390 lines
10 KiB
Markdown
390 lines
10 KiB
Markdown
# Strategy Manager Documentation
|
|
|
|
## Overview
|
|
|
|
The Strategy Manager is a sophisticated orchestration system that enables the combination of multiple trading strategies with configurable signal aggregation rules. It supports multi-timeframe analysis, weighted consensus voting, and flexible signal combination methods.
|
|
|
|
## Architecture
|
|
|
|
### Core Components
|
|
|
|
1. **StrategyBase**: Abstract base class defining the strategy interface
|
|
2. **StrategySignal**: Encapsulates trading signals with confidence levels
|
|
3. **StrategyManager**: Orchestrates multiple strategies and combines signals
|
|
4. **Strategy Implementations**: DefaultStrategy, BBRSStrategy, etc.
|
|
|
|
### New Timeframe System
|
|
|
|
The framework now supports strategy-level timeframe management:
|
|
|
|
- **Strategy-Controlled Timeframes**: Each strategy specifies its required timeframes
|
|
- **Automatic Data Resampling**: Framework automatically resamples 1-minute data to strategy needs
|
|
- **Multi-Timeframe Support**: Strategies can use multiple timeframes simultaneously
|
|
- **Precision Stop-Loss**: All strategies maintain 1-minute data for precise execution
|
|
|
|
```python
|
|
class MyStrategy(StrategyBase):
|
|
def get_timeframes(self):
|
|
return ["15min", "1h"] # Strategy needs both timeframes
|
|
|
|
def initialize(self, backtester):
|
|
# Access resampled data
|
|
data_15m = self.get_data_for_timeframe("15min")
|
|
data_1h = self.get_data_for_timeframe("1h")
|
|
# Setup indicators...
|
|
```
|
|
|
|
## Strategy Interface
|
|
|
|
### StrategyBase Class
|
|
|
|
All strategies must inherit from `StrategyBase` and implement:
|
|
|
|
```python
|
|
from cycles.strategies.base import StrategyBase, StrategySignal
|
|
|
|
class MyStrategy(StrategyBase):
|
|
def get_timeframes(self) -> List[str]:
|
|
"""Specify required timeframes"""
|
|
return ["15min"]
|
|
|
|
def initialize(self, backtester) -> None:
|
|
"""Setup strategy with data"""
|
|
self._resample_data(backtester.original_df)
|
|
# Calculate indicators...
|
|
self.initialized = True
|
|
|
|
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
|
"""Generate entry signals"""
|
|
if condition_met:
|
|
return StrategySignal("ENTRY", confidence=0.8)
|
|
return StrategySignal("HOLD", confidence=0.0)
|
|
|
|
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
|
"""Generate exit signals"""
|
|
if exit_condition:
|
|
return StrategySignal("EXIT", confidence=1.0,
|
|
metadata={"type": "SELL_SIGNAL"})
|
|
return StrategySignal("HOLD", confidence=0.0)
|
|
```
|
|
|
|
### StrategySignal Class
|
|
|
|
Encapsulates trading signals with metadata:
|
|
|
|
```python
|
|
# Entry signal with high confidence
|
|
entry_signal = StrategySignal("ENTRY", confidence=0.9)
|
|
|
|
# Exit signal with specific price
|
|
exit_signal = StrategySignal("EXIT", confidence=1.0, price=50000,
|
|
metadata={"type": "STOP_LOSS"})
|
|
|
|
# Hold signal
|
|
hold_signal = StrategySignal("HOLD", confidence=0.0)
|
|
```
|
|
|
|
## Available Strategies
|
|
|
|
### 1. Default Strategy
|
|
|
|
Meta-trend analysis using multiple Supertrend indicators.
|
|
|
|
**Features:**
|
|
- Uses 3 Supertrend indicators with different parameters
|
|
- Configurable timeframe (default: 15min)
|
|
- Entry when all trends align upward
|
|
- Exit on trend reversal or stop-loss
|
|
|
|
**Configuration:**
|
|
```json
|
|
{
|
|
"name": "default",
|
|
"weight": 1.0,
|
|
"params": {
|
|
"timeframe": "15min",
|
|
"stop_loss_pct": 0.03
|
|
}
|
|
}
|
|
```
|
|
|
|
**Timeframes:**
|
|
- Primary: Configurable (default 15min)
|
|
- Stop-loss: Always includes 1min for precision
|
|
|
|
### 2. BBRS Strategy
|
|
|
|
Bollinger Bands + RSI with market regime detection.
|
|
|
|
**Features:**
|
|
- Market regime detection (trending vs sideways)
|
|
- Adaptive parameters based on market conditions
|
|
- Volume analysis and confirmation
|
|
- Multi-timeframe internal analysis (1min → 15min/1h)
|
|
|
|
**Configuration:**
|
|
```json
|
|
{
|
|
"name": "bbrs",
|
|
"weight": 1.0,
|
|
"params": {
|
|
"bb_width": 0.05,
|
|
"bb_period": 20,
|
|
"rsi_period": 14,
|
|
"strategy_name": "MarketRegimeStrategy",
|
|
"stop_loss_pct": 0.05
|
|
}
|
|
}
|
|
```
|
|
|
|
**Timeframes:**
|
|
- Input: 1min (Strategy class handles internal resampling)
|
|
- Internal: 15min, 1h (handled by underlying Strategy class)
|
|
- Output: Mapped back to 1min for backtesting
|
|
|
|
## Signal Combination
|
|
|
|
### Entry Signal Combination
|
|
|
|
```python
|
|
combination_rules = {
|
|
"entry": "weighted_consensus", # or "any", "all", "majority"
|
|
"min_confidence": 0.6
|
|
}
|
|
```
|
|
|
|
**Methods:**
|
|
- **`any`**: Enter if ANY strategy signals entry
|
|
- **`all`**: Enter only if ALL strategies signal entry
|
|
- **`majority`**: Enter if majority of strategies signal entry
|
|
- **`weighted_consensus`**: Enter based on weighted average confidence
|
|
|
|
### Exit Signal Combination
|
|
|
|
```python
|
|
combination_rules = {
|
|
"exit": "priority" # or "any", "all"
|
|
}
|
|
```
|
|
|
|
**Methods:**
|
|
- **`any`**: Exit if ANY strategy signals exit (recommended for risk management)
|
|
- **`all`**: Exit only if ALL strategies agree
|
|
- **`priority`**: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
|
|
|
|
## Configuration
|
|
|
|
### Basic Strategy Manager Setup
|
|
|
|
```json
|
|
{
|
|
"strategies": [
|
|
{
|
|
"name": "default",
|
|
"weight": 0.6,
|
|
"params": {
|
|
"timeframe": "15min",
|
|
"stop_loss_pct": 0.03
|
|
}
|
|
},
|
|
{
|
|
"name": "bbrs",
|
|
"weight": 0.4,
|
|
"params": {
|
|
"bb_width": 0.05,
|
|
"strategy_name": "MarketRegimeStrategy"
|
|
}
|
|
}
|
|
],
|
|
"combination_rules": {
|
|
"entry": "weighted_consensus",
|
|
"exit": "any",
|
|
"min_confidence": 0.5
|
|
}
|
|
}
|
|
```
|
|
|
|
### Timeframe Examples
|
|
|
|
**Single Timeframe Strategy:**
|
|
```json
|
|
{
|
|
"name": "default",
|
|
"params": {
|
|
"timeframe": "5min" # Strategy works on 5-minute data
|
|
}
|
|
}
|
|
```
|
|
|
|
**Multi-Timeframe Strategy (Future Enhancement):**
|
|
```json
|
|
{
|
|
"name": "multi_tf_strategy",
|
|
"params": {
|
|
"timeframes": ["5min", "15min", "1h"], # Multiple timeframes
|
|
"primary_timeframe": "15min"
|
|
}
|
|
}
|
|
```
|
|
|
|
## Usage Examples
|
|
|
|
### Create Strategy Manager
|
|
|
|
```python
|
|
from cycles.strategies import create_strategy_manager
|
|
|
|
config = {
|
|
"strategies": [
|
|
{"name": "default", "weight": 1.0, "params": {"timeframe": "15min"}}
|
|
],
|
|
"combination_rules": {
|
|
"entry": "any",
|
|
"exit": "any"
|
|
}
|
|
}
|
|
|
|
strategy_manager = create_strategy_manager(config)
|
|
```
|
|
|
|
### Initialize and Use
|
|
|
|
```python
|
|
# Initialize with backtester
|
|
strategy_manager.initialize(backtester)
|
|
|
|
# Get signals during backtesting
|
|
entry_signal = strategy_manager.get_entry_signal(backtester, df_index)
|
|
exit_signal, exit_price = strategy_manager.get_exit_signal(backtester, df_index)
|
|
|
|
# Get strategy summary
|
|
summary = strategy_manager.get_strategy_summary()
|
|
print(f"Loaded strategies: {[s['name'] for s in summary['strategies']]}")
|
|
print(f"All timeframes: {summary['all_timeframes']}")
|
|
```
|
|
|
|
## Extending the System
|
|
|
|
### Adding New Strategies
|
|
|
|
1. **Create Strategy Class:**
|
|
```python
|
|
class NewStrategy(StrategyBase):
|
|
def get_timeframes(self):
|
|
return ["1h"] # Specify required timeframes
|
|
|
|
def initialize(self, backtester):
|
|
self._resample_data(backtester.original_df)
|
|
# Setup indicators...
|
|
self.initialized = True
|
|
|
|
def get_entry_signal(self, backtester, df_index):
|
|
# Implement entry logic
|
|
pass
|
|
|
|
def get_exit_signal(self, backtester, df_index):
|
|
# Implement exit logic
|
|
pass
|
|
```
|
|
|
|
2. **Register in StrategyManager:**
|
|
```python
|
|
# In StrategyManager._load_strategies()
|
|
elif name == "new_strategy":
|
|
strategies.append(NewStrategy(weight, params))
|
|
```
|
|
|
|
### Multi-Timeframe Strategy Development
|
|
|
|
For strategies requiring multiple timeframes:
|
|
|
|
```python
|
|
class MultiTimeframeStrategy(StrategyBase):
|
|
def get_timeframes(self):
|
|
return ["5min", "15min", "1h"]
|
|
|
|
def initialize(self, backtester):
|
|
self._resample_data(backtester.original_df)
|
|
|
|
# Access different timeframes
|
|
data_5m = self.get_data_for_timeframe("5min")
|
|
data_15m = self.get_data_for_timeframe("15min")
|
|
data_1h = self.get_data_for_timeframe("1h")
|
|
|
|
# Calculate indicators on each timeframe
|
|
# ...
|
|
|
|
def _calculate_signal_confidence(self, backtester, df_index):
|
|
# Analyze multiple timeframes for confidence
|
|
primary_signal = self._get_primary_signal(df_index)
|
|
confirmation = self._get_timeframe_confirmation(df_index)
|
|
|
|
return primary_signal * confirmation
|
|
```
|
|
|
|
## Performance Considerations
|
|
|
|
### Timeframe Management
|
|
|
|
- **Efficient Resampling**: Each strategy resamples data once during initialization
|
|
- **Memory Usage**: Only required timeframes are kept in memory
|
|
- **Signal Mapping**: Efficient mapping between timeframes using pandas reindex
|
|
|
|
### Strategy Combination
|
|
|
|
- **Lazy Evaluation**: Signals calculated only when needed
|
|
- **Error Handling**: Individual strategy failures don't crash the system
|
|
- **Logging**: Comprehensive logging for debugging and monitoring
|
|
|
|
## Best Practices
|
|
|
|
1. **Strategy Design:**
|
|
- Specify minimal required timeframes
|
|
- Include 1min for stop-loss precision
|
|
- Use confidence levels effectively
|
|
|
|
2. **Signal Combination:**
|
|
- Use `any` for exits (risk management)
|
|
- Use `weighted_consensus` for entries
|
|
- Set appropriate minimum confidence levels
|
|
|
|
3. **Error Handling:**
|
|
- Implement robust initialization checks
|
|
- Handle missing data gracefully
|
|
- Log strategy-specific warnings
|
|
|
|
4. **Testing:**
|
|
- Test strategies individually before combining
|
|
- Validate timeframe requirements
|
|
- Monitor memory usage with large datasets
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues
|
|
|
|
1. **Timeframe Mismatches:**
|
|
- Ensure strategy specifies correct timeframes
|
|
- Check data availability for all timeframes
|
|
|
|
2. **Signal Conflicts:**
|
|
- Review combination rules
|
|
- Adjust confidence thresholds
|
|
- Monitor strategy weights
|
|
|
|
3. **Performance Issues:**
|
|
- Minimize timeframe requirements
|
|
- Optimize indicator calculations
|
|
- Use efficient pandas operations
|
|
|
|
### Debugging Tips
|
|
|
|
- Enable detailed logging: `logging.basicConfig(level=logging.DEBUG)`
|
|
- Use strategy summary: `manager.get_strategy_summary()`
|
|
- Test individual strategies before combining
|
|
- Monitor signal confidence levels
|
|
|
|
---
|
|
|
|
**Version**: 1.0.0
|
|
**Last Updated**: January 2025
|
|
**TCP Cycles Project** |