Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/2d/fb55fdf41964ec782febbf33cb64be480a6b8f16ded2dbe8db27a405c09f/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d41c4d287cfc69060fa91cae9683eacffad989f1a10811995fa309df656ec214", size = 146626, upload-time = "2025-05-02T08:32:38.803Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8c/73/6ede2ec59bce19b3edf4209d70004253ec5f4e319f9a2e3f2f15601ed5f7/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e594135de17ab3866138f496755f302b72157d115086d100c3f19370839dd3a", size = 148567, upload-time = "2025-05-02T08:32:40.251Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/14/957d03c6dc343c04904530b6bef4e5efae5ec7d7990a7cbb868e4595ee30/charset_normalizer-3.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf713fe9a71ef6fd5adf7a79670135081cd4431c2943864757f0fa3a65b1fafd", size = 150957, upload-time = "2025-05-02T08:32:41.705Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/c8/8174d0e5c10ccebdcb1b53cc959591c4c722a3ad92461a273e86b9f5a302/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a370b3e078e418187da8c3674eddb9d983ec09445c99a3a263c2011993522981", size = 145408, upload-time = "2025-05-02T08:32:43.709Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/aa/8904b84bc8084ac19dc52feb4f5952c6df03ffb460a887b42615ee1382e8/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a955b438e62efdf7e0b7b52a64dc5c3396e2634baa62471768a64bc2adb73d5c", size = 153399, upload-time = "2025-05-02T08:32:46.197Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/26/89ee1f0e264d201cb65cf054aca6038c03b1a0c6b4ae998070392a3ce605/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:7222ffd5e4de8e57e03ce2cef95a4c43c98fcb72ad86909abdfc2c17d227fc1b", size = 156815, upload-time = "2025-05-02T08:32:48.105Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/07/68e95b4b345bad3dbbd3a8681737b4338ff2c9df29856a6d6d23ac4c73cb/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:bee093bf902e1d8fc0ac143c88902c3dfc8941f7ea1d6a8dd2bcb786d33db03d", size = 154537, upload-time = "2025-05-02T08:32:49.719Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/1a/5eefc0ce04affb98af07bc05f3bac9094513c0e23b0562d64af46a06aae4/charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dedb8adb91d11846ee08bec4c8236c8549ac721c245678282dcb06b221aab59f", size = 149565, upload-time = "2025-05-02T08:32:51.404Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/37/a0/2410e5e6032a174c95e0806b1a6585eb21e12f445ebe239fac441995226a/charset_normalizer-3.4.2-cp312-cp312-win32.whl", hash = "sha256:db4c7bf0e07fc3b7d89ac2a5880a6a8062056801b83ff56d8464b70f65482b6c", size = 98357, upload-time = "2025-05-02T08:32:53.079Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6c/4f/c02d5c493967af3eda9c771ad4d2bbc8df6f99ddbeb37ceea6e8716a32bc/charset_normalizer-3.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:5a9979887252a82fefd3d3ed2a8e3b937a7a809f65dcb1e068b090e165bbe99e", size = 105776, upload-time = "2025-05-02T08:32:54.573Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ea/12/a93df3366ed32db1d907d7593a94f1fe6293903e3e92967bebd6950ed12c/charset_normalizer-3.4.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:926ca93accd5d36ccdabd803392ddc3e03e6d4cd1cf17deff3b989ab8e9dbcf0", size = 199622, upload-time = "2025-05-02T08:32:56.363Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/93/bf204e6f344c39d9937d3c13c8cd5bbfc266472e51fc8c07cb7f64fcd2de/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eba9904b0f38a143592d9fc0e19e2df0fa2e41c3c3745554761c5f6447eedabf", size = 143435, upload-time = "2025-05-02T08:32:58.551Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/22/2a/ea8a2095b0bafa6c5b5a55ffdc2f924455233ee7b91c69b7edfcc9e02284/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fddb7e2c84ac87ac3a947cb4e66d143ca5863ef48e4a5ecb83bd48619e4634e", size = 153653, upload-time = "2025-05-02T08:33:00.342Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b6/57/1b090ff183d13cef485dfbe272e2fe57622a76694061353c59da52c9a659/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98f862da73774290f251b9df8d11161b6cf25b599a66baf087c1ffe340e9bfd1", size = 146231, upload-time = "2025-05-02T08:33:02.081Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e2/28/ffc026b26f441fc67bd21ab7f03b313ab3fe46714a14b516f931abe1a2d8/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c9379d65defcab82d07b2a9dfbfc2e95bc8fe0ebb1b176a3190230a3ef0e07c", size = 148243, upload-time = "2025-05-02T08:33:04.063Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/0f/9abe9bd191629c33e69e47c6ef45ef99773320e9ad8e9cb08b8ab4a8d4cb/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e635b87f01ebc977342e2697d05b56632f5f879a4f15955dfe8cef2448b51691", size = 150442, upload-time = "2025-05-02T08:33:06.418Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/7c/a123bbcedca91d5916c056407f89a7f5e8fdfce12ba825d7d6b9954a1a3c/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1c95a1e2902a8b722868587c0e1184ad5c55631de5afc0eb96bc4b0d738092c0", size = 145147, upload-time = "2025-05-02T08:33:08.183Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ec/fe/1ac556fa4899d967b83e9893788e86b6af4d83e4726511eaaad035e36595/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ef8de666d6179b009dce7bcb2ad4c4a779f113f12caf8dc77f0162c29d20490b", size = 153057, upload-time = "2025-05-02T08:33:09.986Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/ff/acfc0b0a70b19e3e54febdd5301a98b72fa07635e56f24f60502e954c461/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:32fc0341d72e0f73f80acb0a2c94216bd704f4f0bce10aedea38f30502b271ff", size = 156454, upload-time = "2025-05-02T08:33:11.814Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/08/95b458ce9c740d0645feb0e96cea1f5ec946ea9c580a94adfe0b617f3573/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:289200a18fa698949d2b39c671c2cc7a24d44096784e76614899a7ccf2574b7b", size = 154174, upload-time = "2025-05-02T08:33:13.707Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/78/be/8392efc43487ac051eee6c36d5fbd63032d78f7728cb37aebcc98191f1ff/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4a476b06fbcf359ad25d34a057b7219281286ae2477cc5ff5e3f70a246971148", size = 149166, upload-time = "2025-05-02T08:33:15.458Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/96/392abd49b094d30b91d9fbda6a69519e95802250b777841cf3bda8fe136c/charset_normalizer-3.4.2-cp313-cp313-win32.whl", hash = "sha256:aaeeb6a479c7667fbe1099af9617c83aaca22182d6cf8c53966491a0f1b7ffb7", size = 98064, upload-time = "2025-05-02T08:33:17.06Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/b0/0200da600134e001d91851ddc797809e2fe0ea72de90e09bec5a2fbdaccb/charset_normalizer-3.4.2-cp313-cp313-win_amd64.whl", hash = "sha256:aa6af9e7d59f9c12b33ae4e9450619cf2488e2bbe9b44030905877f0b2324980", size = 105641, upload-time = "2025-05-02T08:33:18.753Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/20/94/c5790835a017658cbfabd07f3bfb549140c3ac458cfc196323996b10095a/charset_normalizer-3.4.2-py3-none-any.whl", hash = "sha256:7f56930ab0abd1c45cd15be65cc741c28b1c9a34876ce8c17a2fa107810c0af0", size = 52626, upload-time = "2025-05-02T08:34:40.053Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "click"
|
||||
version = "8.2.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/60/6c/8ca2efa64cf75a977a0d7fac081354553ebe483345c734fb6b6515d96bbc/click-8.2.1.tar.gz", hash = "sha256:27c491cc05d968d271d5a1db13e3b5a184636d9d930f148c50b038f0d0646202", size = 286342, upload-time = "2025-05-20T23:19:49.832Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl", hash = "sha256:61a3265b914e850b85317d0b3109c7f8cd35a670f963866005d6ef1d5175a12b", size = 102215, upload-time = "2025-05-20T23:19:47.796Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "colorama"
|
||||
version = "0.4.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "dash"
|
||||
version = "3.0.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "flask" },
|
||||
{ name = "importlib-metadata" },
|
||||
{ name = "nest-asyncio" },
|
||||
{ name = "plotly" },
|
||||
{ name = "requests" },
|
||||
{ name = "retrying" },
|
||||
{ name = "setuptools" },
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "werkzeug" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/88/6d/90f113317d41266e20190185cf1b5121efbab79ff79b2ecdf8316a91be40/dash-3.0.4.tar.gz", hash = "sha256:4f9e62e9d8c5cd1b42dc6d6dcf211fe9498195f73ef0edb62a26e2a1b952a368", size = 7592060, upload-time = "2025-04-24T19:06:49.287Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/20/2e7ab37ea2ef1f8b2592a2615c8b3fb041ad51f32101061d8bc6465b8b40/dash-3.0.4-py3-none-any.whl", hash = "sha256:177f8c3d1fa45555b18f2f670808eba7803c72a6b1cd6fd172fd538aca18eb1d", size = 7935680, upload-time = "2025-04-24T19:06:41.751Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "flask"
|
||||
version = "3.0.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "blinker" },
|
||||
{ name = "click" },
|
||||
{ name = "itsdangerous" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "werkzeug" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/41/e1/d104c83026f8d35dfd2c261df7d64738341067526406b40190bc063e829a/flask-3.0.3.tar.gz", hash = "sha256:ceb27b0af3823ea2737928a4d99d125a06175b8512c445cbd9a9ce200ef76842", size = 676315, upload-time = "2024-04-07T19:26:11.035Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/61/80/ffe1da13ad9300f87c93af113edd0638c75138c42a0994becfacac078c06/flask-3.0.3-py3-none-any.whl", hash = "sha256:34e815dfaa43340d1d15a5c3a02b8476004037eb4840b34910c6e21679d288f3", size = 101735, upload-time = "2024-04-07T19:26:08.569Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "idna"
|
||||
version = "3.10"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490, upload-time = "2024-09-15T18:07:39.745Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442, upload-time = "2024-09-15T18:07:37.964Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "importlib-metadata"
|
||||
version = "8.7.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "zipp" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641, upload-time = "2025-04-27T15:29:01.736Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/20/b0/36bd937216ec521246249be3bf9855081de4c5e06a0c9b4219dbeda50373/importlib_metadata-8.7.0-py3-none-any.whl", hash = "sha256:e5dd1551894c77868a30651cef00984d50e1002d06942a7101d34870c5f02afd", size = 27656, upload-time = "2025-04-27T15:29:00.214Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "itsdangerous"
|
||||
version = "2.2.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9c/cb/8ac0172223afbccb63986cc25049b154ecfb5e85932587206f42317be31d/itsdangerous-2.2.0.tar.gz", hash = "sha256:e0050c0b7da1eea53ffaf149c0cfbb5c6e2e2b69c4bef22c81fa6eb73e5f6173", size = 54410, upload-time = "2024-04-16T21:28:15.614Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/04/96/92447566d16df59b2a776c0fb82dbc4d9e07cd95062562af01e408583fc4/itsdangerous-2.2.0-py3-none-any.whl", hash = "sha256:c6242fc49e35958c8b15141343aa660db5fc54d4f13a1db01a3f5891b98700ef", size = 16234, upload-time = "2024-04-16T21:28:14.499Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "jinja2"
|
||||
version = "3.1.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "markupsafe" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "joblib"
|
||||
version = "1.5.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/dc/fe/0f5a938c54105553436dbff7a61dc4fed4b1b2c98852f8833beaf4d5968f/joblib-1.5.1.tar.gz", hash = "sha256:f4f86e351f39fe3d0d32a9f2c3d8af1ee4cec285aafcb27003dda5205576b444", size = 330475, upload-time = "2025-05-23T12:04:37.097Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/4f/1195bbac8e0c2acc5f740661631d8d750dc38d4a32b23ee5df3cde6f4e0d/joblib-1.5.1-py3-none-any.whl", hash = "sha256:4719a31f054c7d766948dcd83e9613686b27114f190f717cec7eaa2084f8a74a", size = 307746, upload-time = "2025-05-23T12:04:35.124Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "llvmlite"
|
||||
version = "0.44.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/89/6a/95a3d3610d5c75293d5dbbb2a76480d5d4eeba641557b69fe90af6c5b84e/llvmlite-0.44.0.tar.gz", hash = "sha256:07667d66a5d150abed9157ab6c0b9393c9356f229784a4385c02f99e94fc94d4", size = 171880, upload-time = "2025-01-20T11:14:41.342Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/15/86/e3c3195b92e6e492458f16d233e58a1a812aa2bfbef9bdd0fbafcec85c60/llvmlite-0.44.0-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:1d671a56acf725bf1b531d5ef76b86660a5ab8ef19bb6a46064a705c6ca80aad", size = 28132297, upload-time = "2025-01-20T11:13:32.57Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/53/373b6b8be67b9221d12b24125fd0ec56b1078b660eeae266ec388a6ac9a0/llvmlite-0.44.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5f79a728e0435493611c9f405168682bb75ffd1fbe6fc360733b850c80a026db", size = 26201105, upload-time = "2025-01-20T11:13:38.744Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/da/8341fd3056419441286c8e26bf436923021005ece0bff5f41906476ae514/llvmlite-0.44.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0143a5ef336da14deaa8ec26c5449ad5b6a2b564df82fcef4be040b9cacfea9", size = 42361901, upload-time = "2025-01-20T11:13:46.711Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/53/ad/d79349dc07b8a395a99153d7ce8b01d6fcdc9f8231355a5df55ded649b61/llvmlite-0.44.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d752f89e31b66db6f8da06df8b39f9b91e78c5feea1bf9e8c1fba1d1c24c065d", size = 41184247, upload-time = "2025-01-20T11:13:56.159Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e2/3b/a9a17366af80127bd09decbe2a54d8974b6d8b274b39bf47fbaedeec6307/llvmlite-0.44.0-cp312-cp312-win_amd64.whl", hash = "sha256:eae7e2d4ca8f88f89d315b48c6b741dcb925d6a1042da694aa16ab3dd4cbd3a1", size = 30332380, upload-time = "2025-01-20T11:14:02.442Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/24/4c0ca705a717514c2092b18476e7a12c74d34d875e05e4d742618ebbf449/llvmlite-0.44.0-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:319bddd44e5f71ae2689859b7203080716448a3cd1128fb144fe5c055219d516", size = 28132306, upload-time = "2025-01-20T11:14:09.035Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/cf/1dd5a60ba6aee7122ab9243fd614abcf22f36b0437cbbe1ccf1e3391461c/llvmlite-0.44.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9c58867118bad04a0bb22a2e0068c693719658105e40009ffe95c7000fcde88e", size = 26201090, upload-time = "2025-01-20T11:14:15.401Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/1b/656f5a357de7135a3777bd735cc7c9b8f23b4d37465505bd0eaf4be9befe/llvmlite-0.44.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46224058b13c96af1365290bdfebe9a6264ae62fb79b2b55693deed11657a8bf", size = 42361904, upload-time = "2025-01-20T11:14:22.949Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d8/e1/12c5f20cb9168fb3464a34310411d5ad86e4163c8ff2d14a2b57e5cc6bac/llvmlite-0.44.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:aa0097052c32bf721a4efc03bd109d335dfa57d9bffb3d4c24cc680711b8b4fc", size = 41184245, upload-time = "2025-01-20T11:14:31.731Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d0/81/e66fc86539293282fd9cb7c9417438e897f369e79ffb62e1ae5e5154d4dd/llvmlite-0.44.0-cp313-cp313-win_amd64.whl", hash = "sha256:2fb7c4f2fb86cbae6dca3db9ab203eeea0e22d73b99bc2341cdf9de93612e930", size = 30331193, upload-time = "2025-01-20T11:14:38.578Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "markupsafe"
|
||||
version = "3.0.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537, upload-time = "2024-10-18T15:21:54.129Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274, upload-time = "2024-10-18T15:21:13.777Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348, upload-time = "2024-10-18T15:21:14.822Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149, upload-time = "2024-10-18T15:21:15.642Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118, upload-time = "2024-10-18T15:21:17.133Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993, upload-time = "2024-10-18T15:21:18.064Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178, upload-time = "2024-10-18T15:21:18.859Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319, upload-time = "2024-10-18T15:21:19.671Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352, upload-time = "2024-10-18T15:21:20.971Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097, upload-time = "2024-10-18T15:21:22.646Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601, upload-time = "2024-10-18T15:21:23.499Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274, upload-time = "2024-10-18T15:21:24.577Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352, upload-time = "2024-10-18T15:21:25.382Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122, upload-time = "2024-10-18T15:21:26.199Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085, upload-time = "2024-10-18T15:21:27.029Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978, upload-time = "2024-10-18T15:21:27.846Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208, upload-time = "2024-10-18T15:21:28.744Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357, upload-time = "2024-10-18T15:21:29.545Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344, upload-time = "2024-10-18T15:21:30.366Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101, upload-time = "2024-10-18T15:21:31.207Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603, upload-time = "2024-10-18T15:21:32.032Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510, upload-time = "2024-10-18T15:21:33.625Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486, upload-time = "2024-10-18T15:21:34.611Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480, upload-time = "2024-10-18T15:21:35.398Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914, upload-time = "2024-10-18T15:21:36.231Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796, upload-time = "2024-10-18T15:21:37.073Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473, upload-time = "2024-10-18T15:21:37.932Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114, upload-time = "2024-10-18T15:21:39.799Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098, upload-time = "2024-10-18T15:21:40.813Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208, upload-time = "2024-10-18T15:21:41.814Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739, upload-time = "2024-10-18T15:21:42.784Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "narwhals"
|
||||
version = "1.41.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/32/fc/7b9a3689911662be59889b1b0b40e17d5dba6f98080994d86ca1f3154d41/narwhals-1.41.0.tar.gz", hash = "sha256:0ab2e5a1757a19b071e37ca74b53b0b5426789321d68939738337dfddea629b5", size = 488446, upload-time = "2025-05-26T12:46:07.43Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/e0/ade8619846645461c012498f02b93a659e50f07d9d9a6ffefdf5ea2c02a0/narwhals-1.41.0-py3-none-any.whl", hash = "sha256:d958336b40952e4c4b7aeef259a7074851da0800cf902186a58f2faeff97be02", size = 357968, upload-time = "2025-05-26T12:46:05.207Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "nest-asyncio"
|
||||
version = "1.6.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "numba"
|
||||
version = "0.61.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "llvmlite" },
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/1c/a0/e21f57604304aa03ebb8e098429222722ad99176a4f979d34af1d1ee80da/numba-0.61.2.tar.gz", hash = "sha256:8750ee147940a6637b80ecf7f95062185ad8726c8c28a2295b8ec1160a196f7d", size = 2820615, upload-time = "2025-04-09T02:58:07.659Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/a0/c6b7b9c615cfa3b98c4c63f4316e3f6b3bbe2387740277006551784218cd/numba-0.61.2-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:34fba9406078bac7ab052efbf0d13939426c753ad72946baaa5bf9ae0ebb8dd2", size = 2776626, upload-time = "2025-04-09T02:57:51.857Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/4a/fe4e3c2ecad72d88f5f8cd04e7f7cff49e718398a2fac02d2947480a00ca/numba-0.61.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4ddce10009bc097b080fc96876d14c051cc0c7679e99de3e0af59014dab7dfe8", size = 2779287, upload-time = "2025-04-09T02:57:53.658Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/2d/e518df036feab381c23a624dac47f8445ac55686ec7f11083655eb707da3/numba-0.61.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5b1bb509d01f23d70325d3a5a0e237cbc9544dd50e50588bc581ba860c213546", size = 3885928, upload-time = "2025-04-09T02:57:55.206Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/0f/23cced68ead67b75d77cfcca3df4991d1855c897ee0ff3fe25a56ed82108/numba-0.61.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:48a53a3de8f8793526cbe330f2a39fe9a6638efcbf11bd63f3d2f9757ae345cd", size = 3577115, upload-time = "2025-04-09T02:57:56.818Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/68/1d/ddb3e704c5a8fb90142bf9dc195c27db02a08a99f037395503bfbc1d14b3/numba-0.61.2-cp312-cp312-win_amd64.whl", hash = "sha256:97cf4f12c728cf77c9c1d7c23707e4d8fb4632b46275f8f3397de33e5877af18", size = 2831929, upload-time = "2025-04-09T02:57:58.45Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/f3/0fe4c1b1f2569e8a18ad90c159298d862f96c3964392a20d74fc628aee44/numba-0.61.2-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:3a10a8fc9afac40b1eac55717cece1b8b1ac0b946f5065c89e00bde646b5b154", size = 2771785, upload-time = "2025-04-09T02:57:59.96Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/71/91b277d712e46bd5059f8a5866862ed1116091a7cb03bd2704ba8ebe015f/numba-0.61.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7d3bcada3c9afba3bed413fba45845f2fb9cd0d2b27dd58a1be90257e293d140", size = 2773289, upload-time = "2025-04-09T02:58:01.435Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/e0/5ea04e7ad2c39288c0f0f9e8d47638ad70f28e275d092733b5817cf243c9/numba-0.61.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bdbca73ad81fa196bd53dc12e3aaf1564ae036e0c125f237c7644fe64a4928ab", size = 3893918, upload-time = "2025-04-09T02:58:02.933Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/58/064f4dcb7d7e9412f16ecf80ed753f92297e39f399c905389688cf950b81/numba-0.61.2-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:5f154aaea625fb32cfbe3b80c5456d514d416fcdf79733dd69c0df3a11348e9e", size = 3584056, upload-time = "2025-04-09T02:58:04.538Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/a4/6d3a0f2d3989e62a18749e1e9913d5fa4910bbb3e3311a035baea6caf26d/numba-0.61.2-cp313-cp313-win_amd64.whl", hash = "sha256:59321215e2e0ac5fa928a8020ab00b8e57cda8a97384963ac0dfa4d4e6aa54e7", size = 2831846, upload-time = "2025-04-09T02:58:06.125Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "2.2.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/76/21/7d2a95e4bba9dc13d043ee156a356c0a8f0c6309dff6b21b4d71a073b8a8/numpy-2.2.6.tar.gz", hash = "sha256:e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd", size = 20276440, upload-time = "2025-05-17T22:38:04.611Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/82/5d/c00588b6cf18e1da539b45d3598d3557084990dcc4331960c15ee776ee41/numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff", size = 20875348, upload-time = "2025-05-17T21:34:39.648Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/66/ee/560deadcdde6c2f90200450d5938f63a34b37e27ebff162810f716f6a230/numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c", size = 14119362, upload-time = "2025-05-17T21:35:01.241Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3c/65/4baa99f1c53b30adf0acd9a5519078871ddde8d2339dc5a7fde80d9d87da/numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3", size = 5084103, upload-time = "2025-05-17T21:35:10.622Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/89/e5a34c071a0570cc40c9a54eb472d113eea6d002e9ae12bb3a8407fb912e/numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282", size = 6625382, upload-time = "2025-05-17T21:35:21.414Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/35/8c80729f1ff76b3921d5c9487c7ac3de9b2a103b1cd05e905b3090513510/numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87", size = 14018462, upload-time = "2025-05-17T21:35:42.174Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8c/3d/1e1db36cfd41f895d266b103df00ca5b3cbe965184df824dec5c08c6b803/numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249", size = 16527618, upload-time = "2025-05-17T21:36:06.711Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/61/c6/03ed30992602c85aa3cd95b9070a514f8b3c33e31124694438d88809ae36/numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49", size = 15505511, upload-time = "2025-05-17T21:36:29.965Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/25/5761d832a81df431e260719ec45de696414266613c9ee268394dd5ad8236/numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de", size = 18313783, upload-time = "2025-05-17T21:36:56.883Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/0a/72d5a3527c5ebffcd47bde9162c39fae1f90138c961e5296491ce778e682/numpy-2.2.6-cp312-cp312-win32.whl", hash = "sha256:4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4", size = 6246506, upload-time = "2025-05-17T21:37:07.368Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/36/fa/8c9210162ca1b88529ab76b41ba02d433fd54fecaf6feb70ef9f124683f1/numpy-2.2.6-cp312-cp312-win_amd64.whl", hash = "sha256:c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2", size = 12614190, upload-time = "2025-05-17T21:37:26.213Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/5c/6657823f4f594f72b5471f1db1ab12e26e890bb2e41897522d134d2a3e81/numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84", size = 20867828, upload-time = "2025-05-17T21:37:56.699Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/9e/14520dc3dadf3c803473bd07e9b2bd1b69bc583cb2497b47000fed2fa92f/numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b", size = 14143006, upload-time = "2025-05-17T21:38:18.291Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/06/7e96c57d90bebdce9918412087fc22ca9851cceaf5567a45c1f404480e9e/numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d", size = 5076765, upload-time = "2025-05-17T21:38:27.319Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/73/ed/63d920c23b4289fdac96ddbdd6132e9427790977d5457cd132f18e76eae0/numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566", size = 6617736, upload-time = "2025-05-17T21:38:38.141Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/85/c5/e19c8f99d83fd377ec8c7e0cf627a8049746da54afc24ef0a0cb73d5dfb5/numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f", size = 14010719, upload-time = "2025-05-17T21:38:58.433Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/49/4df9123aafa7b539317bf6d342cb6d227e49f7a35b99c287a6109b13dd93/numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f", size = 16526072, upload-time = "2025-05-17T21:39:22.638Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b2/6c/04b5f47f4f32f7c2b0e7260442a8cbcf8168b0e1a41ff1495da42f42a14f/numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868", size = 15503213, upload-time = "2025-05-17T21:39:45.865Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/0a/5cd92e352c1307640d5b6fec1b2ffb06cd0dabe7d7b8227f97933d378422/numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d", size = 18316632, upload-time = "2025-05-17T21:40:13.331Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/3b/5cba2b1d88760ef86596ad0f3d484b1cbff7c115ae2429678465057c5155/numpy-2.2.6-cp313-cp313-win32.whl", hash = "sha256:5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd", size = 6244532, upload-time = "2025-05-17T21:43:46.099Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/3b/d58c12eafcb298d4e6d0d40216866ab15f59e55d148a5658bb3132311fcf/numpy-2.2.6-cp313-cp313-win_amd64.whl", hash = "sha256:b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c", size = 12610885, upload-time = "2025-05-17T21:44:05.145Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/9e/4bf918b818e516322db999ac25d00c75788ddfd2d2ade4fa66f1f38097e1/numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6", size = 20963467, upload-time = "2025-05-17T21:40:44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/61/66/d2de6b291507517ff2e438e13ff7b1e2cdbdb7cb40b3ed475377aece69f9/numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda", size = 14225144, upload-time = "2025-05-17T21:41:05.695Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e4/25/480387655407ead912e28ba3a820bc69af9adf13bcbe40b299d454ec011f/numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40", size = 5200217, upload-time = "2025-05-17T21:41:15.903Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/4a/6e313b5108f53dcbf3aca0c0f3e9c92f4c10ce57a0a721851f9785872895/numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8", size = 6712014, upload-time = "2025-05-17T21:41:27.321Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/30/172c2d5c4be71fdf476e9de553443cf8e25feddbe185e0bd88b096915bcc/numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f", size = 14077935, upload-time = "2025-05-17T21:41:49.738Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/fb/9e743f8d4e4d3c710902cf87af3512082ae3d43b945d5d16563f26ec251d/numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa", size = 16600122, upload-time = "2025-05-17T21:42:14.046Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/75/ee20da0e58d3a66f204f38916757e01e33a9737d0b22373b3eb5a27358f9/numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571", size = 15586143, upload-time = "2025-05-17T21:42:37.464Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/95/bef5b37f29fc5e739947e9ce5179ad402875633308504a52d188302319c8/numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1", size = 18385260, upload-time = "2025-05-17T21:43:05.189Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/04/f2f83279d287407cf36a7a8053a5abe7be3622a4363337338f2585e4afda/numpy-2.2.6-cp313-cp313t-win32.whl", hash = "sha256:038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff", size = 6377225, upload-time = "2025-05-17T21:43:16.254Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "nvidia-nccl-cu12"
|
||||
version = "2.26.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/55/66/ed9d28946ead0fe1322df2f4fc6ea042340c0fe73b79a1419dc1fdbdd211/nvidia_nccl_cu12-2.26.5-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:adb1bf4adcc5a47f597738a0700da6aef61f8ea4251b375540ae138c7d239588", size = 318058262, upload-time = "2025-05-02T23:32:43.197Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/fb/ec4ac065d9b0d56f72eaf1d9b0df601e33da28197b32ca351dc05b342611/nvidia_nccl_cu12-2.26.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ea5ed3e053c735f16809bee7111deac62ac35b10128a8c102960a0462ce16cbe", size = 318069637, upload-time = "2025-05-02T23:33:18.306Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ohlcvpredictor"
|
||||
version = "0.1.0"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "dash" },
|
||||
{ name = "numba" },
|
||||
{ name = "pandas" },
|
||||
{ name = "scikit-learn" },
|
||||
{ name = "ta" },
|
||||
{ name = "xgboost" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "dash", specifier = ">=3.0.4" },
|
||||
{ name = "numba", specifier = ">=0.61.2" },
|
||||
{ name = "pandas", specifier = ">=2.2.3" },
|
||||
{ name = "scikit-learn", specifier = ">=1.6.1" },
|
||||
{ name = "ta", specifier = ">=0.11.0" },
|
||||
{ name = "xgboost", specifier = ">=3.0.2" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "25.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pandas"
|
||||
version = "2.2.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
{ name = "python-dateutil" },
|
||||
{ name = "pytz" },
|
||||
{ name = "tzdata" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213, upload-time = "2024-09-20T13:10:04.827Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893, upload-time = "2024-09-20T13:09:09.655Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475, upload-time = "2024-09-20T13:09:14.718Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645, upload-time = "2024-09-20T19:02:03.88Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/f8/d8fddee9ed0d0c0f4a2132c1dfcf0e3e53265055da8df952a53e7eaf178c/pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319", size = 12739445, upload-time = "2024-09-20T13:09:17.621Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/20/e8/45a05d9c39d2cea61ab175dbe6a2de1d05b679e8de2011da4ee190d7e748/pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8", size = 16359235, upload-time = "2024-09-20T19:02:07.094Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/99/617d07a6a5e429ff90c90da64d428516605a1ec7d7bea494235e1c3882de/pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a", size = 14056756, upload-time = "2024-09-20T13:09:20.474Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/d4/1244ab8edf173a10fd601f7e13b9566c1b525c4f365d6bee918e68381889/pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13", size = 11504248, upload-time = "2024-09-20T13:09:23.137Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/64/22/3b8f4e0ed70644e85cfdcd57454686b9057c6c38d2f74fe4b8bc2527214a/pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015", size = 12477643, upload-time = "2024-09-20T13:09:25.522Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e4/93/b3f5d1838500e22c8d793625da672f3eec046b1a99257666c94446969282/pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28", size = 11281573, upload-time = "2024-09-20T13:09:28.012Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f5/94/6c79b07f0e5aab1dcfa35a75f4817f5c4f677931d4234afcd75f0e6a66ca/pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0", size = 15196085, upload-time = "2024-09-20T19:02:10.451Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24", size = 12711809, upload-time = "2024-09-20T13:09:30.814Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/7c/c6dbdb0cb2a4344cacfb8de1c5808ca885b2e4dcfde8008266608f9372af/pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659", size = 16356316, upload-time = "2024-09-20T19:02:13.825Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/b7/8b757e7d92023b832869fa8881a992696a0bfe2e26f72c9ae9f255988d42/pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb", size = 14022055, upload-time = "2024-09-20T13:09:33.462Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3b/bc/4b18e2b8c002572c5a441a64826252ce5da2aa738855747247a971988043/pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d", size = 11481175, upload-time = "2024-09-20T13:09:35.871Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/a3/a5d88146815e972d40d19247b2c162e88213ef51c7c25993942c39dbf41d/pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468", size = 12615650, upload-time = "2024-09-20T13:09:38.685Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9c/8c/f0fd18f6140ddafc0c24122c8a964e48294acc579d47def376fef12bcb4a/pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18", size = 11290177, upload-time = "2024-09-20T13:09:41.141Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/f9/e995754eab9c0f14c6777401f7eece0943840b7a9fc932221c19d1abee9f/pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2", size = 14651526, upload-time = "2024-09-20T19:02:16.905Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/25/b0/98d6ae2e1abac4f35230aa756005e8654649d305df9a28b16b9ae4353bff/pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4", size = 11871013, upload-time = "2024-09-20T13:09:44.39Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/57/0f72a10f9db6a4628744c8e8f0df4e6e21de01212c7c981d31e50ffc8328/pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d", size = 15711620, upload-time = "2024-09-20T19:02:20.639Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ab/5f/b38085618b950b79d2d9164a711c52b10aefc0ae6833b96f626b7021b2ed/pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a", size = 13098436, upload-time = "2024-09-20T13:09:48.112Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "plotly"
|
||||
version = "6.1.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "narwhals" },
|
||||
{ name = "packaging" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ae/77/431447616eda6a432dc3ce541b3f808ecb8803ea3d4ab2573b67f8eb4208/plotly-6.1.2.tar.gz", hash = "sha256:4fdaa228926ba3e3a213f4d1713287e69dcad1a7e66cf2025bd7d7026d5014b4", size = 7662971, upload-time = "2025-05-27T20:21:52.56Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/bf/6f/759d5da0517547a5d38aabf05d04d9f8adf83391d2c7fc33f904417d3ba2/plotly-6.1.2-py3-none-any.whl", hash = "sha256:f1548a8ed9158d59e03d7fed548c7db5549f3130d9ae19293c8638c202648f6d", size = 16265530, upload-time = "2025-05-27T20:21:46.6Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.9.0.post0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "six" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pytz"
|
||||
version = "2025.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884, upload-time = "2025-03-25T02:25:00.538Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225, upload-time = "2025-03-25T02:24:58.468Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "requests"
|
||||
version = "2.32.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
{ name = "charset-normalizer" },
|
||||
{ name = "idna" },
|
||||
{ name = "urllib3" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218, upload-time = "2024-05-29T15:37:49.536Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928, upload-time = "2024-05-29T15:37:47.027Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "retrying"
|
||||
version = "1.3.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "six" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ce/70/15ce8551d65b324e18c5aa6ef6998880f21ead51ebe5ed743c0950d7d9dd/retrying-1.3.4.tar.gz", hash = "sha256:345da8c5765bd982b1d1915deb9102fd3d1f7ad16bd84a9700b85f64d24e8f3e", size = 10929, upload-time = "2022-11-25T09:57:49.43Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/8f/04/9e36f28be4c0532c0e9207ff9dc01fb13a2b0eb036476a213b0000837d0e/retrying-1.3.4-py3-none-any.whl", hash = "sha256:8cc4d43cb8e1125e0ff3344e9de678fefd85db3b750b81b2240dc0183af37b35", size = 11602, upload-time = "2022-11-25T09:57:47.494Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "scikit-learn"
|
||||
version = "1.6.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "joblib" },
|
||||
{ name = "numpy" },
|
||||
{ name = "scipy" },
|
||||
{ name = "threadpoolctl" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9e/a5/4ae3b3a0755f7b35a280ac90b28817d1f380318973cff14075ab41ef50d9/scikit_learn-1.6.1.tar.gz", hash = "sha256:b4fc2525eca2c69a59260f583c56a7557c6ccdf8deafdba6e060f94c1c59738e", size = 7068312, upload-time = "2025-01-10T08:07:55.348Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/18/c797c9b8c10380d05616db3bfb48e2a3358c767affd0857d56c2eb501caa/scikit_learn-1.6.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:926f207c804104677af4857b2c609940b743d04c4c35ce0ddc8ff4f053cddc1b", size = 12104516, upload-time = "2025-01-10T08:06:40.009Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/b7/2e35f8e289ab70108f8cbb2e7a2208f0575dc704749721286519dcf35f6f/scikit_learn-1.6.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c2cae262064e6a9b77eee1c8e768fc46aa0b8338c6a8297b9b6759720ec0ff2", size = 11167837, upload-time = "2025-01-10T08:06:43.305Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/f6/ff7beaeb644bcad72bcfd5a03ff36d32ee4e53a8b29a639f11bcb65d06cd/scikit_learn-1.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1061b7c028a8663fb9a1a1baf9317b64a257fcb036dae5c8752b2abef31d136f", size = 12253728, upload-time = "2025-01-10T08:06:47.618Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/7a/8bce8968883e9465de20be15542f4c7e221952441727c4dad24d534c6d99/scikit_learn-1.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e69fab4ebfc9c9b580a7a80111b43d214ab06250f8a7ef590a4edf72464dd86", size = 13147700, upload-time = "2025-01-10T08:06:50.888Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/27/585859e72e117fe861c2079bcba35591a84f801e21bc1ab85bce6ce60305/scikit_learn-1.6.1-cp312-cp312-win_amd64.whl", hash = "sha256:70b1d7e85b1c96383f872a519b3375f92f14731e279a7b4c6cfd650cf5dffc52", size = 11110613, upload-time = "2025-01-10T08:06:54.115Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2e/59/8eb1872ca87009bdcdb7f3cdc679ad557b992c12f4b61f9250659e592c63/scikit_learn-1.6.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2ffa1e9e25b3d93990e74a4be2c2fc61ee5af85811562f1288d5d055880c4322", size = 12010001, upload-time = "2025-01-10T08:06:58.613Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9d/05/f2fc4effc5b32e525408524c982c468c29d22f828834f0625c5ef3d601be/scikit_learn-1.6.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:dc5cf3d68c5a20ad6d571584c0750ec641cc46aeef1c1507be51300e6003a7e1", size = 11096360, upload-time = "2025-01-10T08:07:01.556Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/e4/4195d52cf4f113573fb8ebc44ed5a81bd511a92c0228889125fac2f4c3d1/scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c06beb2e839ecc641366000ca84f3cf6fa9faa1777e29cf0c04be6e4d096a348", size = 12209004, upload-time = "2025-01-10T08:07:06.931Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/be/47e16cdd1e7fcf97d95b3cb08bde1abb13e627861af427a3651fcb80b517/scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8ca8cb270fee8f1f76fa9bfd5c3507d60c6438bbee5687f81042e2bb98e5a97", size = 13171776, upload-time = "2025-01-10T08:07:11.715Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/b0/ca92b90859070a1487827dbc672f998da95ce83edce1270fc23f96f1f61a/scikit_learn-1.6.1-cp313-cp313-win_amd64.whl", hash = "sha256:7a1c43c8ec9fde528d664d947dc4c0789be4077a3647f232869f41d9bf50e0fb", size = 11071865, upload-time = "2025-01-10T08:07:16.088Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/ae/993b0fb24a356e71e9a894e42b8a9eec528d4c70217353a1cd7a48bc25d4/scikit_learn-1.6.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:a17c1dea1d56dcda2fac315712f3651a1fea86565b64b48fa1bc090249cbf236", size = 11955804, upload-time = "2025-01-10T08:07:20.385Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/54/32fa2ee591af44507eac86406fa6bba968d1eb22831494470d0a2e4a1eb1/scikit_learn-1.6.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:6a7aa5f9908f0f28f4edaa6963c0a6183f1911e63a69aa03782f0d924c830a35", size = 11100530, upload-time = "2025-01-10T08:07:23.675Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/58/55856da1adec655bdce77b502e94a267bf40a8c0b89f8622837f89503b5a/scikit_learn-1.6.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0650e730afb87402baa88afbf31c07b84c98272622aaba002559b614600ca691", size = 12433852, upload-time = "2025-01-10T08:07:26.817Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/4f/c83853af13901a574f8f13b645467285a48940f185b690936bb700a50863/scikit_learn-1.6.1-cp313-cp313t-win_amd64.whl", hash = "sha256:3f59fe08dc03ea158605170eb52b22a105f238a5d512c4470ddeca71feae8e5f", size = 11337256, upload-time = "2025-01-10T08:07:31.084Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "scipy"
|
||||
version = "1.15.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0f/37/6964b830433e654ec7485e45a00fc9a27cf868d622838f6b6d9c5ec0d532/scipy-1.15.3.tar.gz", hash = "sha256:eae3cf522bc7df64b42cad3925c876e1b0b6c35c1337c93e12c0f366f55b0eaf", size = 59419214, upload-time = "2025-05-08T16:13:05.955Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/37/4b/683aa044c4162e10ed7a7ea30527f2cbd92e6999c10a8ed8edb253836e9c/scipy-1.15.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6ac6310fdbfb7aa6612408bd2f07295bcbd3fda00d2d702178434751fe48e019", size = 38766735, upload-time = "2025-05-08T16:06:06.471Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/7e/f30be3d03de07f25dc0ec926d1681fed5c732d759ac8f51079708c79e680/scipy-1.15.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:185cd3d6d05ca4b44a8f1595af87f9c372bb6acf9c808e99aa3e9aa03bd98cf6", size = 30173284, upload-time = "2025-05-08T16:06:11.686Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/9c/0ddb0d0abdabe0d181c1793db51f02cd59e4901da6f9f7848e1f96759f0d/scipy-1.15.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:05dc6abcd105e1a29f95eada46d4a3f251743cfd7d3ae8ddb4088047f24ea477", size = 22446958, upload-time = "2025-05-08T16:06:15.97Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/43/0bce905a965f36c58ff80d8bea33f1f9351b05fad4beaad4eae34699b7a1/scipy-1.15.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:06efcba926324df1696931a57a176c80848ccd67ce6ad020c810736bfd58eb1c", size = 25242454, upload-time = "2025-05-08T16:06:20.394Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/56/30/a6f08f84ee5b7b28b4c597aca4cbe545535c39fe911845a96414700b64ba/scipy-1.15.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05045d8b9bfd807ee1b9f38761993297b10b245f012b11b13b91ba8945f7e45", size = 35210199, upload-time = "2025-05-08T16:06:26.159Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/1f/03f52c282437a168ee2c7c14a1a0d0781a9a4a8962d84ac05c06b4c5b555/scipy-1.15.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:271e3713e645149ea5ea3e97b57fdab61ce61333f97cfae392c28ba786f9bb49", size = 37309455, upload-time = "2025-05-08T16:06:32.778Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/b1/fbb53137f42c4bf630b1ffdfc2151a62d1d1b903b249f030d2b1c0280af8/scipy-1.15.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6cfd56fc1a8e53f6e89ba3a7a7251f7396412d655bca2aa5611c8ec9a6784a1e", size = 36885140, upload-time = "2025-05-08T16:06:39.249Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2e/2e/025e39e339f5090df1ff266d021892694dbb7e63568edcfe43f892fa381d/scipy-1.15.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ff17c0bb1cb32952c09217d8d1eed9b53d1463e5f1dd6052c7857f83127d539", size = 39710549, upload-time = "2025-05-08T16:06:45.729Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e6/eb/3bf6ea8ab7f1503dca3a10df2e4b9c3f6b3316df07f6c0ded94b281c7101/scipy-1.15.3-cp312-cp312-win_amd64.whl", hash = "sha256:52092bc0472cfd17df49ff17e70624345efece4e1a12b23783a1ac59a1b728ed", size = 40966184, upload-time = "2025-05-08T16:06:52.623Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/73/18/ec27848c9baae6e0d6573eda6e01a602e5649ee72c27c3a8aad673ebecfd/scipy-1.15.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2c620736bcc334782e24d173c0fdbb7590a0a436d2fdf39310a8902505008759", size = 38728256, upload-time = "2025-05-08T16:06:58.696Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/74/cd/1aef2184948728b4b6e21267d53b3339762c285a46a274ebb7863c9e4742/scipy-1.15.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:7e11270a000969409d37ed399585ee530b9ef6aa99d50c019de4cb01e8e54e62", size = 30109540, upload-time = "2025-05-08T16:07:04.209Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/d8/59e452c0a255ec352bd0a833537a3bc1bfb679944c4938ab375b0a6b3a3e/scipy-1.15.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:8c9ed3ba2c8a2ce098163a9bdb26f891746d02136995df25227a20e71c396ebb", size = 22383115, upload-time = "2025-05-08T16:07:08.998Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/08/f5/456f56bbbfccf696263b47095291040655e3cbaf05d063bdc7c7517f32ac/scipy-1.15.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0bdd905264c0c9cfa74a4772cdb2070171790381a5c4d312c973382fc6eaf730", size = 25163884, upload-time = "2025-05-08T16:07:14.091Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/66/a9618b6a435a0f0c0b8a6d0a2efb32d4ec5a85f023c2b79d39512040355b/scipy-1.15.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79167bba085c31f38603e11a267d862957cbb3ce018d8b38f79ac043bc92d825", size = 35174018, upload-time = "2025-05-08T16:07:19.427Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b5/09/c5b6734a50ad4882432b6bb7c02baf757f5b2f256041da5df242e2d7e6b6/scipy-1.15.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9deabd6d547aee2c9a81dee6cc96c6d7e9a9b1953f74850c179f91fdc729cb7", size = 37269716, upload-time = "2025-05-08T16:07:25.712Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/0a/eac00ff741f23bcabd352731ed9b8995a0a60ef57f5fd788d611d43d69a1/scipy-1.15.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:dde4fc32993071ac0c7dd2d82569e544f0bdaff66269cb475e0f369adad13f11", size = 36872342, upload-time = "2025-05-08T16:07:31.468Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/54/4379be86dd74b6ad81551689107360d9a3e18f24d20767a2d5b9253a3f0a/scipy-1.15.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f77f853d584e72e874d87357ad70f44b437331507d1c311457bed8ed2b956126", size = 39670869, upload-time = "2025-05-08T16:07:38.002Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/87/2e/892ad2862ba54f084ffe8cc4a22667eaf9c2bcec6d2bff1d15713c6c0703/scipy-1.15.3-cp313-cp313-win_amd64.whl", hash = "sha256:b90ab29d0c37ec9bf55424c064312930ca5f4bde15ee8619ee44e69319aab163", size = 40988851, upload-time = "2025-05-08T16:08:33.671Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/e9/7a879c137f7e55b30d75d90ce3eb468197646bc7b443ac036ae3fe109055/scipy-1.15.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3ac07623267feb3ae308487c260ac684b32ea35fd81e12845039952f558047b8", size = 38863011, upload-time = "2025-05-08T16:07:44.039Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/51/d1/226a806bbd69f62ce5ef5f3ffadc35286e9fbc802f606a07eb83bf2359de/scipy-1.15.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:6487aa99c2a3d509a5227d9a5e889ff05830a06b2ce08ec30df6d79db5fcd5c5", size = 30266407, upload-time = "2025-05-08T16:07:49.891Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e5/9b/f32d1d6093ab9eeabbd839b0f7619c62e46cc4b7b6dbf05b6e615bbd4400/scipy-1.15.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:50f9e62461c95d933d5c5ef4a1f2ebf9a2b4e83b0db374cb3f1de104d935922e", size = 22540030, upload-time = "2025-05-08T16:07:54.121Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e7/29/c278f699b095c1a884f29fda126340fcc201461ee8bfea5c8bdb1c7c958b/scipy-1.15.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14ed70039d182f411ffc74789a16df3835e05dc469b898233a245cdfd7f162cb", size = 25218709, upload-time = "2025-05-08T16:07:58.506Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/24/18/9e5374b617aba742a990581373cd6b68a2945d65cc588482749ef2e64467/scipy-1.15.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a769105537aa07a69468a0eefcd121be52006db61cdd8cac8a0e68980bbb723", size = 34809045, upload-time = "2025-05-08T16:08:03.929Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/fe/9c4361e7ba2927074360856db6135ef4904d505e9b3afbbcb073c4008328/scipy-1.15.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9db984639887e3dffb3928d118145ffe40eff2fa40cb241a306ec57c219ebbbb", size = 36703062, upload-time = "2025-05-08T16:08:09.558Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/8e/038ccfe29d272b30086b25a4960f757f97122cb2ec42e62b460d02fe98e9/scipy-1.15.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:40e54d5c7e7ebf1aa596c374c49fa3135f04648a0caabcb66c52884b943f02b4", size = 36393132, upload-time = "2025-05-08T16:08:15.34Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/7e/5c12285452970be5bdbe8352c619250b97ebf7917d7a9a9e96b8a8140f17/scipy-1.15.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5e721fed53187e71d0ccf382b6bf977644c533e506c4d33c3fb24de89f5c3ed5", size = 38979503, upload-time = "2025-05-08T16:08:21.513Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/06/0a5e5349474e1cbc5757975b21bd4fad0e72ebf138c5592f191646154e06/scipy-1.15.3-cp313-cp313t-win_amd64.whl", hash = "sha256:76ad1fb5f8752eabf0fa02e4cc0336b4e8f021e2d5f061ed37d6d264db35e3ca", size = 40308097, upload-time = "2025-05-08T16:08:27.627Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "80.9.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
version = "1.17.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ta"
|
||||
version = "0.11.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
{ name = "pandas" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e0/9a/37d92a6b470dc9088612c2399a68f1a9ac22872d4e1eff416818e22ab11b/ta-0.11.0.tar.gz", hash = "sha256:de86af43418420bd6b088a2ea9b95483071bf453c522a8441bc2f12bcf8493fd", size = 25308, upload-time = "2023-11-02T13:53:35.434Z" }
|
||||
|
||||
[[package]]
|
||||
name = "threadpoolctl"
|
||||
version = "3.6.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b7/4d/08c89e34946fce2aec4fbb45c9016efd5f4d7f24af8e5d93296e935631d8/threadpoolctl-3.6.0.tar.gz", hash = "sha256:8ab8b4aa3491d812b623328249fab5302a68d2d71745c8a4c719a2fcaba9f44e", size = 21274, upload-time = "2025-03-13T13:49:23.031Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl", hash = "sha256:43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb", size = 18638, upload-time = "2025-03-13T13:49:21.846Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "typing-extensions"
|
||||
version = "4.13.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f6/37/23083fcd6e35492953e8d2aaaa68b860eb422b34627b13f2ce3eb6106061/typing_extensions-4.13.2.tar.gz", hash = "sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef", size = 106967, upload-time = "2025-04-10T14:19:05.416Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/8b/54/b1ae86c0973cc6f0210b53d508ca3641fb6d0c56823f288d108bc7ab3cc8/typing_extensions-4.13.2-py3-none-any.whl", hash = "sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c", size = 45806, upload-time = "2025-04-10T14:19:03.967Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tzdata"
|
||||
version = "2025.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380, upload-time = "2025-03-23T13:54:43.652Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "urllib3"
|
||||
version = "2.4.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/8a/78/16493d9c386d8e60e442a35feac5e00f0913c0f4b7c217c11e8ec2ff53e0/urllib3-2.4.0.tar.gz", hash = "sha256:414bc6535b787febd7567804cc015fee39daab8ad86268f1310a9250697de466", size = 390672, upload-time = "2025-04-10T15:23:39.232Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/11/cc635220681e93a0183390e26485430ca2c7b5f9d33b15c74c2861cb8091/urllib3-2.4.0-py3-none-any.whl", hash = "sha256:4e16665048960a0900c702d4a66415956a584919c03361cac9f1df5c5dd7e813", size = 128680, upload-time = "2025-04-10T15:23:37.377Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "werkzeug"
|
||||
version = "3.0.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "markupsafe" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/d4/f9/0ba83eaa0df9b9e9d1efeb2ea351d0677c37d41ee5d0f91e98423c7281c9/werkzeug-3.0.6.tar.gz", hash = "sha256:a8dd59d4de28ca70471a34cba79bed5f7ef2e036a76b3ab0835474246eb41f8d", size = 805170, upload-time = "2024-10-25T18:52:31.688Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/6c/69/05837f91dfe42109203ffa3e488214ff86a6d68b2ed6c167da6cdc42349b/werkzeug-3.0.6-py3-none-any.whl", hash = "sha256:1bc0c2310d2fbb07b1dd1105eba2f7af72f322e1e455f2f93c993bee8c8a5f17", size = 227979, upload-time = "2024-10-25T18:52:30.129Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "xgboost"
|
||||
version = "3.0.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
{ name = "nvidia-nccl-cu12", marker = "platform_machine != 'aarch64' and sys_platform == 'linux'" },
|
||||
{ name = "scipy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/29/42/e6abc9e8c65033e5ff4117efc765e3d670c81c64ebd40ca6283bf4536994/xgboost-3.0.2.tar.gz", hash = "sha256:0ea95fef12313f8563458bbf49458db434d620af27b1991ddb8f46806cb305a5", size = 1159083, upload-time = "2025-05-25T09:09:11.291Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/6b/f47143ecab6313272497f324ffe2eafaf2851c0781a9022040adf80f9aab/xgboost-3.0.2-py3-none-macosx_10_15_x86_64.whl", hash = "sha256:923f46cd1b25c0a39fc98e969fa0a72a1a84feb7f55797cb3385962cd8d3b2d4", size = 2246653, upload-time = "2025-05-25T09:09:35.431Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/c9/5f0be8e51d55df60a1bd7d09e7b05380e04c38de9554105f6cacffac3886/xgboost-3.0.2-py3-none-macosx_12_0_arm64.whl", hash = "sha256:5c4e377c86df815669939646b3abe7a20559e4d4c0f5c2ab10c31252e7a9d7d9", size = 2025769, upload-time = "2025-05-25T09:09:37.22Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/eb/4b5036a16628dc375544ba5375768ddc3653a3372af6f947d73d11d1c3f2/xgboost-3.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:e9acf97b3b2a628b33f1dc80ee3f16a658e1f9f43c4ed2aa85b0a824c87dbde5", size = 4841549, upload-time = "2025-05-25T09:09:41.172Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/db/71/347f78ac21eb9221231bebf7d7a3eaea20b09377d9d602cee15fe9c7aeba/xgboost-3.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:7d1ad8c5ae361161ce5288a04916c89d13d247b9a98e25c4b3983783cfad0377", size = 4904451, upload-time = "2025-05-25T09:09:44.273Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/a4/949c50325c6417bfae2b846c43f4a8ad6557278d26b6a526c5c22f2204aa/xgboost-3.0.2-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:a112df38f2faaae31f1c00d373ff35fb5965a65e74de2eea9081dbef7a9ddffe", size = 4603350, upload-time = "2025-05-25T09:09:46.497Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/f5/1b5d88e5a65168b435e8339b53d027e3e7adecb0c7d157bc86d18f78471b/xgboost-3.0.2-py3-none-manylinux_2_28_x86_64.whl", hash = "sha256:d534242489265621397ff403bb1c6235d2e6c66938639239fdf2d6b39d27e339", size = 253887220, upload-time = "2025-05-25T09:10:24.541Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/22/e3ff2dfafe862a91733dfa0aecdb4794aa1d9a18e09a14e118bde0cbc2db/xgboost-3.0.2-py3-none-win_amd64.whl", hash = "sha256:b4c89b71d134da9fa6318e3c9f5459317d1013b4d57059d10ed2840750e2f7e1", size = 149974575, upload-time = "2025-05-25T09:11:23.554Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.22.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/12/b6/7b3d16792fdf94f146bed92be90b4eb4563569eca91513c8609aebf0c167/zipp-3.22.0.tar.gz", hash = "sha256:dd2f28c3ce4bc67507bfd3781d21b7bb2be31103b51a4553ad7d90b84e57ace5", size = 25257, upload-time = "2025-05-26T14:46:32.217Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/da/f64669af4cae46f17b90798a827519ce3737d31dbafad65d391e49643dc4/zipp-3.22.0-py3-none-any.whl", hash = "sha256:fe208f65f2aca48b81f9e6fd8cf7b8b32c26375266b009b413d45306b6148343", size = 9796, upload-time = "2025-05-26T14:46:30.775Z" },
|
||||
]
|
||||
Loading…
x
Reference in New Issue
Block a user