Compare commits
No commits in common. "main" and "xgboost" have entirely different histories.
@ -1,8 +0,0 @@
|
||||
---
|
||||
description:
|
||||
globs:
|
||||
alwaysApply: true
|
||||
---
|
||||
- use UV for package management
|
||||
- ./docs folder for the documetation and the modules description, update related files if logic changed
|
||||
|
||||
362
.gitignore
vendored
362
.gitignore
vendored
@ -1,181 +1,181 @@
|
||||
# ---> Python
|
||||
/data/*.db
|
||||
/credentials/*.json
|
||||
*.csv
|
||||
*.png
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
/data/*.npy
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# UV
|
||||
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
#uv.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
||||
.pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
An introduction to trading cycles.pdf
|
||||
An introduction to trading cycles.txt
|
||||
README.md
|
||||
.vscode/launch.json
|
||||
data/btcusd_1-day_data.csv
|
||||
data/btcusd_1-min_data.csv
|
||||
# ---> Python
|
||||
/data/*.db
|
||||
/credentials/*.json
|
||||
*.csv
|
||||
*.png
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
/data/*.npy
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# UV
|
||||
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
#uv.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
||||
.pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
An introduction to trading cycles.pdf
|
||||
An introduction to trading cycles.txt
|
||||
README.md
|
||||
.vscode/launch.json
|
||||
data/btcusd_1-day_data.csv
|
||||
data/btcusd_1-min_data.csv
|
||||
|
||||
@ -1,29 +0,0 @@
|
||||
{
|
||||
"start_date": "2025-01-01",
|
||||
"stop_date": null,
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["1min"],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"trending_rsi_threshold": [30, 70],
|
||||
"trending_bb_multiplier": 2.5,
|
||||
"sideways_rsi_threshold": [40, 60],
|
||||
"sideways_bb_multiplier": 1.8,
|
||||
"strategy_name": "MarketRegimeStrategy",
|
||||
"SqueezeStrategy": true,
|
||||
"stop_loss_pct": 0.05
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
@ -1,29 +0,0 @@
|
||||
{
|
||||
"start_date": "2024-01-01",
|
||||
"stop_date": "2024-01-31",
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["1min"],
|
||||
"stop_loss_pcts": [0.05],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"trending_rsi_threshold": [30, 70],
|
||||
"trending_bb_multiplier": 2.5,
|
||||
"sideways_rsi_threshold": [40, 60],
|
||||
"sideways_bb_multiplier": 1.8,
|
||||
"strategy_name": "MarketRegimeStrategy",
|
||||
"SqueezeStrategy": true
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
@ -1,37 +0,0 @@
|
||||
{
|
||||
"start_date": "2025-03-01",
|
||||
"stop_date": "2025-03-15",
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["15min"],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 0.6,
|
||||
"params": {
|
||||
"timeframe": "15min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 0.4,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"trending_rsi_threshold": [30, 70],
|
||||
"trending_bb_multiplier": 2.5,
|
||||
"sideways_rsi_threshold": [40, 60],
|
||||
"sideways_bb_multiplier": 1.8,
|
||||
"strategy_name": "MarketRegimeStrategy",
|
||||
"SqueezeStrategy": true,
|
||||
"stop_loss_pct": 0.05
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
@ -1,21 +0,0 @@
|
||||
{
|
||||
"start_date": "2024-01-01",
|
||||
"stop_date": null,
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["15min"],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"timeframe": "15min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
@ -1,21 +0,0 @@
|
||||
{
|
||||
"start_date": "2024-01-01",
|
||||
"stop_date": "2024-01-31",
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["5min"],
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"timeframe": "5min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
@ -1,415 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from cycles.Analysis.boillinger_band import BollingerBands
|
||||
from cycles.Analysis.rsi import RSI
|
||||
from cycles.utils.data_utils import aggregate_to_daily, aggregate_to_hourly, aggregate_to_minutes
|
||||
|
||||
|
||||
class BollingerBandsStrategy:
|
||||
|
||||
def __init__(self, config = None, logging = None):
|
||||
if config is None:
|
||||
raise ValueError("Config must be provided.")
|
||||
self.config = config
|
||||
self.logging = logging
|
||||
|
||||
def _ensure_datetime_index(self, data):
|
||||
"""
|
||||
Ensure the DataFrame has a DatetimeIndex for proper time-series operations.
|
||||
If the DataFrame has a 'timestamp' column but not a DatetimeIndex, convert it.
|
||||
|
||||
Args:
|
||||
data (DataFrame): Input DataFrame
|
||||
|
||||
Returns:
|
||||
DataFrame: DataFrame with proper DatetimeIndex
|
||||
"""
|
||||
if data.empty:
|
||||
return data
|
||||
|
||||
# Check if we have a DatetimeIndex already
|
||||
if isinstance(data.index, pd.DatetimeIndex):
|
||||
return data
|
||||
|
||||
# Check if we have a 'timestamp' column that we can use as index
|
||||
if 'timestamp' in data.columns:
|
||||
data_copy = data.copy()
|
||||
# Convert timestamp column to datetime if it's not already
|
||||
if not pd.api.types.is_datetime64_any_dtype(data_copy['timestamp']):
|
||||
data_copy['timestamp'] = pd.to_datetime(data_copy['timestamp'])
|
||||
# Set timestamp as index and drop the column
|
||||
data_copy = data_copy.set_index('timestamp')
|
||||
if self.logging:
|
||||
self.logging.info("Converted 'timestamp' column to DatetimeIndex for strategy processing.")
|
||||
return data_copy
|
||||
|
||||
# If we have a regular index but it might be datetime strings, try to convert
|
||||
try:
|
||||
if data.index.dtype == 'object':
|
||||
data_copy = data.copy()
|
||||
data_copy.index = pd.to_datetime(data_copy.index)
|
||||
if self.logging:
|
||||
self.logging.info("Converted index to DatetimeIndex for strategy processing.")
|
||||
return data_copy
|
||||
except:
|
||||
pass
|
||||
|
||||
# If we can't create a proper DatetimeIndex, warn and return as-is
|
||||
if self.logging:
|
||||
self.logging.warning("Could not create DatetimeIndex for strategy processing. Time-based operations may fail.")
|
||||
return data
|
||||
|
||||
def run(self, data, strategy_name):
|
||||
# Ensure proper DatetimeIndex before processing
|
||||
data = self._ensure_datetime_index(data)
|
||||
|
||||
if strategy_name == "MarketRegimeStrategy":
|
||||
result = self.MarketRegimeStrategy(data)
|
||||
return self.standardize_output(result, strategy_name)
|
||||
elif strategy_name == "CryptoTradingStrategy":
|
||||
result = self.CryptoTradingStrategy(data)
|
||||
return self.standardize_output(result, strategy_name)
|
||||
else:
|
||||
if self.logging is not None:
|
||||
self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.")
|
||||
return self.no_strategy(data)
|
||||
|
||||
def standardize_output(self, data, strategy_name):
|
||||
"""
|
||||
Standardize column names across different strategies to ensure consistent plotting and analysis
|
||||
|
||||
Args:
|
||||
data (DataFrame): Strategy output DataFrame
|
||||
strategy_name (str): Name of the strategy that generated this data
|
||||
|
||||
Returns:
|
||||
DataFrame: Data with standardized column names
|
||||
"""
|
||||
if data.empty:
|
||||
return data
|
||||
|
||||
# Create a copy to avoid modifying the original
|
||||
standardized = data.copy()
|
||||
|
||||
# Standardize column names based on strategy
|
||||
if strategy_name == "MarketRegimeStrategy":
|
||||
# MarketRegimeStrategy already has standard column names for most fields
|
||||
# Just ensure all standard columns exist
|
||||
pass
|
||||
elif strategy_name == "CryptoTradingStrategy":
|
||||
# Map strategy-specific column names to standard names
|
||||
column_mapping = {
|
||||
'UpperBand_15m': 'UpperBand',
|
||||
'LowerBand_15m': 'LowerBand',
|
||||
'SMA_15m': 'SMA',
|
||||
'RSI_15m': 'RSI',
|
||||
'VolumeMA_15m': 'VolumeMA',
|
||||
# Keep StopLoss and TakeProfit as they are
|
||||
}
|
||||
|
||||
# Add standard columns from mapped columns
|
||||
for old_col, new_col in column_mapping.items():
|
||||
if old_col in standardized.columns and new_col not in standardized.columns:
|
||||
standardized[new_col] = standardized[old_col]
|
||||
|
||||
# Add additional strategy-specific data as metadata columns
|
||||
if 'UpperBand_1h' in standardized.columns:
|
||||
standardized['UpperBand_1h_meta'] = standardized['UpperBand_1h']
|
||||
if 'LowerBand_1h' in standardized.columns:
|
||||
standardized['LowerBand_1h_meta'] = standardized['LowerBand_1h']
|
||||
|
||||
# Ensure all strategies have BBWidth if possible
|
||||
if 'BBWidth' not in standardized.columns and 'UpperBand' in standardized.columns and 'LowerBand' in standardized.columns:
|
||||
standardized['BBWidth'] = (standardized['UpperBand'] - standardized['LowerBand']) / standardized['SMA'] if 'SMA' in standardized.columns else np.nan
|
||||
|
||||
return standardized
|
||||
|
||||
def no_strategy(self, data):
|
||||
"""No strategy: returns False for both buy and sell conditions"""
|
||||
buy_condition = pd.Series([False] * len(data), index=data.index)
|
||||
sell_condition = pd.Series([False] * len(data), index=data.index)
|
||||
return buy_condition, sell_condition
|
||||
|
||||
def rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5):
|
||||
"""Calculate RSI Bollinger Bands for confirmation
|
||||
|
||||
Args:
|
||||
rsi (Series): RSI values
|
||||
window (int): Rolling window for SMA
|
||||
std_mult (float): Standard deviation multiplier
|
||||
|
||||
Returns:
|
||||
tuple: (oversold condition, overbought condition)
|
||||
"""
|
||||
valid_rsi = ~rsi.isna()
|
||||
if not valid_rsi.any():
|
||||
# Return empty Series if no valid RSI data
|
||||
return pd.Series(False, index=rsi.index), pd.Series(False, index=rsi.index)
|
||||
|
||||
rsi_sma = rsi.rolling(window).mean()
|
||||
rsi_std = rsi.rolling(window).std()
|
||||
upper_rsi_band = rsi_sma + std_mult * rsi_std
|
||||
lower_rsi_band = rsi_sma - std_mult * rsi_std
|
||||
|
||||
return (rsi < lower_rsi_band), (rsi > upper_rsi_band)
|
||||
|
||||
def MarketRegimeStrategy(self, data):
|
||||
"""Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets)
|
||||
with adaptive Bollinger Bands
|
||||
|
||||
This advanced strategy combines volatility analysis, momentum confirmation, and regime detection
|
||||
to adapt to Bitcoin's unique market conditions.
|
||||
|
||||
Entry Conditions:
|
||||
- Trending Market (Breakout Mode):
|
||||
Buy: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike (≥1.5× 20D Avg)
|
||||
Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike
|
||||
- Sideways Market (Mean Reversion):
|
||||
Buy: Price ≤ Lower Band ∧ RSI ≤ 40
|
||||
Sell: Price ≥ Upper Band ∧ RSI ≥ 60
|
||||
|
||||
Enhanced with RSI Bollinger Squeeze for signal confirmation when enabled.
|
||||
|
||||
Returns:
|
||||
DataFrame: A unified DataFrame containing original data, BB, RSI, and signals.
|
||||
"""
|
||||
|
||||
data = aggregate_to_hourly(data, 1)
|
||||
# data = aggregate_to_daily(data)
|
||||
|
||||
# Calculate Bollinger Bands
|
||||
bb_calculator = BollingerBands(config=self.config)
|
||||
# Ensure we are working with a copy to avoid modifying the original DataFrame upstream
|
||||
data_bb = bb_calculator.calculate(data.copy())
|
||||
|
||||
# Calculate RSI
|
||||
rsi_calculator = RSI(config=self.config)
|
||||
# Use the original data's copy for RSI calculation as well, to maintain index integrity
|
||||
data_with_rsi = rsi_calculator.calculate(data.copy(), price_column='close')
|
||||
|
||||
# Combine BB and RSI data into a single DataFrame for signal generation
|
||||
# Ensure indices are aligned; they should be as both are from data.copy()
|
||||
if 'RSI' in data_with_rsi.columns:
|
||||
data_bb['RSI'] = data_with_rsi['RSI']
|
||||
else:
|
||||
# If RSI wasn't calculated (e.g., not enough data), create a dummy column with NaNs
|
||||
# to prevent errors later, though signals won't be generated.
|
||||
data_bb['RSI'] = pd.Series(index=data_bb.index, dtype=float)
|
||||
if self.logging:
|
||||
self.logging.warning("RSI column not found or not calculated. Signals relying on RSI may not be generated.")
|
||||
|
||||
# Initialize conditions as all False
|
||||
buy_condition = pd.Series(False, index=data_bb.index)
|
||||
sell_condition = pd.Series(False, index=data_bb.index)
|
||||
|
||||
# Create masks for different market regimes
|
||||
# MarketRegime is expected to be in data_bb from BollingerBands calculation
|
||||
sideways_mask = data_bb['MarketRegime'] > 0
|
||||
trending_mask = data_bb['MarketRegime'] <= 0
|
||||
valid_data_mask = ~data_bb['MarketRegime'].isna() # Handle potential NaN values
|
||||
|
||||
# Calculate volume spike (≥1.5× 20D Avg)
|
||||
# 'volume' column should be present in the input 'data', and thus in 'data_bb'
|
||||
if 'volume' in data_bb.columns:
|
||||
volume_20d_avg = data_bb['volume'].rolling(window=20).mean()
|
||||
volume_spike = data_bb['volume'] >= 1.5 * volume_20d_avg
|
||||
|
||||
# Additional volume contraction filter for sideways markets
|
||||
volume_30d_avg = data_bb['volume'].rolling(window=30).mean()
|
||||
volume_contraction = data_bb['volume'] < 0.7 * volume_30d_avg
|
||||
else:
|
||||
# If volume data is not available, assume no volume spike
|
||||
volume_spike = pd.Series(False, index=data_bb.index)
|
||||
volume_contraction = pd.Series(False, index=data_bb.index)
|
||||
if self.logging is not None:
|
||||
self.logging.warning("Volume data not available. Volume conditions will not be triggered.")
|
||||
|
||||
# Calculate RSI Bollinger Squeeze confirmation
|
||||
# RSI column is now part of data_bb
|
||||
if 'RSI' in data_bb.columns and not data_bb['RSI'].isna().all():
|
||||
oversold_rsi, overbought_rsi = self.rsi_bollinger_confirmation(data_bb['RSI'])
|
||||
else:
|
||||
oversold_rsi = pd.Series(False, index=data_bb.index)
|
||||
overbought_rsi = pd.Series(False, index=data_bb.index)
|
||||
if self.logging is not None and ('RSI' not in data_bb.columns or data_bb['RSI'].isna().all()):
|
||||
self.logging.warning("RSI data not available or all NaN. RSI Bollinger Squeeze will not be triggered.")
|
||||
|
||||
# Calculate conditions for sideways market (Mean Reversion)
|
||||
if sideways_mask.any():
|
||||
sideways_buy = (data_bb['close'] <= data_bb['LowerBand']) & (data_bb['RSI'] <= 40)
|
||||
sideways_sell = (data_bb['close'] >= data_bb['UpperBand']) & (data_bb['RSI'] >= 60)
|
||||
|
||||
# Add enhanced confirmation for sideways markets
|
||||
if self.config.get("SqueezeStrategy", False):
|
||||
sideways_buy = sideways_buy & oversold_rsi & volume_contraction
|
||||
sideways_sell = sideways_sell & overbought_rsi & volume_contraction
|
||||
|
||||
# Apply only where market is sideways and data is valid
|
||||
buy_condition = buy_condition | (sideways_buy & sideways_mask & valid_data_mask)
|
||||
sell_condition = sell_condition | (sideways_sell & sideways_mask & valid_data_mask)
|
||||
|
||||
# Calculate conditions for trending market (Breakout Mode)
|
||||
if trending_mask.any():
|
||||
trending_buy = (data_bb['close'] < data_bb['LowerBand']) & (data_bb['RSI'] < 50) & volume_spike
|
||||
trending_sell = (data_bb['close'] > data_bb['UpperBand']) & (data_bb['RSI'] > 50) & volume_spike
|
||||
|
||||
# Add enhanced confirmation for trending markets
|
||||
if self.config.get("SqueezeStrategy", False):
|
||||
trending_buy = trending_buy & oversold_rsi
|
||||
trending_sell = trending_sell & overbought_rsi
|
||||
|
||||
# Apply only where market is trending and data is valid
|
||||
buy_condition = buy_condition | (trending_buy & trending_mask & valid_data_mask)
|
||||
sell_condition = sell_condition | (trending_sell & trending_mask & valid_data_mask)
|
||||
|
||||
# Add buy/sell conditions as columns to the DataFrame
|
||||
data_bb['BuySignal'] = buy_condition
|
||||
data_bb['SellSignal'] = sell_condition
|
||||
|
||||
return data_bb
|
||||
|
||||
# Helper functions for CryptoTradingStrategy
|
||||
def _volume_confirmation_crypto(self, current_volume, volume_ma):
|
||||
"""Check volume surge against moving average for crypto strategy"""
|
||||
if pd.isna(current_volume) or pd.isna(volume_ma) or volume_ma == 0:
|
||||
return False
|
||||
return current_volume > 1.5 * volume_ma
|
||||
|
||||
def _multi_timeframe_signal_crypto(self, current_price, rsi_value,
|
||||
lower_band_15m, lower_band_1h,
|
||||
upper_band_15m, upper_band_1h):
|
||||
"""Generate signals with multi-timeframe confirmation for crypto strategy"""
|
||||
# Ensure all inputs are not NaN before making comparisons
|
||||
if any(pd.isna(val) for val in [current_price, rsi_value, lower_band_15m, lower_band_1h, upper_band_15m, upper_band_1h]):
|
||||
return False, False
|
||||
|
||||
buy_signal = (current_price <= lower_band_15m and
|
||||
current_price <= lower_band_1h and
|
||||
rsi_value < 35)
|
||||
|
||||
sell_signal = (current_price >= upper_band_15m and
|
||||
current_price >= upper_band_1h and
|
||||
rsi_value > 65)
|
||||
|
||||
return buy_signal, sell_signal
|
||||
|
||||
def CryptoTradingStrategy(self, data):
|
||||
"""Core trading algorithm with risk management
|
||||
- Multi-Timeframe Confirmation: Combines 15-minute and 1-hour Bollinger Bands
|
||||
- Adaptive Volatility Filtering: Uses ATR for dynamic stop-loss/take-profit
|
||||
- Volume Spike Detection: Requires 1.5× average volume for confirmation
|
||||
- EMA-Smoothed RSI: Reduces false signals in choppy markets
|
||||
- Regime-Adaptive Parameters:
|
||||
- Trending: 2σ bands, RSI 35/65 thresholds
|
||||
- Sideways: 1.8σ bands, RSI 40/60 thresholds
|
||||
- Strategy Logic:
|
||||
- Long Entry: Price ≤ both 15m & 1h lower bands + RSI < 35 + Volume surge
|
||||
- Short Entry: Price ≥ both 15m & 1h upper bands + RSI > 65 + Volume surge
|
||||
- Exit: 2:1 risk-reward ratio with ATR-based stops
|
||||
"""
|
||||
if data.empty or 'close' not in data.columns or 'volume' not in data.columns:
|
||||
if self.logging:
|
||||
self.logging.warning("CryptoTradingStrategy: Input data is empty or missing 'close'/'volume' columns.")
|
||||
return pd.DataFrame() # Return empty DataFrame if essential data is missing
|
||||
|
||||
print(f"data: {data.head()}")
|
||||
|
||||
# Aggregate data
|
||||
data_15m = aggregate_to_minutes(data.copy(), 15)
|
||||
data_1h = aggregate_to_hourly(data.copy(), 1)
|
||||
|
||||
if data_15m.empty or data_1h.empty:
|
||||
if self.logging:
|
||||
self.logging.warning("CryptoTradingStrategy: Not enough data for 15m or 1h aggregation.")
|
||||
return pd.DataFrame() # Return original data if aggregation fails
|
||||
|
||||
# --- Calculate indicators for 15m timeframe ---
|
||||
# Ensure 'close' and 'volume' exist before trying to access them
|
||||
if 'close' not in data_15m.columns or 'volume' not in data_15m.columns:
|
||||
if self.logging: self.logging.warning("CryptoTradingStrategy: 15m data missing close or volume.")
|
||||
return data # Or an empty DF
|
||||
|
||||
price_data_15m = data_15m['close']
|
||||
volume_data_15m = data_15m['volume']
|
||||
|
||||
upper_15m, sma_15m, lower_15m = BollingerBands.calculate_custom_bands(price_data_15m, window=20, num_std=2, min_periods=1)
|
||||
# Use the static method from RSI class
|
||||
rsi_15m = RSI.calculate_custom_rsi(price_data_15m, window=14, smoothing='EMA')
|
||||
volume_ma_15m = volume_data_15m.rolling(window=20, min_periods=1).mean()
|
||||
|
||||
# Add 15m indicators to data_15m DataFrame
|
||||
data_15m['UpperBand_15m'] = upper_15m
|
||||
data_15m['SMA_15m'] = sma_15m
|
||||
data_15m['LowerBand_15m'] = lower_15m
|
||||
data_15m['RSI_15m'] = rsi_15m
|
||||
data_15m['VolumeMA_15m'] = volume_ma_15m
|
||||
|
||||
# --- Calculate indicators for 1h timeframe ---
|
||||
if 'close' not in data_1h.columns:
|
||||
if self.logging: self.logging.warning("CryptoTradingStrategy: 1h data missing close.")
|
||||
return data_15m # Return 15m data as 1h failed
|
||||
|
||||
price_data_1h = data_1h['close']
|
||||
# Use the static method from BollingerBands class, setting min_periods to 1 explicitly
|
||||
upper_1h, _, lower_1h = BollingerBands.calculate_custom_bands(price_data_1h, window=50, num_std=1.8, min_periods=1)
|
||||
|
||||
# Add 1h indicators to a temporary DataFrame to be merged
|
||||
df_1h_indicators = pd.DataFrame(index=data_1h.index)
|
||||
df_1h_indicators['UpperBand_1h'] = upper_1h
|
||||
df_1h_indicators['LowerBand_1h'] = lower_1h
|
||||
|
||||
# Merge 1h indicators into 15m DataFrame
|
||||
# Use reindex and ffill to propagate 1h values to 15m intervals
|
||||
data_15m = pd.merge(data_15m, df_1h_indicators, left_index=True, right_index=True, how='left')
|
||||
data_15m['UpperBand_1h'] = data_15m['UpperBand_1h'].ffill()
|
||||
data_15m['LowerBand_1h'] = data_15m['LowerBand_1h'].ffill()
|
||||
|
||||
# --- Generate Signals ---
|
||||
buy_signals = pd.Series(False, index=data_15m.index)
|
||||
sell_signals = pd.Series(False, index=data_15m.index)
|
||||
stop_loss_levels = pd.Series(np.nan, index=data_15m.index)
|
||||
take_profit_levels = pd.Series(np.nan, index=data_15m.index)
|
||||
|
||||
# ATR calculation needs a rolling window, apply to 'high', 'low', 'close' if available
|
||||
# Using a simplified ATR for now: std of close prices over the last 4 15-min periods (1 hour)
|
||||
if 'close' in data_15m.columns:
|
||||
atr_series = price_data_15m.rolling(window=4, min_periods=1).std()
|
||||
else:
|
||||
atr_series = pd.Series(0, index=data_15m.index) # No ATR if close is missing
|
||||
|
||||
for i in range(len(data_15m)):
|
||||
if i == 0: continue # Skip first row for volume_ma_15m[i-1]
|
||||
|
||||
current_price = data_15m['close'].iloc[i]
|
||||
current_volume = data_15m['volume'].iloc[i]
|
||||
rsi_val = data_15m['RSI_15m'].iloc[i]
|
||||
lb_15m = data_15m['LowerBand_15m'].iloc[i]
|
||||
ub_15m = data_15m['UpperBand_15m'].iloc[i]
|
||||
lb_1h = data_15m['LowerBand_1h'].iloc[i]
|
||||
ub_1h = data_15m['UpperBand_1h'].iloc[i]
|
||||
vol_ma = data_15m['VolumeMA_15m'].iloc[i-1] # Use previous period's MA
|
||||
atr = atr_series.iloc[i]
|
||||
|
||||
vol_confirm = self._volume_confirmation_crypto(current_volume, vol_ma)
|
||||
buy_signal, sell_signal = self._multi_timeframe_signal_crypto(
|
||||
current_price, rsi_val, lb_15m, lb_1h, ub_15m, ub_1h
|
||||
)
|
||||
|
||||
if buy_signal and vol_confirm:
|
||||
buy_signals.iloc[i] = True
|
||||
if not pd.isna(atr) and atr > 0:
|
||||
stop_loss_levels.iloc[i] = current_price - 2 * atr
|
||||
take_profit_levels.iloc[i] = current_price + 4 * atr
|
||||
elif sell_signal and vol_confirm:
|
||||
sell_signals.iloc[i] = True
|
||||
if not pd.isna(atr) and atr > 0:
|
||||
stop_loss_levels.iloc[i] = current_price + 2 * atr
|
||||
take_profit_levels.iloc[i] = current_price - 4 * atr
|
||||
|
||||
data_15m['BuySignal'] = buy_signals
|
||||
data_15m['SellSignal'] = sell_signals
|
||||
data_15m['StopLoss'] = stop_loss_levels
|
||||
data_15m['TakeProfit'] = take_profit_levels
|
||||
|
||||
return data_15m
|
||||
@ -1,29 +1,26 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
class BollingerBands:
|
||||
"""
|
||||
Calculates Bollinger Bands for given financial data.
|
||||
"""
|
||||
def __init__(self, config):
|
||||
def __init__(self, period: int = 20, std_dev_multiplier: float = 2.0):
|
||||
"""
|
||||
Initializes the BollingerBands calculator.
|
||||
|
||||
Args:
|
||||
period (int): The period for the moving average and standard deviation.
|
||||
std_dev_multiplier (float): The number of standard deviations for the upper and lower bands.
|
||||
bb_width (float): The width of the Bollinger Bands.
|
||||
"""
|
||||
if config['bb_period'] <= 0:
|
||||
if period <= 0:
|
||||
raise ValueError("Period must be a positive integer.")
|
||||
if config['trending']['bb_std_dev_multiplier'] <= 0 or config['sideways']['bb_std_dev_multiplier'] <= 0:
|
||||
if std_dev_multiplier <= 0:
|
||||
raise ValueError("Standard deviation multiplier must be positive.")
|
||||
if config['bb_width'] <= 0:
|
||||
raise ValueError("BB width must be positive.")
|
||||
|
||||
self.config = config
|
||||
self.period = period
|
||||
self.std_dev_multiplier = std_dev_multiplier
|
||||
|
||||
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close', squeeze = False) -> pd.DataFrame:
|
||||
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame:
|
||||
"""
|
||||
Calculates Bollinger Bands and adds them to the DataFrame.
|
||||
|
||||
@ -37,109 +34,17 @@ class BollingerBands:
|
||||
'UpperBand',
|
||||
'LowerBand'.
|
||||
"""
|
||||
|
||||
# Work on a copy to avoid modifying the original DataFrame passed to the function
|
||||
data_df = data_df.copy()
|
||||
|
||||
if price_column not in data_df.columns:
|
||||
raise ValueError(f"Price column '{price_column}' not found in DataFrame.")
|
||||
|
||||
if not squeeze:
|
||||
period = self.config['bb_period']
|
||||
bb_width_threshold = self.config['bb_width']
|
||||
trending_std_multiplier = self.config['trending']['bb_std_dev_multiplier']
|
||||
sideways_std_multiplier = self.config['sideways']['bb_std_dev_multiplier']
|
||||
|
||||
# Calculate SMA
|
||||
data_df['SMA'] = data_df[price_column].rolling(window=period).mean()
|
||||
# Calculate SMA
|
||||
data_df['SMA'] = data_df[price_column].rolling(window=self.period).mean()
|
||||
|
||||
# Calculate Standard Deviation
|
||||
std_dev = data_df[price_column].rolling(window=period).std()
|
||||
# Calculate Standard Deviation
|
||||
std_dev = data_df[price_column].rolling(window=self.period).std()
|
||||
|
||||
# Calculate reference Upper and Lower Bands for BBWidth calculation (e.g., using 2.0 std dev)
|
||||
# This ensures BBWidth is calculated based on a consistent band definition before applying adaptive multipliers.
|
||||
ref_upper_band = data_df['SMA'] + (2.0 * std_dev)
|
||||
ref_lower_band = data_df['SMA'] - (2.0 * std_dev)
|
||||
|
||||
# Calculate the width of the Bollinger Bands
|
||||
# Avoid division by zero or NaN if SMA is zero or NaN by replacing with np.nan
|
||||
data_df['BBWidth'] = np.where(data_df['SMA'] != 0, (ref_upper_band - ref_lower_band) / data_df['SMA'], np.nan)
|
||||
|
||||
# Calculate the market regime (1 = sideways, 0 = trending)
|
||||
# Handle NaN in BBWidth: if BBWidth is NaN, MarketRegime should also be NaN or a default (e.g. trending)
|
||||
data_df['MarketRegime'] = np.where(data_df['BBWidth'].isna(), np.nan,
|
||||
(data_df['BBWidth'] < bb_width_threshold).astype(float)) # Use float for NaN compatibility
|
||||
|
||||
# Determine the std dev multiplier for each row based on its market regime
|
||||
conditions = [
|
||||
data_df['MarketRegime'] == 1, # Sideways market
|
||||
data_df['MarketRegime'] == 0 # Trending market
|
||||
]
|
||||
choices = [
|
||||
sideways_std_multiplier,
|
||||
trending_std_multiplier
|
||||
]
|
||||
# Default multiplier if MarketRegime is NaN (e.g., use trending or a neutral default like 2.0)
|
||||
# For now, let's use trending_std_multiplier as default if MarketRegime is NaN.
|
||||
# This can be adjusted based on desired behavior for periods where regime is undetermined.
|
||||
row_specific_std_multiplier = np.select(conditions, choices, default=trending_std_multiplier)
|
||||
|
||||
# Calculate final Upper and Lower Bands using the row-specific multiplier
|
||||
data_df['UpperBand'] = data_df['SMA'] + (row_specific_std_multiplier * std_dev)
|
||||
data_df['LowerBand'] = data_df['SMA'] - (row_specific_std_multiplier * std_dev)
|
||||
|
||||
else: # squeeze is True
|
||||
price_series = data_df[price_column]
|
||||
# Use the static method for the squeeze case with fixed parameters
|
||||
upper_band, sma, lower_band = self.calculate_custom_bands(
|
||||
price_series,
|
||||
window=14,
|
||||
num_std=1.5,
|
||||
min_periods=14 # Match typical squeeze behavior where bands appear after full period
|
||||
)
|
||||
data_df['SMA'] = sma
|
||||
data_df['UpperBand'] = upper_band
|
||||
data_df['LowerBand'] = lower_band
|
||||
# BBWidth and MarketRegime are not typically calculated/used in a simple squeeze context by this method
|
||||
# If needed, they could be added, but the current structure implies they are part of the non-squeeze path.
|
||||
data_df['BBWidth'] = np.nan
|
||||
data_df['MarketRegime'] = np.nan
|
||||
# Calculate Upper and Lower Bands
|
||||
data_df['UpperBand'] = data_df['SMA'] + (self.std_dev_multiplier * std_dev)
|
||||
data_df['LowerBand'] = data_df['SMA'] - (self.std_dev_multiplier * std_dev)
|
||||
|
||||
return data_df
|
||||
|
||||
@staticmethod
|
||||
def calculate_custom_bands(price_series: pd.Series, window: int = 20, num_std: float = 2.0, min_periods: int = None) -> tuple[pd.Series, pd.Series, pd.Series]:
|
||||
"""
|
||||
Calculates Bollinger Bands with specified window and standard deviation multiplier.
|
||||
|
||||
Args:
|
||||
price_series (pd.Series): Series of prices.
|
||||
window (int): The period for the moving average and standard deviation.
|
||||
num_std (float): The number of standard deviations for the upper and lower bands.
|
||||
min_periods (int, optional): Minimum number of observations in window required to have a value.
|
||||
Defaults to `window` if None.
|
||||
|
||||
Returns:
|
||||
tuple[pd.Series, pd.Series, pd.Series]: Upper band, SMA, Lower band.
|
||||
"""
|
||||
if not isinstance(price_series, pd.Series):
|
||||
raise TypeError("price_series must be a pandas Series.")
|
||||
if not isinstance(window, int) or window <= 0:
|
||||
raise ValueError("window must be a positive integer.")
|
||||
if not isinstance(num_std, (int, float)) or num_std <= 0:
|
||||
raise ValueError("num_std must be a positive number.")
|
||||
if min_periods is not None and (not isinstance(min_periods, int) or min_periods <= 0):
|
||||
raise ValueError("min_periods must be a positive integer if provided.")
|
||||
|
||||
actual_min_periods = window if min_periods is None else min_periods
|
||||
|
||||
sma = price_series.rolling(window=window, min_periods=actual_min_periods).mean()
|
||||
std = price_series.rolling(window=window, min_periods=actual_min_periods).std()
|
||||
|
||||
# Replace NaN std with 0 to avoid issues if sma is present but std is not (e.g. constant price in window)
|
||||
std = std.fillna(0)
|
||||
|
||||
upper_band = sma + (std * num_std)
|
||||
lower_band = sma - (std * num_std)
|
||||
|
||||
return upper_band, sma, lower_band
|
||||
|
||||
@ -5,7 +5,7 @@ class RSI:
|
||||
"""
|
||||
A class to calculate the Relative Strength Index (RSI).
|
||||
"""
|
||||
def __init__(self, config):
|
||||
def __init__(self, period: int = 14):
|
||||
"""
|
||||
Initializes the RSI calculator.
|
||||
|
||||
@ -13,13 +13,13 @@ class RSI:
|
||||
period (int): The period for RSI calculation. Default is 14.
|
||||
Must be a positive integer.
|
||||
"""
|
||||
if not isinstance(config['rsi_period'], int) or config['rsi_period'] <= 0:
|
||||
if not isinstance(period, int) or period <= 0:
|
||||
raise ValueError("Period must be a positive integer.")
|
||||
self.period = config['rsi_period']
|
||||
self.period = period
|
||||
|
||||
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame:
|
||||
"""
|
||||
Calculates the RSI (using Wilder's smoothing) and adds it as a column to the input DataFrame.
|
||||
Calculates the RSI and adds it as a column to the input DataFrame.
|
||||
|
||||
Args:
|
||||
data_df (pd.DataFrame): DataFrame with historical price data.
|
||||
@ -35,79 +35,75 @@ class RSI:
|
||||
if price_column not in data_df.columns:
|
||||
raise ValueError(f"Price column '{price_column}' not found in DataFrame.")
|
||||
|
||||
# Check if data is sufficient for calculation (need period + 1 for one diff calculation)
|
||||
if len(data_df) < self.period + 1:
|
||||
print(f"Warning: Data length ({len(data_df)}) is less than RSI period ({self.period}) + 1. RSI will not be calculated meaningfully.")
|
||||
df_copy = data_df.copy()
|
||||
df_copy['RSI'] = np.nan # Add an RSI column with NaNs
|
||||
return df_copy
|
||||
if len(data_df) < self.period:
|
||||
print(f"Warning: Data length ({len(data_df)}) is less than RSI period ({self.period}). RSI will not be calculated.")
|
||||
return data_df.copy()
|
||||
|
||||
df = data_df.copy() # Work on a copy
|
||||
df = data_df.copy()
|
||||
delta = df[price_column].diff(1)
|
||||
|
||||
gain = delta.where(delta > 0, 0)
|
||||
loss = -delta.where(delta < 0, 0) # Ensure loss is positive
|
||||
|
||||
# Calculate initial average gain and loss (SMA)
|
||||
avg_gain = gain.rolling(window=self.period, min_periods=self.period).mean().iloc[self.period -1:self.period]
|
||||
avg_loss = loss.rolling(window=self.period, min_periods=self.period).mean().iloc[self.period -1:self.period]
|
||||
|
||||
|
||||
# Calculate subsequent average gains and losses (EMA-like)
|
||||
# Pre-allocate lists for gains and losses to avoid repeated appending to Series
|
||||
gains = [0.0] * len(df)
|
||||
losses = [0.0] * len(df)
|
||||
|
||||
if not avg_gain.empty:
|
||||
gains[self.period -1] = avg_gain.iloc[0]
|
||||
if not avg_loss.empty:
|
||||
losses[self.period -1] = avg_loss.iloc[0]
|
||||
|
||||
|
||||
for i in range(self.period, len(df)):
|
||||
gains[i] = ((gains[i-1] * (self.period - 1)) + gain.iloc[i]) / self.period
|
||||
losses[i] = ((losses[i-1] * (self.period - 1)) + loss.iloc[i]) / self.period
|
||||
|
||||
price_series = df[price_column]
|
||||
df['avg_gain'] = pd.Series(gains, index=df.index)
|
||||
df['avg_loss'] = pd.Series(losses, index=df.index)
|
||||
|
||||
# Calculate RS
|
||||
# Handle division by zero: if avg_loss is 0, RS is undefined or infinite.
|
||||
# If avg_loss is 0 and avg_gain is also 0, RSI is conventionally 50.
|
||||
# If avg_loss is 0 and avg_gain > 0, RSI is conventionally 100.
|
||||
rs = df['avg_gain'] / df['avg_loss']
|
||||
|
||||
# Call the static custom RSI calculator, defaulting to EMA for Wilder's smoothing
|
||||
rsi_series = self.calculate_custom_rsi(price_series, window=self.period, smoothing='EMA')
|
||||
# Calculate RSI
|
||||
# RSI = 100 - (100 / (1 + RS))
|
||||
# If avg_loss is 0:
|
||||
# If avg_gain > 0, RS -> inf, RSI -> 100
|
||||
# If avg_gain == 0, RS -> NaN (0/0), RSI -> 50 (conventionally, or could be 0 or 100 depending on interpretation)
|
||||
# We will use a common convention where RSI is 100 if avg_loss is 0 and avg_gain > 0,
|
||||
# and RSI is 0 if avg_loss is 0 and avg_gain is 0 (or 50, let's use 0 to indicate no strength if both are 0).
|
||||
# However, to avoid NaN from 0/0, it's better to calculate RSI directly with conditions.
|
||||
|
||||
rsi_values = []
|
||||
for i in range(len(df)):
|
||||
avg_g = df['avg_gain'].iloc[i]
|
||||
avg_l = df['avg_loss'].iloc[i]
|
||||
|
||||
if i < self.period -1 : # Not enough data for initial SMA
|
||||
rsi_values.append(np.nan)
|
||||
continue
|
||||
|
||||
if avg_l == 0:
|
||||
if avg_g == 0:
|
||||
rsi_values.append(50) # Or 0, or np.nan depending on how you want to treat this. 50 implies neutrality.
|
||||
else:
|
||||
rsi_values.append(100) # Max strength
|
||||
else:
|
||||
rs_val = avg_g / avg_l
|
||||
rsi_values.append(100 - (100 / (1 + rs_val)))
|
||||
|
||||
df['RSI'] = rsi_series
|
||||
df['RSI'] = pd.Series(rsi_values, index=df.index)
|
||||
|
||||
# Remove intermediate columns if desired, or keep them for debugging
|
||||
# df.drop(columns=['avg_gain', 'avg_loss'], inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
@staticmethod
|
||||
def calculate_custom_rsi(price_series: pd.Series, window: int = 14, smoothing: str = 'SMA') -> pd.Series:
|
||||
"""
|
||||
Calculates RSI with specified window and smoothing (SMA or EMA).
|
||||
|
||||
Args:
|
||||
price_series (pd.Series): Series of prices.
|
||||
window (int): The period for RSI calculation. Must be a positive integer.
|
||||
smoothing (str): Smoothing method, 'SMA' or 'EMA'. Defaults to 'SMA'.
|
||||
|
||||
Returns:
|
||||
pd.Series: Series containing the RSI values.
|
||||
"""
|
||||
if not isinstance(price_series, pd.Series):
|
||||
raise TypeError("price_series must be a pandas Series.")
|
||||
if not isinstance(window, int) or window <= 0:
|
||||
raise ValueError("window must be a positive integer.")
|
||||
if smoothing not in ['SMA', 'EMA']:
|
||||
raise ValueError("smoothing must be either 'SMA' or 'EMA'.")
|
||||
if len(price_series) < window + 1: # Need at least window + 1 prices for one diff
|
||||
# print(f"Warning: Data length ({len(price_series)}) is less than RSI window ({window}) + 1. RSI will be all NaN.")
|
||||
return pd.Series(np.nan, index=price_series.index)
|
||||
|
||||
delta = price_series.diff()
|
||||
# The first delta is NaN. For gain/loss calculations, it can be treated as 0.
|
||||
# However, subsequent rolling/ewm will handle NaNs appropriately if min_periods is set.
|
||||
|
||||
gain = delta.where(delta > 0, 0.0)
|
||||
loss = -delta.where(delta < 0, 0.0) # Ensure loss is positive
|
||||
|
||||
# Ensure gain and loss Series have the same index as price_series for rolling/ewm
|
||||
# This is important if price_series has missing dates/times
|
||||
gain = gain.reindex(price_series.index, fill_value=0.0)
|
||||
loss = loss.reindex(price_series.index, fill_value=0.0)
|
||||
|
||||
if smoothing == 'EMA':
|
||||
# adjust=False for Wilder's smoothing used in RSI
|
||||
avg_gain = gain.ewm(alpha=1/window, adjust=False, min_periods=window).mean()
|
||||
avg_loss = loss.ewm(alpha=1/window, adjust=False, min_periods=window).mean()
|
||||
else: # SMA
|
||||
avg_gain = gain.rolling(window=window, min_periods=window).mean()
|
||||
avg_loss = loss.rolling(window=window, min_periods=window).mean()
|
||||
|
||||
# Handle division by zero for RS calculation
|
||||
# If avg_loss is 0, RS can be considered infinite (if avg_gain > 0) or undefined (if avg_gain also 0)
|
||||
rs = avg_gain / avg_loss.replace(0, 1e-9) # Replace 0 with a tiny number to avoid direct division by zero warning
|
||||
|
||||
rsi = 100 - (100 / (1 + rs))
|
||||
|
||||
# Correct RSI values for edge cases where avg_loss was 0
|
||||
# If avg_loss is 0 and avg_gain is > 0, RSI is 100.
|
||||
# If avg_loss is 0 and avg_gain is 0, RSI is 50 (neutral).
|
||||
rsi[avg_loss == 0] = np.where(avg_gain[avg_loss == 0] > 0, 100, 50)
|
||||
|
||||
# Ensure RSI is NaN where avg_gain or avg_loss is NaN (due to min_periods)
|
||||
rsi[avg_gain.isna() | avg_loss.isna()] = np.nan
|
||||
|
||||
return rsi
|
||||
|
||||
521
cycles/charts.py
521
cycles/charts.py
@ -1,453 +1,86 @@
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
class BacktestCharts:
|
||||
@staticmethod
|
||||
def plot(df, meta_trend):
|
||||
def __init__(self, charts_dir="charts"):
|
||||
self.charts_dir = charts_dir
|
||||
os.makedirs(self.charts_dir, exist_ok=True)
|
||||
|
||||
def plot_profit_ratio_vs_stop_loss(self, results, filename="profit_ratio_vs_stop_loss.png"):
|
||||
"""
|
||||
Plot close price line chart with a bar at the bottom: green when trend is 1, red when trend is 0.
|
||||
The bar stays at the bottom even when zooming/panning.
|
||||
- df: DataFrame with columns ['close', ...] and a datetime index or 'timestamp' column.
|
||||
- meta_trend: array-like, same length as df, values 1 (green) or 0 (red).
|
||||
Plots profit ratio vs stop loss percentage for each timeframe.
|
||||
|
||||
Parameters:
|
||||
- results: list of dicts, each with keys: 'timeframe', 'stop_loss_pct', 'profit_ratio'
|
||||
- filename: output filename (will be saved in charts_dir)
|
||||
"""
|
||||
fig, (ax_price, ax_bar) = plt.subplots(
|
||||
nrows=2, ncols=1, figsize=(16, 8), sharex=True,
|
||||
gridspec_kw={'height_ratios': [12, 1]}
|
||||
)
|
||||
# Organize data by timeframe
|
||||
from collections import defaultdict
|
||||
data = defaultdict(lambda: {"stop_loss_pct": [], "profit_ratio": []})
|
||||
for row in results:
|
||||
tf = row["timeframe"]
|
||||
data[tf]["stop_loss_pct"].append(row["stop_loss_pct"])
|
||||
data[tf]["profit_ratio"].append(row["profit_ratio"])
|
||||
|
||||
sns.lineplot(x=df.index, y=df['close'], label='Close Price', color='blue', ax=ax_price)
|
||||
ax_price.set_title('Close Price with Trend Bar (Green=1, Red=0)')
|
||||
ax_price.set_ylabel('Price')
|
||||
ax_price.grid(True, alpha=0.3)
|
||||
ax_price.legend()
|
||||
plt.figure(figsize=(10, 6))
|
||||
for tf, vals in data.items():
|
||||
# Sort by stop_loss_pct for smooth lines
|
||||
sorted_pairs = sorted(zip(vals["stop_loss_pct"], vals["profit_ratio"]))
|
||||
stop_loss, profit_ratio = zip(*sorted_pairs)
|
||||
plt.plot(
|
||||
[s * 100 for s in stop_loss], # Convert to percent
|
||||
profit_ratio,
|
||||
marker="o",
|
||||
label=tf
|
||||
)
|
||||
|
||||
# Clean meta_trend: ensure only 0/1, handle NaNs by forward-fill then fill remaining with 0
|
||||
meta_trend_arr = np.asarray(meta_trend)
|
||||
if not np.issubdtype(meta_trend_arr.dtype, np.number):
|
||||
meta_trend_arr = pd.Series(meta_trend_arr).astype(float).to_numpy()
|
||||
if np.isnan(meta_trend_arr).any():
|
||||
meta_trend_arr = pd.Series(meta_trend_arr).fillna(method='ffill').fillna(0).astype(int).to_numpy()
|
||||
else:
|
||||
meta_trend_arr = meta_trend_arr.astype(int)
|
||||
meta_trend_arr = np.where(meta_trend_arr != 1, 0, 1) # force only 0 or 1
|
||||
if hasattr(df.index, 'to_numpy'):
|
||||
x_vals = df.index.to_numpy()
|
||||
else:
|
||||
x_vals = np.array(df.index)
|
||||
|
||||
# Find contiguous regions
|
||||
regions = []
|
||||
start = 0
|
||||
for i in range(1, len(meta_trend_arr)):
|
||||
if meta_trend_arr[i] != meta_trend_arr[i-1]:
|
||||
regions.append((start, i-1, meta_trend_arr[i-1]))
|
||||
start = i
|
||||
regions.append((start, len(meta_trend_arr)-1, meta_trend_arr[-1]))
|
||||
|
||||
# Draw red vertical lines at the start of each new region (except the first)
|
||||
for region_idx in range(1, len(regions)):
|
||||
region_start = regions[region_idx][0]
|
||||
ax_price.axvline(x=x_vals[region_start], color='black', linestyle='--', alpha=0.7, linewidth=1)
|
||||
|
||||
for start, end, trend in regions:
|
||||
color = '#089981' if trend == 1 else '#F23645'
|
||||
# Offset by 1 on x: span from x_vals[start] to x_vals[end+1] if possible
|
||||
x_start = x_vals[start]
|
||||
x_end = x_vals[end+1] if end+1 < len(x_vals) else x_vals[end]
|
||||
ax_bar.axvspan(x_start, x_end, color=color, alpha=1, ymin=0, ymax=1)
|
||||
|
||||
ax_bar.set_ylim(0, 1)
|
||||
ax_bar.set_yticks([])
|
||||
ax_bar.set_ylabel('Trend')
|
||||
ax_bar.set_xlabel('Time')
|
||||
ax_bar.grid(False)
|
||||
ax_bar.set_title('Meta Trend')
|
||||
|
||||
plt.tight_layout(h_pad=0.1)
|
||||
plt.show()
|
||||
|
||||
@staticmethod
|
||||
def format_strategy_data_with_trades(strategy_data, backtest_results):
|
||||
"""
|
||||
Format strategy data for universal plotting with actual executed trades.
|
||||
Converts strategy output into the expected column format: "x_type_name"
|
||||
|
||||
Args:
|
||||
strategy_data (DataFrame): Output from strategy with columns like 'close', 'UpperBand', 'LowerBand', 'RSI'
|
||||
backtest_results (dict): Results from backtest.run() containing actual executed trades
|
||||
|
||||
Returns:
|
||||
DataFrame: Formatted data ready for plot_data function
|
||||
"""
|
||||
formatted_df = pd.DataFrame(index=strategy_data.index)
|
||||
|
||||
# Plot 1: Price data with Bollinger Bands and actual trade signals
|
||||
if 'close' in strategy_data.columns:
|
||||
formatted_df['1_line_close'] = strategy_data['close']
|
||||
|
||||
# Bollinger Bands area (prefer standard names, fallback to timeframe-specific)
|
||||
upper_band_col = None
|
||||
lower_band_col = None
|
||||
sma_col = None
|
||||
|
||||
# Check for standard BB columns first
|
||||
if 'UpperBand' in strategy_data.columns and 'LowerBand' in strategy_data.columns:
|
||||
upper_band_col = 'UpperBand'
|
||||
lower_band_col = 'LowerBand'
|
||||
# Check for 15m BB columns
|
||||
elif 'UpperBand_15m' in strategy_data.columns and 'LowerBand_15m' in strategy_data.columns:
|
||||
upper_band_col = 'UpperBand_15m'
|
||||
lower_band_col = 'LowerBand_15m'
|
||||
|
||||
if upper_band_col and lower_band_col:
|
||||
formatted_df['1_area_bb_upper'] = strategy_data[upper_band_col]
|
||||
formatted_df['1_area_bb_lower'] = strategy_data[lower_band_col]
|
||||
|
||||
# SMA/Moving Average line
|
||||
if 'SMA' in strategy_data.columns:
|
||||
sma_col = 'SMA'
|
||||
elif 'SMA_15m' in strategy_data.columns:
|
||||
sma_col = 'SMA_15m'
|
||||
|
||||
if sma_col:
|
||||
formatted_df['1_line_sma'] = strategy_data[sma_col]
|
||||
|
||||
# Strategy buy/sell signals (all signals from strategy) as smaller scatter points
|
||||
if 'BuySignal' in strategy_data.columns and 'close' in strategy_data.columns:
|
||||
strategy_buy_points = strategy_data['close'].where(strategy_data['BuySignal'], np.nan)
|
||||
formatted_df['1_scatter_strategy_buy'] = strategy_buy_points
|
||||
|
||||
if 'SellSignal' in strategy_data.columns and 'close' in strategy_data.columns:
|
||||
strategy_sell_points = strategy_data['close'].where(strategy_data['SellSignal'], np.nan)
|
||||
formatted_df['1_scatter_strategy_sell'] = strategy_sell_points
|
||||
|
||||
# Actual executed trades from backtest results (larger, more prominent)
|
||||
if 'trades' in backtest_results and backtest_results['trades']:
|
||||
# Create series for buy and sell points
|
||||
buy_points = pd.Series(np.nan, index=strategy_data.index)
|
||||
sell_points = pd.Series(np.nan, index=strategy_data.index)
|
||||
|
||||
for trade in backtest_results['trades']:
|
||||
entry_time = trade.get('entry_time')
|
||||
exit_time = trade.get('exit_time')
|
||||
entry_price = trade.get('entry')
|
||||
exit_price = trade.get('exit')
|
||||
|
||||
# Find closest index for entry time
|
||||
if entry_time is not None and entry_price is not None:
|
||||
try:
|
||||
if isinstance(entry_time, str):
|
||||
entry_time = pd.to_datetime(entry_time)
|
||||
# Find the closest index to entry_time
|
||||
closest_entry_idx = strategy_data.index.get_indexer([entry_time], method='nearest')[0]
|
||||
if closest_entry_idx >= 0:
|
||||
buy_points.iloc[closest_entry_idx] = entry_price
|
||||
except (ValueError, IndexError, TypeError):
|
||||
pass # Skip if can't find matching time
|
||||
|
||||
# Find closest index for exit time
|
||||
if exit_time is not None and exit_price is not None:
|
||||
try:
|
||||
if isinstance(exit_time, str):
|
||||
exit_time = pd.to_datetime(exit_time)
|
||||
# Find the closest index to exit_time
|
||||
closest_exit_idx = strategy_data.index.get_indexer([exit_time], method='nearest')[0]
|
||||
if closest_exit_idx >= 0:
|
||||
sell_points.iloc[closest_exit_idx] = exit_price
|
||||
except (ValueError, IndexError, TypeError):
|
||||
pass # Skip if can't find matching time
|
||||
|
||||
formatted_df['1_scatter_actual_buy'] = buy_points
|
||||
formatted_df['1_scatter_actual_sell'] = sell_points
|
||||
|
||||
# Stop Loss and Take Profit levels
|
||||
if 'StopLoss' in strategy_data.columns:
|
||||
formatted_df['1_line_stop_loss'] = strategy_data['StopLoss']
|
||||
if 'TakeProfit' in strategy_data.columns:
|
||||
formatted_df['1_line_take_profit'] = strategy_data['TakeProfit']
|
||||
|
||||
# Plot 2: RSI
|
||||
rsi_col = None
|
||||
if 'RSI' in strategy_data.columns:
|
||||
rsi_col = 'RSI'
|
||||
elif 'RSI_15m' in strategy_data.columns:
|
||||
rsi_col = 'RSI_15m'
|
||||
|
||||
if rsi_col:
|
||||
formatted_df['2_line_rsi'] = strategy_data[rsi_col]
|
||||
# Add RSI overbought/oversold levels
|
||||
formatted_df['2_line_rsi_overbought'] = 70
|
||||
formatted_df['2_line_rsi_oversold'] = 30
|
||||
|
||||
# Plot 3: Volume (if available)
|
||||
if 'volume' in strategy_data.columns:
|
||||
formatted_df['3_bar_volume'] = strategy_data['volume']
|
||||
|
||||
# Add volume moving average if available
|
||||
if 'VolumeMA_15m' in strategy_data.columns:
|
||||
formatted_df['3_line_volume_ma'] = strategy_data['VolumeMA_15m']
|
||||
|
||||
return formatted_df
|
||||
|
||||
@staticmethod
|
||||
def format_strategy_data(strategy_data):
|
||||
"""
|
||||
Format strategy data for universal plotting (without trade signals).
|
||||
Converts strategy output into the expected column format: "x_type_name"
|
||||
|
||||
Args:
|
||||
strategy_data (DataFrame): Output from strategy with columns like 'close', 'UpperBand', 'LowerBand', 'RSI'
|
||||
|
||||
Returns:
|
||||
DataFrame: Formatted data ready for plot_data function
|
||||
"""
|
||||
formatted_df = pd.DataFrame(index=strategy_data.index)
|
||||
|
||||
# Plot 1: Price data with Bollinger Bands
|
||||
if 'close' in strategy_data.columns:
|
||||
formatted_df['1_line_close'] = strategy_data['close']
|
||||
|
||||
# Bollinger Bands area (prefer standard names, fallback to timeframe-specific)
|
||||
upper_band_col = None
|
||||
lower_band_col = None
|
||||
sma_col = None
|
||||
|
||||
# Check for standard BB columns first
|
||||
if 'UpperBand' in strategy_data.columns and 'LowerBand' in strategy_data.columns:
|
||||
upper_band_col = 'UpperBand'
|
||||
lower_band_col = 'LowerBand'
|
||||
# Check for 15m BB columns
|
||||
elif 'UpperBand_15m' in strategy_data.columns and 'LowerBand_15m' in strategy_data.columns:
|
||||
upper_band_col = 'UpperBand_15m'
|
||||
lower_band_col = 'LowerBand_15m'
|
||||
|
||||
if upper_band_col and lower_band_col:
|
||||
formatted_df['1_area_bb_upper'] = strategy_data[upper_band_col]
|
||||
formatted_df['1_area_bb_lower'] = strategy_data[lower_band_col]
|
||||
|
||||
# SMA/Moving Average line
|
||||
if 'SMA' in strategy_data.columns:
|
||||
sma_col = 'SMA'
|
||||
elif 'SMA_15m' in strategy_data.columns:
|
||||
sma_col = 'SMA_15m'
|
||||
|
||||
if sma_col:
|
||||
formatted_df['1_line_sma'] = strategy_data[sma_col]
|
||||
|
||||
# Stop Loss and Take Profit levels
|
||||
if 'StopLoss' in strategy_data.columns:
|
||||
formatted_df['1_line_stop_loss'] = strategy_data['StopLoss']
|
||||
if 'TakeProfit' in strategy_data.columns:
|
||||
formatted_df['1_line_take_profit'] = strategy_data['TakeProfit']
|
||||
|
||||
# Plot 2: RSI
|
||||
rsi_col = None
|
||||
if 'RSI' in strategy_data.columns:
|
||||
rsi_col = 'RSI'
|
||||
elif 'RSI_15m' in strategy_data.columns:
|
||||
rsi_col = 'RSI_15m'
|
||||
|
||||
if rsi_col:
|
||||
formatted_df['2_line_rsi'] = strategy_data[rsi_col]
|
||||
# Add RSI overbought/oversold levels
|
||||
formatted_df['2_line_rsi_overbought'] = 70
|
||||
formatted_df['2_line_rsi_oversold'] = 30
|
||||
|
||||
# Plot 3: Volume (if available)
|
||||
if 'volume' in strategy_data.columns:
|
||||
formatted_df['3_bar_volume'] = strategy_data['volume']
|
||||
|
||||
# Add volume moving average if available
|
||||
if 'VolumeMA_15m' in strategy_data.columns:
|
||||
formatted_df['3_line_volume_ma'] = strategy_data['VolumeMA_15m']
|
||||
|
||||
return formatted_df
|
||||
|
||||
@staticmethod
|
||||
def plot_data(df):
|
||||
"""
|
||||
Universal plot function for any formatted data.
|
||||
- df: DataFrame with column names in format "x_type_name" where:
|
||||
x = plot number (subplot)
|
||||
type = plot type (line, area, scatter, bar, etc.)
|
||||
name = descriptive name for the data series
|
||||
"""
|
||||
if df.empty:
|
||||
print("No data to plot")
|
||||
return
|
||||
|
||||
# Parse all columns
|
||||
plot_info = []
|
||||
for column in df.columns:
|
||||
parts = column.split('_', 2) # Split into max 3 parts
|
||||
if len(parts) < 3:
|
||||
print(f"Warning: Skipping column '{column}' - invalid format. Expected 'x_type_name'")
|
||||
continue
|
||||
|
||||
try:
|
||||
plot_number = int(parts[0])
|
||||
plot_type = parts[1].lower()
|
||||
plot_name = parts[2]
|
||||
plot_info.append((plot_number, plot_type, plot_name, column))
|
||||
except ValueError:
|
||||
print(f"Warning: Skipping column '{column}' - invalid plot number")
|
||||
continue
|
||||
|
||||
if not plot_info:
|
||||
print("No valid columns found for plotting")
|
||||
return
|
||||
|
||||
# Group by plot number
|
||||
plots = {}
|
||||
for plot_num, plot_type, plot_name, column in plot_info:
|
||||
if plot_num not in plots:
|
||||
plots[plot_num] = []
|
||||
plots[plot_num].append((plot_type, plot_name, column))
|
||||
|
||||
# Sort plot numbers
|
||||
plot_numbers = sorted(plots.keys())
|
||||
n_plots = len(plot_numbers)
|
||||
|
||||
# Create subplots
|
||||
fig, axs = plt.subplots(n_plots, 1, figsize=(16, 6 * n_plots), sharex=True)
|
||||
if n_plots == 1:
|
||||
axs = [axs] # Ensure axs is always a list
|
||||
|
||||
# Plot each subplot
|
||||
for i, plot_num in enumerate(plot_numbers):
|
||||
ax = axs[i]
|
||||
plot_items = plots[plot_num]
|
||||
|
||||
# Handle Bollinger Bands area first (needs special handling)
|
||||
bb_upper = None
|
||||
bb_lower = None
|
||||
|
||||
for plot_type, plot_name, column in plot_items:
|
||||
if plot_type == 'area' and 'bb_upper' in plot_name:
|
||||
bb_upper = df[column]
|
||||
elif plot_type == 'area' and 'bb_lower' in plot_name:
|
||||
bb_lower = df[column]
|
||||
|
||||
# Plot Bollinger Bands area if both bounds exist
|
||||
if bb_upper is not None and bb_lower is not None:
|
||||
ax.fill_between(df.index, bb_upper, bb_lower, alpha=0.2, color='gray', label='Bollinger Bands')
|
||||
|
||||
# Plot other items
|
||||
for plot_type, plot_name, column in plot_items:
|
||||
if plot_type == 'area' and ('bb_upper' in plot_name or 'bb_lower' in plot_name):
|
||||
continue # Already handled above
|
||||
|
||||
data = df[column].dropna() # Remove NaN values for cleaner plots
|
||||
|
||||
if plot_type == 'line':
|
||||
color = None
|
||||
linestyle = '-'
|
||||
alpha = 1.0
|
||||
|
||||
# Special styling for different line types
|
||||
if 'overbought' in plot_name:
|
||||
color = 'red'
|
||||
linestyle = '--'
|
||||
alpha = 0.7
|
||||
elif 'oversold' in plot_name:
|
||||
color = 'green'
|
||||
linestyle = '--'
|
||||
alpha = 0.7
|
||||
elif 'stop_loss' in plot_name:
|
||||
color = 'red'
|
||||
linestyle = ':'
|
||||
alpha = 0.8
|
||||
elif 'take_profit' in plot_name:
|
||||
color = 'green'
|
||||
linestyle = ':'
|
||||
alpha = 0.8
|
||||
elif 'sma' in plot_name:
|
||||
color = 'orange'
|
||||
alpha = 0.8
|
||||
elif 'volume_ma' in plot_name:
|
||||
color = 'purple'
|
||||
alpha = 0.7
|
||||
|
||||
ax.plot(data.index, data, label=plot_name.replace('_', ' ').title(),
|
||||
color=color, linestyle=linestyle, alpha=alpha)
|
||||
|
||||
elif plot_type == 'scatter':
|
||||
color = 'green' if 'buy' in plot_name else 'red' if 'sell' in plot_name else 'blue'
|
||||
marker = '^' if 'buy' in plot_name else 'v' if 'sell' in plot_name else 'o'
|
||||
size = 100 if 'buy' in plot_name or 'sell' in plot_name else 50
|
||||
alpha = 0.8
|
||||
zorder = 5
|
||||
label_name = plot_name.replace('_', ' ').title()
|
||||
|
||||
# Special styling for different signal types
|
||||
if 'actual_buy' in plot_name:
|
||||
color = 'darkgreen'
|
||||
marker = '^'
|
||||
size = 120
|
||||
alpha = 1.0
|
||||
zorder = 10 # Higher z-order to appear on top
|
||||
label_name = 'Actual Buy Trades'
|
||||
elif 'actual_sell' in plot_name:
|
||||
color = 'darkred'
|
||||
marker = 'v'
|
||||
size = 120
|
||||
alpha = 1.0
|
||||
zorder = 10 # Higher z-order to appear on top
|
||||
label_name = 'Actual Sell Trades'
|
||||
elif 'strategy_buy' in plot_name:
|
||||
color = 'lightgreen'
|
||||
marker = '^'
|
||||
size = 60
|
||||
alpha = 0.6
|
||||
zorder = 3 # Lower z-order to appear behind actual trades
|
||||
label_name = 'Strategy Buy Signals'
|
||||
elif 'strategy_sell' in plot_name:
|
||||
color = 'lightcoral'
|
||||
marker = 'v'
|
||||
size = 60
|
||||
alpha = 0.6
|
||||
zorder = 3 # Lower z-order to appear behind actual trades
|
||||
label_name = 'Strategy Sell Signals'
|
||||
|
||||
ax.scatter(data.index, data, label=label_name,
|
||||
color=color, marker=marker, s=size, alpha=alpha, zorder=zorder)
|
||||
|
||||
elif plot_type == 'area':
|
||||
ax.fill_between(data.index, data, alpha=0.5, label=plot_name.replace('_', ' ').title())
|
||||
|
||||
elif plot_type == 'bar':
|
||||
ax.bar(data.index, data, alpha=0.7, label=plot_name.replace('_', ' ').title())
|
||||
|
||||
else:
|
||||
print(f"Warning: Plot type '{plot_type}' not supported for column '{column}'")
|
||||
|
||||
# Customize subplot
|
||||
ax.grid(True, alpha=0.3)
|
||||
ax.legend()
|
||||
|
||||
# Set titles and labels
|
||||
if plot_num == 1:
|
||||
ax.set_title('Price Chart with Bollinger Bands and Signals')
|
||||
ax.set_ylabel('Price')
|
||||
elif plot_num == 2:
|
||||
ax.set_title('RSI Indicator')
|
||||
ax.set_ylabel('RSI')
|
||||
ax.set_ylim(0, 100)
|
||||
elif plot_num == 3:
|
||||
ax.set_title('Volume')
|
||||
ax.set_ylabel('Volume')
|
||||
else:
|
||||
ax.set_title(f'Plot {plot_num}')
|
||||
|
||||
# Set x-axis label only on the bottom subplot
|
||||
axs[-1].set_xlabel('Time')
|
||||
|
||||
plt.xlabel("Stop Loss (%)")
|
||||
plt.ylabel("Profit Ratio")
|
||||
plt.title("Profit Ratio vs Stop Loss (%) per Timeframe")
|
||||
plt.legend(title="Timeframe")
|
||||
plt.grid(True, linestyle="--", alpha=0.5)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
output_path = os.path.join(self.charts_dir, filename)
|
||||
plt.savefig(output_path)
|
||||
plt.close()
|
||||
|
||||
def plot_average_trade_vs_stop_loss(self, results, filename="average_trade_vs_stop_loss.png"):
|
||||
"""
|
||||
Plots average trade vs stop loss percentage for each timeframe.
|
||||
|
||||
Parameters:
|
||||
- results: list of dicts, each with keys: 'timeframe', 'stop_loss_pct', 'average_trade'
|
||||
- filename: output filename (will be saved in charts_dir)
|
||||
"""
|
||||
from collections import defaultdict
|
||||
data = defaultdict(lambda: {"stop_loss_pct": [], "average_trade": []})
|
||||
for row in results:
|
||||
tf = row["timeframe"]
|
||||
if "average_trade" not in row:
|
||||
continue # Skip rows without average_trade
|
||||
data[tf]["stop_loss_pct"].append(row["stop_loss_pct"])
|
||||
data[tf]["average_trade"].append(row["average_trade"])
|
||||
|
||||
plt.figure(figsize=(10, 6))
|
||||
for tf, vals in data.items():
|
||||
# Sort by stop_loss_pct for smooth lines
|
||||
sorted_pairs = sorted(zip(vals["stop_loss_pct"], vals["average_trade"]))
|
||||
stop_loss, average_trade = zip(*sorted_pairs)
|
||||
plt.plot(
|
||||
[s * 100 for s in stop_loss], # Convert to percent
|
||||
average_trade,
|
||||
marker="o",
|
||||
label=tf
|
||||
)
|
||||
|
||||
plt.xlabel("Stop Loss (%)")
|
||||
plt.ylabel("Average Trade")
|
||||
plt.title("Average Trade vs Stop Loss (%) per Timeframe")
|
||||
plt.legend(title="Timeframe")
|
||||
plt.grid(True, linestyle="--", alpha=0.5)
|
||||
plt.tight_layout()
|
||||
|
||||
output_path = os.path.join(self.charts_dir, filename)
|
||||
plt.savefig(output_path)
|
||||
plt.close()
|
||||
|
||||
@ -2,6 +2,6 @@ import pandas as pd
|
||||
|
||||
class MarketFees:
|
||||
@staticmethod
|
||||
def calculate_okx_taker_maker_fee(amount, is_maker=True) -> float:
|
||||
def calculate_okx_taker_maker_fee(amount, is_maker=True):
|
||||
fee_rate = 0.0008 if is_maker else 0.0010
|
||||
return amount * fee_rate
|
||||
|
||||
@ -1,42 +0,0 @@
|
||||
"""
|
||||
Strategies Module
|
||||
|
||||
This module contains the strategy management system for trading strategies.
|
||||
It provides a flexible framework for implementing, combining, and managing multiple trading strategies.
|
||||
|
||||
Components:
|
||||
- StrategyBase: Abstract base class for all strategies
|
||||
- DefaultStrategy: Meta-trend based strategy
|
||||
- BBRSStrategy: Bollinger Bands + RSI strategy
|
||||
- StrategyManager: Orchestrates multiple strategies
|
||||
- StrategySignal: Represents trading signals with confidence levels
|
||||
|
||||
Usage:
|
||||
from cycles.strategies import StrategyManager, create_strategy_manager
|
||||
|
||||
# Create strategy manager from config
|
||||
strategy_manager = create_strategy_manager(config)
|
||||
|
||||
# Or create individual strategies
|
||||
from cycles.strategies import DefaultStrategy, BBRSStrategy
|
||||
default_strategy = DefaultStrategy(weight=1.0, params={})
|
||||
"""
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
from .default_strategy import DefaultStrategy
|
||||
from .bbrs_strategy import BBRSStrategy
|
||||
from .random_strategy import RandomStrategy
|
||||
from .manager import StrategyManager, create_strategy_manager
|
||||
|
||||
__all__ = [
|
||||
'StrategyBase',
|
||||
'StrategySignal',
|
||||
'DefaultStrategy',
|
||||
'BBRSStrategy',
|
||||
'RandomStrategy',
|
||||
'StrategyManager',
|
||||
'create_strategy_manager'
|
||||
]
|
||||
|
||||
__version__ = '1.0.0'
|
||||
__author__ = 'TCP Cycles Team'
|
||||
@ -1,250 +0,0 @@
|
||||
"""
|
||||
Base classes for the strategy management system.
|
||||
|
||||
This module contains the fundamental building blocks for all trading strategies:
|
||||
- StrategySignal: Represents trading signals with confidence and metadata
|
||||
- StrategyBase: Abstract base class that all strategies must inherit from
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Optional, List, Union
|
||||
|
||||
|
||||
class StrategySignal:
|
||||
"""
|
||||
Represents a trading signal from a strategy.
|
||||
|
||||
A signal encapsulates the strategy's recommendation along with confidence
|
||||
level, optional price target, and additional metadata.
|
||||
|
||||
Attributes:
|
||||
signal_type (str): Type of signal - "ENTRY", "EXIT", or "HOLD"
|
||||
confidence (float): Confidence level from 0.0 to 1.0
|
||||
price (Optional[float]): Optional specific price for the signal
|
||||
metadata (Dict): Additional signal data and context
|
||||
|
||||
Example:
|
||||
# Entry signal with high confidence
|
||||
signal = StrategySignal("ENTRY", confidence=0.8)
|
||||
|
||||
# Exit signal with stop loss price
|
||||
signal = StrategySignal("EXIT", confidence=1.0, price=50000,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
"""
|
||||
|
||||
def __init__(self, signal_type: str, confidence: float = 1.0,
|
||||
price: Optional[float] = None, metadata: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize a strategy signal.
|
||||
|
||||
Args:
|
||||
signal_type: Type of signal ("ENTRY", "EXIT", "HOLD")
|
||||
confidence: Confidence level (0.0 to 1.0)
|
||||
price: Optional specific price for the signal
|
||||
metadata: Additional signal data and context
|
||||
"""
|
||||
self.signal_type = signal_type
|
||||
self.confidence = max(0.0, min(1.0, confidence)) # Clamp to [0,1]
|
||||
self.price = price
|
||||
self.metadata = metadata or {}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the signal."""
|
||||
return (f"StrategySignal(type={self.signal_type}, "
|
||||
f"confidence={self.confidence:.2f}, "
|
||||
f"price={self.price}, metadata={self.metadata})")
|
||||
|
||||
|
||||
class StrategyBase(ABC):
|
||||
"""
|
||||
Abstract base class for all trading strategies.
|
||||
|
||||
This class defines the interface that all strategies must implement:
|
||||
- get_timeframes(): Specify required timeframes for the strategy
|
||||
- initialize(): Setup strategy with backtester data
|
||||
- get_entry_signal(): Generate entry signals
|
||||
- get_exit_signal(): Generate exit signals
|
||||
- get_confidence(): Optional confidence calculation
|
||||
|
||||
Attributes:
|
||||
name (str): Strategy name
|
||||
weight (float): Strategy weight for combination
|
||||
params (Dict): Strategy parameters
|
||||
initialized (bool): Whether strategy has been initialized
|
||||
timeframes_data (Dict): Resampled data for different timeframes
|
||||
|
||||
Example:
|
||||
class MyStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["15min"] # This strategy works on 15-minute data
|
||||
|
||||
def initialize(self, backtester):
|
||||
# Setup strategy indicators using self.timeframes_data["15min"]
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Return StrategySignal based on analysis
|
||||
if should_enter:
|
||||
return StrategySignal("ENTRY", confidence=0.7)
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, weight: float = 1.0, params: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize the strategy base.
|
||||
|
||||
Args:
|
||||
name: Strategy name/identifier
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy-specific parameters
|
||||
"""
|
||||
self.name = name
|
||||
self.weight = weight
|
||||
self.params = params or {}
|
||||
self.initialized = False
|
||||
self.timeframes_data = {} # Will store resampled data for each timeframe
|
||||
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""
|
||||
Get the list of timeframes required by this strategy.
|
||||
|
||||
Override this method to specify which timeframes your strategy needs.
|
||||
The base class will automatically resample the 1-minute data to these timeframes
|
||||
and make them available in self.timeframes_data.
|
||||
|
||||
Returns:
|
||||
List[str]: List of timeframe strings (e.g., ["1min", "15min", "1h"])
|
||||
|
||||
Example:
|
||||
def get_timeframes(self):
|
||||
return ["15min"] # Strategy needs 15-minute data
|
||||
|
||||
def get_timeframes(self):
|
||||
return ["5min", "15min", "1h"] # Multi-timeframe strategy
|
||||
"""
|
||||
return ["1min"] # Default to 1-minute data
|
||||
|
||||
def _resample_data(self, original_data: pd.DataFrame) -> None:
|
||||
"""
|
||||
Resample the original 1-minute data to all required timeframes.
|
||||
|
||||
This method is called automatically during initialization to create
|
||||
resampled versions of the data for each timeframe the strategy needs.
|
||||
|
||||
Args:
|
||||
original_data: Original 1-minute OHLCV data with DatetimeIndex
|
||||
"""
|
||||
self.timeframes_data = {}
|
||||
|
||||
for timeframe in self.get_timeframes():
|
||||
if timeframe == "1min":
|
||||
# For 1-minute data, just use the original
|
||||
self.timeframes_data[timeframe] = original_data.copy()
|
||||
else:
|
||||
# Resample to the specified timeframe
|
||||
resampled = original_data.resample(timeframe).agg({
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'sum'
|
||||
}).dropna()
|
||||
|
||||
self.timeframes_data[timeframe] = resampled
|
||||
|
||||
def get_data_for_timeframe(self, timeframe: str) -> Optional[pd.DataFrame]:
|
||||
"""
|
||||
Get resampled data for a specific timeframe.
|
||||
|
||||
Args:
|
||||
timeframe: Timeframe string (e.g., "15min", "1h")
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: Resampled OHLCV data or None if timeframe not available
|
||||
"""
|
||||
return self.timeframes_data.get(timeframe)
|
||||
|
||||
def get_primary_timeframe_data(self) -> pd.DataFrame:
|
||||
"""
|
||||
Get data for the primary (first) timeframe.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: Data for the first timeframe in get_timeframes() list
|
||||
"""
|
||||
primary_timeframe = self.get_timeframes()[0]
|
||||
return self.timeframes_data[primary_timeframe]
|
||||
|
||||
@abstractmethod
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize strategy with backtester data.
|
||||
|
||||
This method is called once before backtesting begins.
|
||||
The original 1-minute data will already be resampled to all required timeframes
|
||||
and available in self.timeframes_data.
|
||||
|
||||
Strategies should setup indicators, validate data, and
|
||||
set self.initialized = True when complete.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with data and configuration
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal for the given data index.
|
||||
|
||||
The df_index refers to the index in the backtester's working dataframe,
|
||||
which corresponds to the primary timeframe data.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal with confidence level
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal for the given data index.
|
||||
|
||||
The df_index refers to the index in the backtester's working dataframe,
|
||||
which corresponds to the primary timeframe data.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with confidence level
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence for the current market state.
|
||||
|
||||
Default implementation returns 1.0. Strategies can override
|
||||
this to provide dynamic confidence based on market conditions.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
return 1.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the strategy."""
|
||||
timeframes = self.get_timeframes()
|
||||
return (f"{self.__class__.__name__}(name={self.name}, "
|
||||
f"weight={self.weight}, timeframes={timeframes}, "
|
||||
f"initialized={self.initialized})")
|
||||
@ -1,344 +0,0 @@
|
||||
"""
|
||||
Bollinger Bands + RSI Strategy (BBRS)
|
||||
|
||||
This module implements a sophisticated trading strategy that combines Bollinger Bands
|
||||
and RSI indicators with market regime detection. The strategy adapts its parameters
|
||||
based on whether the market is trending or moving sideways.
|
||||
|
||||
Key Features:
|
||||
- Dynamic parameter adjustment based on market regime
|
||||
- Bollinger Band squeeze detection
|
||||
- RSI overbought/oversold conditions
|
||||
- Market regime-specific thresholds
|
||||
- Multi-timeframe analysis support
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from typing import Tuple, Optional, List
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
|
||||
class BBRSStrategy(StrategyBase):
|
||||
"""
|
||||
Bollinger Bands + RSI Strategy implementation.
|
||||
|
||||
This strategy uses Bollinger Bands and RSI indicators with market regime detection
|
||||
to generate trading signals. It adapts its parameters based on whether the market
|
||||
is in a trending or sideways regime.
|
||||
|
||||
The strategy works with 1-minute data as input and lets the underlying Strategy class
|
||||
handle internal resampling to the timeframes it needs (typically 15min and 1h).
|
||||
Stop-loss execution uses 1-minute precision.
|
||||
|
||||
Parameters:
|
||||
bb_width (float): Bollinger Band width threshold (default: 0.05)
|
||||
bb_period (int): Bollinger Band period (default: 20)
|
||||
rsi_period (int): RSI calculation period (default: 14)
|
||||
trending_rsi_threshold (list): RSI thresholds for trending market [low, high]
|
||||
trending_bb_multiplier (float): BB multiplier for trending market
|
||||
sideways_rsi_threshold (list): RSI thresholds for sideways market [low, high]
|
||||
sideways_bb_multiplier (float): BB multiplier for sideways market
|
||||
strategy_name (str): Strategy implementation name ("MarketRegimeStrategy" or "CryptoTradingStrategy")
|
||||
SqueezeStrategy (bool): Enable squeeze strategy
|
||||
stop_loss_pct (float): Stop loss percentage (default: 0.05)
|
||||
|
||||
Example:
|
||||
params = {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"strategy_name": "MarketRegimeStrategy",
|
||||
"SqueezeStrategy": true
|
||||
}
|
||||
strategy = BBRSStrategy(weight=1.0, params=params)
|
||||
"""
|
||||
|
||||
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
|
||||
"""
|
||||
Initialize the BBRS strategy.
|
||||
|
||||
Args:
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy parameters for Bollinger Bands and RSI
|
||||
"""
|
||||
super().__init__("bbrs", weight, params)
|
||||
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""
|
||||
Get the timeframes required by the BBRS strategy.
|
||||
|
||||
BBRS strategy uses 1-minute data as input and lets the Strategy class
|
||||
handle internal resampling to the timeframes it needs (15min, 1h, etc.).
|
||||
We still include 1min for stop-loss precision.
|
||||
|
||||
Returns:
|
||||
List[str]: List of timeframes needed for the strategy
|
||||
"""
|
||||
# BBRS strategy works with 1-minute data and lets Strategy class handle resampling
|
||||
return ["1min"]
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize BBRS strategy with signal processing.
|
||||
|
||||
Sets up the strategy by:
|
||||
1. Using 1-minute data directly (Strategy class handles internal resampling)
|
||||
2. Running the BBRS strategy processing on 1-minute data
|
||||
3. Creating signals aligned with backtester expectations
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
# Resample to get 1-minute data (which should be the original data)
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Get 1-minute data for strategy processing - Strategy class will handle internal resampling
|
||||
min1_data = self.get_data_for_timeframe("1min")
|
||||
|
||||
# Initialize empty signal series for backtester compatibility
|
||||
# Note: These will be populated after strategy processing
|
||||
backtester.strategies["buy_signals"] = pd.Series(False, index=range(len(min1_data)))
|
||||
backtester.strategies["sell_signals"] = pd.Series(False, index=range(len(min1_data)))
|
||||
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.05)
|
||||
backtester.strategies["primary_timeframe"] = "1min"
|
||||
|
||||
# Run strategy processing on 1-minute data
|
||||
self._run_strategy_processing(backtester)
|
||||
|
||||
self.initialized = True
|
||||
|
||||
def _run_strategy_processing(self, backtester) -> None:
|
||||
"""
|
||||
Run the actual BBRS strategy processing.
|
||||
|
||||
Uses the Strategy class from cycles.Analysis.strategies to process
|
||||
the 1-minute data. The Strategy class will handle internal resampling
|
||||
to the timeframes it needs (15min, 1h, etc.) and generate buy/sell signals.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with timeframes_data available
|
||||
"""
|
||||
from cycles.Analysis.bb_rsi import BollingerBandsStrategy
|
||||
|
||||
# Get 1-minute data for strategy processing - let Strategy class handle resampling
|
||||
strategy_data = self.get_data_for_timeframe("1min")
|
||||
|
||||
# Configure strategy parameters with defaults
|
||||
config_strategy = {
|
||||
"bb_width": self.params.get("bb_width", 0.05),
|
||||
"bb_period": self.params.get("bb_period", 20),
|
||||
"rsi_period": self.params.get("rsi_period", 14),
|
||||
"trending": {
|
||||
"rsi_threshold": self.params.get("trending_rsi_threshold", [30, 70]),
|
||||
"bb_std_dev_multiplier": self.params.get("trending_bb_multiplier", 2.5),
|
||||
},
|
||||
"sideways": {
|
||||
"rsi_threshold": self.params.get("sideways_rsi_threshold", [40, 60]),
|
||||
"bb_std_dev_multiplier": self.params.get("sideways_bb_multiplier", 1.8),
|
||||
},
|
||||
"strategy_name": self.params.get("strategy_name", "MarketRegimeStrategy"),
|
||||
"SqueezeStrategy": self.params.get("SqueezeStrategy", True)
|
||||
}
|
||||
|
||||
# Run strategy processing on 1-minute data - Strategy class handles internal resampling
|
||||
strategy = BollingerBandsStrategy(config=config_strategy, logging=logging)
|
||||
processed_data = strategy.run(strategy_data, config_strategy["strategy_name"])
|
||||
|
||||
# Store processed data for plotting and analysis
|
||||
backtester.processed_data = processed_data
|
||||
|
||||
if processed_data.empty:
|
||||
# If strategy processing failed, keep empty signals
|
||||
return
|
||||
|
||||
# Extract signals from processed data
|
||||
buy_signals_raw = processed_data.get('BuySignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
sell_signals_raw = processed_data.get('SellSignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
|
||||
# The processed_data will be on whatever timeframe the Strategy class outputs
|
||||
# We need to map these signals back to 1-minute resolution for backtesting
|
||||
original_1min_data = self.get_data_for_timeframe("1min")
|
||||
|
||||
# Reindex signals to 1-minute resolution using forward-fill
|
||||
buy_signals_1min = buy_signals_raw.reindex(original_1min_data.index, method='ffill').fillna(False)
|
||||
sell_signals_1min = sell_signals_raw.reindex(original_1min_data.index, method='ffill').fillna(False)
|
||||
|
||||
# Convert to integer index to match backtester expectations
|
||||
backtester.strategies["buy_signals"] = pd.Series(buy_signals_1min.values, index=range(len(buy_signals_1min)))
|
||||
backtester.strategies["sell_signals"] = pd.Series(sell_signals_1min.values, index=range(len(sell_signals_1min)))
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal based on BBRS buy signals.
|
||||
|
||||
Entry occurs when the BBRS strategy processing has generated
|
||||
a buy signal based on Bollinger Bands and RSI conditions on
|
||||
the primary timeframe.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal if buy condition met, hold otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if df_index >= len(backtester.strategies["buy_signals"]):
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if backtester.strategies["buy_signals"].iloc[df_index]:
|
||||
# High confidence for BBRS buy signals
|
||||
confidence = self._calculate_signal_confidence(backtester, df_index, "entry")
|
||||
return StrategySignal("ENTRY", confidence=confidence)
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal based on BBRS sell signals or stop loss.
|
||||
|
||||
Exit occurs when:
|
||||
1. BBRS strategy generates a sell signal
|
||||
2. Stop loss is triggered based on price movement
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with type and price, or hold signal
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
if df_index >= len(backtester.strategies["sell_signals"]):
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
# Check for sell signal
|
||||
if backtester.strategies["sell_signals"].iloc[df_index]:
|
||||
confidence = self._calculate_signal_confidence(backtester, df_index, "exit")
|
||||
return StrategySignal("EXIT", confidence=confidence,
|
||||
metadata={"type": "SELL_SIGNAL"})
|
||||
|
||||
# Check for stop loss using 1-minute data for precision
|
||||
stop_loss_result, sell_price = self._check_stop_loss(backtester)
|
||||
if stop_loss_result:
|
||||
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence based on signal strength and market conditions.
|
||||
|
||||
Confidence can be enhanced by analyzing multiple timeframes and
|
||||
market regime consistency.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
if not self.initialized:
|
||||
return 0.0
|
||||
|
||||
# Check for active signals
|
||||
has_buy_signal = (df_index < len(backtester.strategies["buy_signals"]) and
|
||||
backtester.strategies["buy_signals"].iloc[df_index])
|
||||
has_sell_signal = (df_index < len(backtester.strategies["sell_signals"]) and
|
||||
backtester.strategies["sell_signals"].iloc[df_index])
|
||||
|
||||
if has_buy_signal or has_sell_signal:
|
||||
signal_type = "entry" if has_buy_signal else "exit"
|
||||
return self._calculate_signal_confidence(backtester, df_index, signal_type)
|
||||
|
||||
# Moderate confidence during neutral periods
|
||||
return 0.5
|
||||
|
||||
def _calculate_signal_confidence(self, backtester, df_index: int, signal_type: str) -> float:
|
||||
"""
|
||||
Calculate confidence level for a signal based on multiple factors.
|
||||
|
||||
Can consider multiple timeframes, market regime, volatility, etc.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance
|
||||
df_index: Current index
|
||||
signal_type: "entry" or "exit"
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
base_confidence = 1.0
|
||||
|
||||
# TODO: Implement multi-timeframe confirmation
|
||||
# For now, return high confidence for primary signals
|
||||
# Future enhancements could include:
|
||||
# - Checking confirmation from additional timeframes
|
||||
# - Analyzing market regime consistency
|
||||
# - Considering volatility levels
|
||||
# - RSI and BB position analysis
|
||||
|
||||
return base_confidence
|
||||
|
||||
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
|
||||
"""
|
||||
Check if stop loss is triggered using 1-minute data for precision.
|
||||
|
||||
Uses 1-minute data regardless of primary timeframe to ensure
|
||||
accurate stop loss execution.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current trade state
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
|
||||
"""
|
||||
# Calculate stop loss price
|
||||
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
|
||||
|
||||
# Use 1-minute data for precise stop loss checking
|
||||
min1_data = self.get_data_for_timeframe("1min")
|
||||
if min1_data is None:
|
||||
# Fallback to original_df if 1min timeframe not available
|
||||
min1_data = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
|
||||
|
||||
min1_index = min1_data.index
|
||||
|
||||
# Find data range from entry to current time
|
||||
start_candidates = min1_index[min1_index >= backtester.entry_time]
|
||||
if len(start_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_trade_min1_start_idx = start_candidates[0]
|
||||
end_candidates = min1_index[min1_index <= backtester.current_date]
|
||||
|
||||
if len(end_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_min1_end_idx = end_candidates[-1]
|
||||
|
||||
# Check if any candle in the range triggered stop loss
|
||||
min1_slice = min1_data.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
|
||||
|
||||
if (min1_slice['low'] <= stop_price).any():
|
||||
# Find the first candle that triggered stop loss
|
||||
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
|
||||
|
||||
# Use open price if it gapped below stop, otherwise use stop price
|
||||
if stop_candle['open'] < stop_price:
|
||||
sell_price = stop_candle['open']
|
||||
else:
|
||||
sell_price = stop_price
|
||||
|
||||
return True, sell_price
|
||||
|
||||
return False, None
|
||||
@ -1,254 +0,0 @@
|
||||
"""
|
||||
Default Meta-Trend Strategy
|
||||
|
||||
This module implements the default trading strategy based on meta-trend analysis
|
||||
using multiple Supertrend indicators. The strategy enters when trends align
|
||||
and exits on trend reversal or stop loss.
|
||||
|
||||
The meta-trend is calculated by comparing three Supertrend indicators:
|
||||
- Entry: When meta-trend changes from != 1 to == 1
|
||||
- Exit: When meta-trend changes to -1 or stop loss is triggered
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from typing import Tuple, Optional, List
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
|
||||
class DefaultStrategy(StrategyBase):
|
||||
"""
|
||||
Default meta-trend strategy implementation.
|
||||
|
||||
This strategy uses multiple Supertrend indicators to determine market direction.
|
||||
It generates entry signals when all three Supertrend indicators align in an
|
||||
upward direction, and exit signals when they reverse or stop loss is triggered.
|
||||
|
||||
The strategy works best on 15-minute timeframes but can be configured for other timeframes.
|
||||
|
||||
Parameters:
|
||||
stop_loss_pct (float): Stop loss percentage (default: 0.03)
|
||||
timeframe (str): Preferred timeframe for analysis (default: "15min")
|
||||
|
||||
Example:
|
||||
strategy = DefaultStrategy(weight=1.0, params={"stop_loss_pct": 0.05, "timeframe": "15min"})
|
||||
"""
|
||||
|
||||
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
|
||||
"""
|
||||
Initialize the default strategy.
|
||||
|
||||
Args:
|
||||
weight: Strategy weight for combination (default: 1.0)
|
||||
params: Strategy parameters including stop_loss_pct and timeframe
|
||||
"""
|
||||
super().__init__("default", weight, params)
|
||||
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""
|
||||
Get the timeframes required by the default strategy.
|
||||
|
||||
The default strategy works on a single timeframe (typically 15min)
|
||||
but also needs 1min data for precise stop-loss execution.
|
||||
|
||||
Returns:
|
||||
List[str]: List containing primary timeframe and 1min for stop-loss
|
||||
"""
|
||||
primary_timeframe = self.params.get("timeframe", "15min")
|
||||
|
||||
# Always include 1min for stop-loss precision, avoid duplicates
|
||||
timeframes = [primary_timeframe]
|
||||
if primary_timeframe != "1min":
|
||||
timeframes.append("1min")
|
||||
|
||||
return timeframes
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize meta trend calculation using Supertrend indicators.
|
||||
|
||||
Calculates the meta-trend by comparing three Supertrend indicators.
|
||||
When all three agree on direction, meta-trend follows that direction.
|
||||
Otherwise, meta-trend is neutral (0).
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
from cycles.Analysis.supertrend import Supertrends
|
||||
|
||||
# First, resample the original 1-minute data to required timeframes
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Get the primary timeframe data for strategy calculations
|
||||
primary_timeframe = self.get_timeframes()[0]
|
||||
strategy_data = self.get_data_for_timeframe(primary_timeframe)
|
||||
|
||||
# Calculate Supertrend indicators on the primary timeframe
|
||||
supertrends = Supertrends(strategy_data, verbose=False)
|
||||
supertrend_results_list = supertrends.calculate_supertrend_indicators()
|
||||
|
||||
# Extract trend arrays from each Supertrend
|
||||
trends = [st['results']['trend'] for st in supertrend_results_list]
|
||||
trends_arr = np.stack(trends, axis=1)
|
||||
|
||||
# Calculate meta-trend: all three must agree for direction signal
|
||||
meta_trend = np.where(
|
||||
(trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
|
||||
trends_arr[:,0],
|
||||
0 # Neutral when trends don't agree
|
||||
)
|
||||
|
||||
# Store in backtester for access during trading
|
||||
# Note: backtester.df should now be using our primary timeframe
|
||||
backtester.strategies["meta_trend"] = meta_trend
|
||||
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.03)
|
||||
backtester.strategies["primary_timeframe"] = primary_timeframe
|
||||
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate entry signal based on meta-trend direction change.
|
||||
|
||||
Entry occurs when meta-trend changes from != 1 to == 1, indicating
|
||||
all Supertrend indicators now agree on upward direction.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Entry signal if trend aligns, hold signal otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
if df_index < 2: # shifting one index to prevent lookahead bias
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
# Check for meta-trend entry condition
|
||||
prev_trend = backtester.strategies["meta_trend"][df_index - 2]
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index - 1]
|
||||
|
||||
if prev_trend != 1 and curr_trend == 1:
|
||||
# Strong confidence when all indicators align for entry
|
||||
return StrategySignal("ENTRY", confidence=1.0)
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""
|
||||
Generate exit signal based on meta-trend reversal or stop loss.
|
||||
|
||||
Exit occurs when:
|
||||
1. Meta-trend changes to -1 (trend reversal)
|
||||
2. Stop loss is triggered based on price movement
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
StrategySignal: Exit signal with type and price, or hold signal
|
||||
"""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
if df_index < 1:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
# Check for meta-trend exit signal
|
||||
prev_trend = backtester.strategies["meta_trend"][df_index - 1]
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index]
|
||||
|
||||
if prev_trend != 1 and curr_trend == -1:
|
||||
return StrategySignal("EXIT", confidence=1.0,
|
||||
metadata={"type": "META_TREND_EXIT_SIGNAL"})
|
||||
|
||||
# Check for stop loss using 1-minute data for precision
|
||||
stop_loss_result, sell_price = self._check_stop_loss(backtester)
|
||||
if stop_loss_result:
|
||||
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""
|
||||
Get strategy confidence based on meta-trend strength.
|
||||
|
||||
Higher confidence when meta-trend is strongly directional,
|
||||
lower confidence during neutral periods.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the primary timeframe dataframe
|
||||
|
||||
Returns:
|
||||
float: Confidence level (0.0 to 1.0)
|
||||
"""
|
||||
if not self.initialized or df_index >= len(backtester.strategies["meta_trend"]):
|
||||
return 0.0
|
||||
|
||||
curr_trend = backtester.strategies["meta_trend"][df_index]
|
||||
|
||||
# High confidence for strong directional signals
|
||||
if curr_trend == 1 or curr_trend == -1:
|
||||
return 1.0
|
||||
|
||||
# Low confidence for neutral trend
|
||||
return 0.3
|
||||
|
||||
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
|
||||
"""
|
||||
Check if stop loss is triggered based on price movement.
|
||||
|
||||
Uses 1-minute data for precise stop loss checking regardless of
|
||||
the primary timeframe used for strategy signals.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current trade state
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
|
||||
"""
|
||||
# Calculate stop loss price
|
||||
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
|
||||
|
||||
# Use 1-minute data for precise stop loss checking
|
||||
min1_data = self.get_data_for_timeframe("1min")
|
||||
if min1_data is None:
|
||||
# Fallback to original_df if 1min timeframe not available
|
||||
min1_data = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
|
||||
|
||||
min1_index = min1_data.index
|
||||
|
||||
# Find data range from entry to current time
|
||||
start_candidates = min1_index[min1_index >= backtester.entry_time]
|
||||
if len(start_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_trade_min1_start_idx = start_candidates[0]
|
||||
end_candidates = min1_index[min1_index <= backtester.current_date]
|
||||
|
||||
if len(end_candidates) == 0:
|
||||
return False, None
|
||||
|
||||
backtester.current_min1_end_idx = end_candidates[-1]
|
||||
|
||||
# Check if any candle in the range triggered stop loss
|
||||
min1_slice = min1_data.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
|
||||
|
||||
if (min1_slice['low'] <= stop_price).any():
|
||||
# Find the first candle that triggered stop loss
|
||||
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
|
||||
|
||||
# Use open price if it gapped below stop, otherwise use stop price
|
||||
if stop_candle['open'] < stop_price:
|
||||
sell_price = stop_candle['open']
|
||||
else:
|
||||
sell_price = stop_price
|
||||
|
||||
return True, sell_price
|
||||
|
||||
return False, None
|
||||
@ -1,397 +0,0 @@
|
||||
"""
|
||||
Strategy Manager
|
||||
|
||||
This module contains the StrategyManager class that orchestrates multiple trading strategies
|
||||
and combines their signals using configurable aggregation rules.
|
||||
|
||||
The StrategyManager supports various combination methods for entry and exit signals:
|
||||
- Entry: any, all, majority, weighted_consensus
|
||||
- Exit: any, all, priority (with stop loss prioritization)
|
||||
"""
|
||||
|
||||
from typing import Dict, List, Tuple, Optional
|
||||
import logging
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
from .default_strategy import DefaultStrategy
|
||||
from .bbrs_strategy import BBRSStrategy
|
||||
from .random_strategy import RandomStrategy
|
||||
|
||||
|
||||
class StrategyManager:
|
||||
"""
|
||||
Manages multiple strategies and combines their signals.
|
||||
|
||||
The StrategyManager loads multiple strategies from configuration,
|
||||
initializes them with backtester data, and combines their signals
|
||||
using configurable aggregation rules.
|
||||
|
||||
Attributes:
|
||||
strategies (List[StrategyBase]): List of loaded strategies
|
||||
combination_rules (Dict): Rules for combining signals
|
||||
initialized (bool): Whether manager has been initialized
|
||||
|
||||
Example:
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 0.6, "params": {}},
|
||||
{"name": "bbrs", "weight": 0.4, "params": {"bb_width": 0.05}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
manager = StrategyManager(config["strategies"], config["combination_rules"])
|
||||
"""
|
||||
|
||||
def __init__(self, strategies_config: List[Dict], combination_rules: Optional[Dict] = None):
|
||||
"""
|
||||
Initialize the strategy manager.
|
||||
|
||||
Args:
|
||||
strategies_config: List of strategy configurations
|
||||
combination_rules: Rules for combining signals
|
||||
"""
|
||||
self.strategies = self._load_strategies(strategies_config)
|
||||
self.combination_rules = combination_rules or {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
self.initialized = False
|
||||
|
||||
def _load_strategies(self, strategies_config: List[Dict]) -> List[StrategyBase]:
|
||||
"""
|
||||
Load strategies from configuration.
|
||||
|
||||
Creates strategy instances based on configuration and registers
|
||||
them with the manager. Supports extensible strategy registration.
|
||||
|
||||
Args:
|
||||
strategies_config: List of strategy configurations
|
||||
|
||||
Returns:
|
||||
List[StrategyBase]: List of instantiated strategies
|
||||
|
||||
Raises:
|
||||
ValueError: If unknown strategy name is specified
|
||||
"""
|
||||
strategies = []
|
||||
|
||||
for config in strategies_config:
|
||||
name = config.get("name", "").lower()
|
||||
weight = config.get("weight", 1.0)
|
||||
params = config.get("params", {})
|
||||
|
||||
if name == "default":
|
||||
strategies.append(DefaultStrategy(weight, params))
|
||||
elif name == "bbrs":
|
||||
strategies.append(BBRSStrategy(weight, params))
|
||||
elif name == "random":
|
||||
strategies.append(RandomStrategy(weight, params))
|
||||
else:
|
||||
raise ValueError(f"Unknown strategy: {name}. "
|
||||
f"Available strategies: default, bbrs, random")
|
||||
|
||||
return strategies
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""
|
||||
Initialize all strategies with backtester data.
|
||||
|
||||
Calls the initialize method on each strategy, allowing them
|
||||
to set up indicators, validate data, and prepare for trading.
|
||||
Each strategy will handle its own timeframe resampling.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with OHLCV data
|
||||
"""
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
strategy.initialize(backtester)
|
||||
|
||||
# Log strategy timeframe information
|
||||
timeframes = strategy.get_timeframes()
|
||||
logging.info(f"Initialized strategy: {strategy.name} with timeframes: {timeframes}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to initialize strategy {strategy.name}: {e}")
|
||||
raise
|
||||
|
||||
self.initialized = True
|
||||
logging.info(f"Strategy manager initialized with {len(self.strategies)} strategies")
|
||||
|
||||
# Log summary of all timeframes being used
|
||||
all_timeframes = set()
|
||||
for strategy in self.strategies:
|
||||
all_timeframes.update(strategy.get_timeframes())
|
||||
logging.info(f"Total unique timeframes in use: {sorted(all_timeframes)}")
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> bool:
|
||||
"""
|
||||
Get combined entry signal from all strategies.
|
||||
|
||||
Collects entry signals from all strategies and combines them
|
||||
according to the configured combination rules.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
bool: True if combined signal suggests entry, False otherwise
|
||||
"""
|
||||
if not self.initialized:
|
||||
return False
|
||||
|
||||
# Collect signals from all strategies
|
||||
signals = {}
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
signal = strategy.get_entry_signal(backtester, df_index)
|
||||
signals[strategy.name] = {
|
||||
"signal": signal,
|
||||
"weight": strategy.weight,
|
||||
"confidence": signal.confidence
|
||||
}
|
||||
except Exception as e:
|
||||
logging.warning(f"Strategy {strategy.name} entry signal failed: {e}")
|
||||
signals[strategy.name] = {
|
||||
"signal": StrategySignal("HOLD", 0.0),
|
||||
"weight": strategy.weight,
|
||||
"confidence": 0.0
|
||||
}
|
||||
|
||||
return self._combine_entry_signals(signals)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> Tuple[Optional[str], Optional[float]]:
|
||||
"""
|
||||
Get combined exit signal from all strategies.
|
||||
|
||||
Collects exit signals from all strategies and combines them
|
||||
according to the configured combination rules.
|
||||
|
||||
Args:
|
||||
backtester: Backtest instance with current state
|
||||
df_index: Current index in the dataframe
|
||||
|
||||
Returns:
|
||||
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
|
||||
"""
|
||||
if not self.initialized:
|
||||
return None, None
|
||||
|
||||
# Collect signals from all strategies
|
||||
signals = {}
|
||||
for strategy in self.strategies:
|
||||
try:
|
||||
signal = strategy.get_exit_signal(backtester, df_index)
|
||||
signals[strategy.name] = {
|
||||
"signal": signal,
|
||||
"weight": strategy.weight,
|
||||
"confidence": signal.confidence
|
||||
}
|
||||
except Exception as e:
|
||||
logging.warning(f"Strategy {strategy.name} exit signal failed: {e}")
|
||||
signals[strategy.name] = {
|
||||
"signal": StrategySignal("HOLD", 0.0),
|
||||
"weight": strategy.weight,
|
||||
"confidence": 0.0
|
||||
}
|
||||
|
||||
return self._combine_exit_signals(signals)
|
||||
|
||||
def _combine_entry_signals(self, signals: Dict) -> bool:
|
||||
"""
|
||||
Combine entry signals based on combination rules.
|
||||
|
||||
Supports multiple combination methods:
|
||||
- any: Enter if ANY strategy signals entry
|
||||
- all: Enter only if ALL strategies signal entry
|
||||
- majority: Enter if majority of strategies signal entry
|
||||
- weighted_consensus: Enter based on weighted average confidence
|
||||
|
||||
Args:
|
||||
signals: Dictionary of strategy signals with weights and confidence
|
||||
|
||||
Returns:
|
||||
bool: Combined entry decision
|
||||
"""
|
||||
method = self.combination_rules.get("entry", "weighted_consensus")
|
||||
min_confidence = self.combination_rules.get("min_confidence", 0.5)
|
||||
|
||||
# Filter for entry signals above minimum confidence
|
||||
entry_signals = [
|
||||
s for s in signals.values()
|
||||
if s["signal"].signal_type == "ENTRY" and s["signal"].confidence >= min_confidence
|
||||
]
|
||||
|
||||
if not entry_signals:
|
||||
return False
|
||||
|
||||
if method == "any":
|
||||
# Enter if any strategy signals entry
|
||||
return len(entry_signals) > 0
|
||||
|
||||
elif method == "all":
|
||||
# Enter only if all strategies signal entry
|
||||
return len(entry_signals) == len(self.strategies)
|
||||
|
||||
elif method == "majority":
|
||||
# Enter if majority of strategies signal entry
|
||||
return len(entry_signals) > len(self.strategies) / 2
|
||||
|
||||
elif method == "weighted_consensus":
|
||||
# Enter based on weighted average confidence
|
||||
total_weight = sum(s["weight"] for s in entry_signals)
|
||||
if total_weight == 0:
|
||||
return False
|
||||
|
||||
weighted_confidence = sum(
|
||||
s["signal"].confidence * s["weight"]
|
||||
for s in entry_signals
|
||||
) / total_weight
|
||||
|
||||
return weighted_confidence >= min_confidence
|
||||
|
||||
else:
|
||||
logging.warning(f"Unknown entry combination method: {method}, using 'any'")
|
||||
return len(entry_signals) > 0
|
||||
|
||||
def _combine_exit_signals(self, signals: Dict) -> Tuple[Optional[str], Optional[float]]:
|
||||
"""
|
||||
Combine exit signals based on combination rules.
|
||||
|
||||
Supports multiple combination methods:
|
||||
- any: Exit if ANY strategy signals exit (recommended for risk management)
|
||||
- all: Exit only if ALL strategies agree on exit
|
||||
- priority: Exit based on priority order (STOP_LOSS > SELL_SIGNAL > others)
|
||||
|
||||
Args:
|
||||
signals: Dictionary of strategy signals with weights and confidence
|
||||
|
||||
Returns:
|
||||
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
|
||||
"""
|
||||
method = self.combination_rules.get("exit", "any")
|
||||
|
||||
# Filter for exit signals
|
||||
exit_signals = [
|
||||
s for s in signals.values()
|
||||
if s["signal"].signal_type == "EXIT"
|
||||
]
|
||||
|
||||
if not exit_signals:
|
||||
return None, None
|
||||
|
||||
if method == "any":
|
||||
# Exit if any strategy signals exit (first one found)
|
||||
for signal_data in exit_signals:
|
||||
signal = signal_data["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
elif method == "all":
|
||||
# Exit only if all strategies agree on exit
|
||||
if len(exit_signals) == len(self.strategies):
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
elif method == "priority":
|
||||
# Priority order: STOP_LOSS > SELL_SIGNAL > others
|
||||
stop_loss_signals = [
|
||||
s for s in exit_signals
|
||||
if s["signal"].metadata.get("type") == "STOP_LOSS"
|
||||
]
|
||||
if stop_loss_signals:
|
||||
signal = stop_loss_signals[0]["signal"]
|
||||
return "STOP_LOSS", signal.price
|
||||
|
||||
sell_signals = [
|
||||
s for s in exit_signals
|
||||
if s["signal"].metadata.get("type") == "SELL_SIGNAL"
|
||||
]
|
||||
if sell_signals:
|
||||
signal = sell_signals[0]["signal"]
|
||||
return "SELL_SIGNAL", signal.price
|
||||
|
||||
# Return first available exit signal
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
else:
|
||||
logging.warning(f"Unknown exit combination method: {method}, using 'any'")
|
||||
# Fallback to 'any' method
|
||||
signal = exit_signals[0]["signal"]
|
||||
exit_type = signal.metadata.get("type", "EXIT")
|
||||
return exit_type, signal.price
|
||||
|
||||
return None, None
|
||||
|
||||
def get_strategy_summary(self) -> Dict:
|
||||
"""
|
||||
Get summary of loaded strategies and their configuration.
|
||||
|
||||
Returns:
|
||||
Dict: Summary of strategies, weights, combination rules, and timeframes
|
||||
"""
|
||||
return {
|
||||
"strategies": [
|
||||
{
|
||||
"name": strategy.name,
|
||||
"weight": strategy.weight,
|
||||
"params": strategy.params,
|
||||
"timeframes": strategy.get_timeframes(),
|
||||
"initialized": strategy.initialized
|
||||
}
|
||||
for strategy in self.strategies
|
||||
],
|
||||
"combination_rules": self.combination_rules,
|
||||
"total_strategies": len(self.strategies),
|
||||
"initialized": self.initialized,
|
||||
"all_timeframes": list(set().union(*[strategy.get_timeframes() for strategy in self.strategies]))
|
||||
}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the strategy manager."""
|
||||
strategy_names = [s.name for s in self.strategies]
|
||||
return (f"StrategyManager(strategies={strategy_names}, "
|
||||
f"initialized={self.initialized})")
|
||||
|
||||
|
||||
def create_strategy_manager(config: Dict) -> StrategyManager:
|
||||
"""
|
||||
Factory function to create StrategyManager from configuration.
|
||||
|
||||
Provides a convenient way to create a StrategyManager instance
|
||||
from a configuration dictionary.
|
||||
|
||||
Args:
|
||||
config: Configuration dictionary with strategies and combination_rules
|
||||
|
||||
Returns:
|
||||
StrategyManager: Configured strategy manager instance
|
||||
|
||||
Example:
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 1.0, "params": {}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any"
|
||||
}
|
||||
}
|
||||
manager = create_strategy_manager(config)
|
||||
"""
|
||||
strategies_config = config.get("strategies", [])
|
||||
combination_rules = config.get("combination_rules", {})
|
||||
|
||||
if not strategies_config:
|
||||
raise ValueError("No strategies specified in configuration")
|
||||
|
||||
return StrategyManager(strategies_config, combination_rules)
|
||||
@ -1,218 +0,0 @@
|
||||
"""
|
||||
Random Strategy for Testing
|
||||
|
||||
This strategy generates random entry and exit signals for testing the strategy system.
|
||||
It's useful for verifying that the strategy framework is working correctly.
|
||||
"""
|
||||
|
||||
import random
|
||||
import logging
|
||||
from typing import Dict, List, Optional
|
||||
import pandas as pd
|
||||
|
||||
from .base import StrategyBase, StrategySignal
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RandomStrategy(StrategyBase):
|
||||
"""
|
||||
Random signal generator strategy for testing.
|
||||
|
||||
This strategy generates random entry and exit signals with configurable
|
||||
probability and confidence levels. It's designed to test the strategy
|
||||
framework and signal processing system.
|
||||
|
||||
Parameters:
|
||||
entry_probability: Probability of generating an entry signal (0.0-1.0)
|
||||
exit_probability: Probability of generating an exit signal (0.0-1.0)
|
||||
min_confidence: Minimum confidence level for signals
|
||||
max_confidence: Maximum confidence level for signals
|
||||
timeframe: Timeframe to operate on (default: "1min")
|
||||
signal_frequency: How often to generate signals (every N bars)
|
||||
"""
|
||||
|
||||
def __init__(self, weight: float = 1.0, params: Optional[Dict] = None):
|
||||
"""Initialize the random strategy."""
|
||||
super().__init__("random", weight, params)
|
||||
|
||||
# Strategy parameters with defaults
|
||||
self.entry_probability = self.params.get("entry_probability", 0.05) # 5% chance per bar
|
||||
self.exit_probability = self.params.get("exit_probability", 0.1) # 10% chance per bar
|
||||
self.min_confidence = self.params.get("min_confidence", 0.6)
|
||||
self.max_confidence = self.params.get("max_confidence", 0.9)
|
||||
self.timeframe = self.params.get("timeframe", "1min")
|
||||
self.signal_frequency = self.params.get("signal_frequency", 1) # Every bar
|
||||
|
||||
# Internal state
|
||||
self.bar_count = 0
|
||||
self.last_signal_bar = -1
|
||||
self.last_processed_timestamp = None # Track last processed timestamp to avoid duplicates
|
||||
|
||||
logger.info(f"RandomStrategy initialized with entry_prob={self.entry_probability}, "
|
||||
f"exit_prob={self.exit_probability}, timeframe={self.timeframe}")
|
||||
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""Return required timeframes for this strategy."""
|
||||
return [self.timeframe, "1min"] # Always include 1min for precision
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""Initialize strategy with backtester data."""
|
||||
try:
|
||||
logger.info(f"RandomStrategy: Starting initialization...")
|
||||
|
||||
# Resample data to required timeframes
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Get primary timeframe data
|
||||
self.df = self.get_primary_timeframe_data()
|
||||
|
||||
if self.df is None or self.df.empty:
|
||||
raise ValueError(f"No data available for timeframe {self.timeframe}")
|
||||
|
||||
# Reset internal state
|
||||
self.bar_count = 0
|
||||
self.last_signal_bar = -1
|
||||
|
||||
self.initialized = True
|
||||
logger.info(f"RandomStrategy initialized with {len(self.df)} bars on {self.timeframe}")
|
||||
logger.info(f"RandomStrategy: Data range from {self.df.index[0]} to {self.df.index[-1]}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize RandomStrategy: {e}")
|
||||
logger.error(f"RandomStrategy: backtester.original_df shape: {backtester.original_df.shape if hasattr(backtester, 'original_df') else 'No original_df'}")
|
||||
raise
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""Generate random entry signals."""
|
||||
if not self.initialized:
|
||||
logger.warning(f"RandomStrategy: get_entry_signal called but not initialized")
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
try:
|
||||
# Get current timestamp to avoid duplicate signals
|
||||
current_timestamp = None
|
||||
if hasattr(backtester, 'original_df') and not backtester.original_df.empty:
|
||||
current_timestamp = backtester.original_df.index[-1]
|
||||
|
||||
# Skip if we already processed this timestamp
|
||||
if current_timestamp and self.last_processed_timestamp == current_timestamp:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
self.bar_count += 1
|
||||
|
||||
# Debug logging every 10 bars
|
||||
if self.bar_count % 10 == 0:
|
||||
logger.info(f"RandomStrategy: Processing bar {self.bar_count}, df_index={df_index}, timestamp={current_timestamp}")
|
||||
|
||||
# Check if we should generate a signal based on frequency
|
||||
if (self.bar_count - self.last_signal_bar) < self.signal_frequency:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
# Generate random entry signal
|
||||
random_value = random.random()
|
||||
if random_value < self.entry_probability:
|
||||
confidence = random.uniform(self.min_confidence, self.max_confidence)
|
||||
self.last_signal_bar = self.bar_count
|
||||
self.last_processed_timestamp = current_timestamp # Update last processed timestamp
|
||||
|
||||
# Get current price from backtester's original data (more reliable)
|
||||
try:
|
||||
if hasattr(backtester, 'original_df') and not backtester.original_df.empty:
|
||||
# Use the last available price from the original data
|
||||
current_price = backtester.original_df['close'].iloc[-1]
|
||||
elif hasattr(backtester, 'df') and not backtester.df.empty:
|
||||
# Fallback to backtester's main dataframe
|
||||
current_price = backtester.df['close'].iloc[min(df_index, len(backtester.df)-1)]
|
||||
else:
|
||||
# Last resort: use our internal dataframe
|
||||
current_price = self.df.iloc[min(df_index, len(self.df)-1)]['close']
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(f"RandomStrategy: Error getting current price: {e}, using fallback")
|
||||
current_price = self.df.iloc[-1]['close'] if not self.df.empty else 50000.0
|
||||
|
||||
logger.info(f"RandomStrategy: Generated ENTRY signal at bar {self.bar_count}, "
|
||||
f"price=${current_price:.2f}, confidence={confidence:.2f}, random_value={random_value:.3f}")
|
||||
|
||||
return StrategySignal(
|
||||
"ENTRY",
|
||||
confidence=confidence,
|
||||
price=current_price,
|
||||
metadata={
|
||||
"strategy": "random",
|
||||
"bar_count": self.bar_count,
|
||||
"timeframe": self.timeframe
|
||||
}
|
||||
)
|
||||
|
||||
# Update timestamp even if no signal generated
|
||||
if current_timestamp:
|
||||
self.last_processed_timestamp = current_timestamp
|
||||
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"RandomStrategy entry signal error: {e}")
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""Generate random exit signals."""
|
||||
if not self.initialized:
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
try:
|
||||
# Only generate exit signals if we have an open position
|
||||
# This is handled by the strategy trader, but we can add logic here
|
||||
|
||||
# Generate random exit signal
|
||||
if random.random() < self.exit_probability:
|
||||
confidence = random.uniform(self.min_confidence, self.max_confidence)
|
||||
|
||||
# Get current price from backtester's original data (more reliable)
|
||||
try:
|
||||
if hasattr(backtester, 'original_df') and not backtester.original_df.empty:
|
||||
# Use the last available price from the original data
|
||||
current_price = backtester.original_df['close'].iloc[-1]
|
||||
elif hasattr(backtester, 'df') and not backtester.df.empty:
|
||||
# Fallback to backtester's main dataframe
|
||||
current_price = backtester.df['close'].iloc[min(df_index, len(backtester.df)-1)]
|
||||
else:
|
||||
# Last resort: use our internal dataframe
|
||||
current_price = self.df.iloc[min(df_index, len(self.df)-1)]['close']
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(f"RandomStrategy: Error getting current price for exit: {e}, using fallback")
|
||||
current_price = self.df.iloc[-1]['close'] if not self.df.empty else 50000.0
|
||||
|
||||
# Randomly choose exit type
|
||||
exit_types = ["SELL_SIGNAL", "TAKE_PROFIT", "STOP_LOSS"]
|
||||
exit_type = random.choice(exit_types)
|
||||
|
||||
logger.info(f"RandomStrategy: Generated EXIT signal at bar {self.bar_count}, "
|
||||
f"price=${current_price:.2f}, confidence={confidence:.2f}, type={exit_type}")
|
||||
|
||||
return StrategySignal(
|
||||
"EXIT",
|
||||
confidence=confidence,
|
||||
price=current_price,
|
||||
metadata={
|
||||
"type": exit_type,
|
||||
"strategy": "random",
|
||||
"bar_count": self.bar_count,
|
||||
"timeframe": self.timeframe
|
||||
}
|
||||
)
|
||||
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"RandomStrategy exit signal error: {e}")
|
||||
return StrategySignal("HOLD", 0.0)
|
||||
|
||||
def get_confidence(self, backtester, df_index: int) -> float:
|
||||
"""Return random confidence level."""
|
||||
return random.uniform(self.min_confidence, self.max_confidence)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the strategy."""
|
||||
return (f"RandomStrategy(entry_prob={self.entry_probability}, "
|
||||
f"exit_prob={self.exit_probability}, timeframe={self.timeframe})")
|
||||
@ -1,80 +1,5 @@
|
||||
import pandas as pd
|
||||
|
||||
def check_data(data_df: pd.DataFrame) -> bool:
|
||||
"""
|
||||
Checks if the input DataFrame has a DatetimeIndex.
|
||||
|
||||
Args:
|
||||
data_df (pd.DataFrame): DataFrame to check.
|
||||
|
||||
Returns:
|
||||
bool: True if the DataFrame has a DatetimeIndex, False otherwise.
|
||||
"""
|
||||
|
||||
if not isinstance(data_df.index, pd.DatetimeIndex):
|
||||
print("Warning: Input DataFrame must have a DatetimeIndex.")
|
||||
return False
|
||||
|
||||
agg_rules = {}
|
||||
|
||||
# Define aggregation rules based on available columns
|
||||
if 'open' in data_df.columns:
|
||||
agg_rules['open'] = 'first'
|
||||
if 'high' in data_df.columns:
|
||||
agg_rules['high'] = 'max'
|
||||
if 'low' in data_df.columns:
|
||||
agg_rules['low'] = 'min'
|
||||
if 'close' in data_df.columns:
|
||||
agg_rules['close'] = 'last'
|
||||
if 'volume' in data_df.columns:
|
||||
agg_rules['volume'] = 'sum'
|
||||
|
||||
if not agg_rules:
|
||||
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for daily aggregation.")
|
||||
return False
|
||||
|
||||
return agg_rules
|
||||
|
||||
def aggregate_to_weekly(data_df: pd.DataFrame, weeks: int = 1) -> pd.DataFrame:
|
||||
"""
|
||||
Aggregates time-series financial data to weekly OHLCV format.
|
||||
|
||||
The input DataFrame is expected to have a DatetimeIndex.
|
||||
'open' will be the first 'open' price of the week.
|
||||
'close' will be the last 'close' price of the week.
|
||||
'high' will be the maximum 'high' price of the week.
|
||||
'low' will be the minimum 'low' price of the week.
|
||||
'volume' (if present) will be the sum of volumes for the week.
|
||||
|
||||
Args:
|
||||
data_df (pd.DataFrame): DataFrame with a DatetimeIndex and columns
|
||||
like 'open', 'high', 'low', 'close', and optionally 'volume'.
|
||||
weeks (int): The number of weeks to aggregate to. Default is 1.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: DataFrame aggregated to weekly OHLCV data.
|
||||
The index will be a DatetimeIndex with the time set to the start of the week.
|
||||
Returns an empty DataFrame if no relevant OHLCV columns are found.
|
||||
"""
|
||||
|
||||
agg_rules = check_data(data_df)
|
||||
|
||||
if not agg_rules:
|
||||
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for weekly aggregation.")
|
||||
return pd.DataFrame(index=pd.to_datetime([]))
|
||||
|
||||
# Resample to weekly frequency and apply aggregation rules
|
||||
weekly_data = data_df.resample(f'{weeks}W').agg(agg_rules)
|
||||
|
||||
weekly_data.dropna(how='all', inplace=True)
|
||||
|
||||
# Adjust timestamps to the start of the week
|
||||
if not weekly_data.empty and isinstance(weekly_data.index, pd.DatetimeIndex):
|
||||
weekly_data.index = weekly_data.index.floor('W')
|
||||
|
||||
return weekly_data
|
||||
|
||||
|
||||
def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Aggregates time-series financial data to daily OHLCV format.
|
||||
@ -99,9 +24,23 @@ def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
|
||||
Raises:
|
||||
ValueError: If the input DataFrame does not have a DatetimeIndex.
|
||||
"""
|
||||
|
||||
agg_rules = check_data(data_df)
|
||||
if not isinstance(data_df.index, pd.DatetimeIndex):
|
||||
raise ValueError("Input DataFrame must have a DatetimeIndex.")
|
||||
|
||||
agg_rules = {}
|
||||
|
||||
# Define aggregation rules based on available columns
|
||||
if 'open' in data_df.columns:
|
||||
agg_rules['open'] = 'first'
|
||||
if 'high' in data_df.columns:
|
||||
agg_rules['high'] = 'max'
|
||||
if 'low' in data_df.columns:
|
||||
agg_rules['low'] = 'min'
|
||||
if 'close' in data_df.columns:
|
||||
agg_rules['close'] = 'last'
|
||||
if 'volume' in data_df.columns:
|
||||
agg_rules['volume'] = 'sum'
|
||||
|
||||
if not agg_rules:
|
||||
# Log a warning or raise an error if no relevant columns are found
|
||||
# For now, returning an empty DataFrame with a message might be suitable for some cases
|
||||
@ -119,81 +58,3 @@ def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
|
||||
daily_data.dropna(how='all', inplace=True)
|
||||
|
||||
return daily_data
|
||||
|
||||
|
||||
def aggregate_to_hourly(data_df: pd.DataFrame, hours: int = 1) -> pd.DataFrame:
|
||||
"""
|
||||
Aggregates time-series financial data to hourly OHLCV format.
|
||||
|
||||
The input DataFrame is expected to have a DatetimeIndex.
|
||||
'open' will be the first 'open' price of the hour.
|
||||
'close' will be the last 'close' price of the hour.
|
||||
'high' will be the maximum 'high' price of the hour.
|
||||
'low' will be the minimum 'low' price of the hour.
|
||||
'volume' (if present) will be the sum of volumes for the hour.
|
||||
|
||||
Args:
|
||||
data_df (pd.DataFrame): DataFrame with a DatetimeIndex and columns
|
||||
like 'open', 'high', 'low', 'close', and optionally 'volume'.
|
||||
hours (int): The number of hours to aggregate to. Default is 1.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: DataFrame aggregated to hourly OHLCV data.
|
||||
The index will be a DatetimeIndex with the time set to the start of the hour.
|
||||
Returns an empty DataFrame if no relevant OHLCV columns are found.
|
||||
"""
|
||||
|
||||
agg_rules = check_data(data_df)
|
||||
|
||||
if not agg_rules:
|
||||
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for hourly aggregation.")
|
||||
return pd.DataFrame(index=pd.to_datetime([]))
|
||||
|
||||
# Resample to hourly frequency and apply aggregation rules
|
||||
hourly_data = data_df.resample(f'{hours}h').agg(agg_rules)
|
||||
|
||||
hourly_data.dropna(how='all', inplace=True)
|
||||
|
||||
# Adjust timestamps to the start of the hour
|
||||
if not hourly_data.empty and isinstance(hourly_data.index, pd.DatetimeIndex):
|
||||
hourly_data.index = hourly_data.index.floor('h')
|
||||
|
||||
return hourly_data
|
||||
|
||||
|
||||
def aggregate_to_minutes(data_df: pd.DataFrame, minutes: int) -> pd.DataFrame:
|
||||
"""
|
||||
Aggregates time-series financial data to N-minute OHLCV format.
|
||||
|
||||
The input DataFrame is expected to have a DatetimeIndex.
|
||||
'open' will be the first 'open' price of the N-minute interval.
|
||||
'close' will be the last 'close' price of the N-minute interval.
|
||||
'high' will be the maximum 'high' price of the N-minute interval.
|
||||
'low' will be the minimum 'low' price of the N-minute interval.
|
||||
'volume' (if present) will be the sum of volumes for the N-minute interval.
|
||||
|
||||
Args:
|
||||
data_df (pd.DataFrame): DataFrame with a DatetimeIndex and columns
|
||||
like 'open', 'high', 'low', 'close', and optionally 'volume'.
|
||||
minutes (int): The number of minutes to aggregate to.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: DataFrame aggregated to N-minute OHLCV data.
|
||||
The index will be a DatetimeIndex.
|
||||
Returns an empty DataFrame if no relevant OHLCV columns are found or
|
||||
if the input DataFrame does not have a DatetimeIndex.
|
||||
"""
|
||||
agg_rules_obj = check_data(data_df) # check_data returns rules or False
|
||||
|
||||
if not agg_rules_obj:
|
||||
# check_data already prints a warning if index is not DatetimeIndex or no OHLCV columns
|
||||
# Ensure an empty DataFrame with a DatetimeIndex is returned for consistency
|
||||
return pd.DataFrame(index=pd.to_datetime([]))
|
||||
|
||||
# Resample to N-minute frequency and apply aggregation rules
|
||||
# Using .agg(agg_rules_obj) where agg_rules_obj is the dict from check_data
|
||||
resampled_data = data_df.resample(f'{minutes}min').agg(agg_rules_obj)
|
||||
|
||||
resampled_data.dropna(how='all', inplace=True)
|
||||
|
||||
return resampled_data
|
||||
|
||||
@ -8,7 +8,6 @@ The `Analysis` module includes classes for calculating common technical indicato
|
||||
|
||||
- **Relative Strength Index (RSI)**: Implemented in `cycles/Analysis/rsi.py`.
|
||||
- **Bollinger Bands**: Implemented in `cycles/Analysis/boillinger_band.py`.
|
||||
- Note: Trading strategies are detailed in `strategies.md`.
|
||||
|
||||
## Class: `RSI`
|
||||
|
||||
@ -16,91 +15,64 @@ Found in `cycles/Analysis/rsi.py`.
|
||||
|
||||
Calculates the Relative Strength Index.
|
||||
### Mathematical Model
|
||||
The standard RSI calculation typically involves Wilder's smoothing for average gains and losses.
|
||||
1. **Price Change (Delta)**: Difference between consecutive closing prices.
|
||||
2. **Gain and Loss**: Separate positive (gain) and negative (loss, expressed as positive) price changes.
|
||||
3. **Average Gain (AvgU)** and **Average Loss (AvgD)**: Smoothed averages of gains and losses over the RSI period. Wilder's smoothing is a specific type of exponential moving average (EMA):
|
||||
- Initial AvgU/AvgD: Simple Moving Average (SMA) over the first `period` values.
|
||||
- Subsequent AvgU: `(Previous AvgU * (period - 1) + Current Gain) / period`
|
||||
- Subsequent AvgD: `(Previous AvgD * (period - 1) + Current Loss) / period`
|
||||
4. **Relative Strength (RS)**:
|
||||
1. **Average Gain (AvgU)** and **Average Loss (AvgD)** over 14 periods:
|
||||
$$
|
||||
RS = \\frac{\\text{AvgU}}{\\text{AvgD}}
|
||||
\text{AvgU} = \frac{\sum \text{Upward Price Changes}}{14}, \quad \text{AvgD} = \frac{\sum \text{Downward Price Changes}}{14}
|
||||
$$
|
||||
5. **RSI**:
|
||||
2. **Relative Strength (RS)**:
|
||||
$$
|
||||
RSI = 100 - \\frac{100}{1 + RS}
|
||||
RS = \frac{\text{AvgU}}{\text{AvgD}}
|
||||
$$
|
||||
3. **RSI**:
|
||||
$$
|
||||
Special conditions:
|
||||
- If AvgD is 0: RSI is 100 if AvgU > 0, or 50 if AvgU is also 0 (neutral).
|
||||
RSI = 100 - \frac{100}{1 + RS}
|
||||
$$
|
||||
|
||||
### `__init__(self, config: dict)`
|
||||
### `__init__(self, period: int = 14)`
|
||||
|
||||
- **Description**: Initializes the RSI calculator.
|
||||
- **Parameters**:\n - `config` (dict): Configuration dictionary. Must contain an `'rsi_period'` key with a positive integer value (e.g., `{'rsi_period': 14}`).
|
||||
- **Parameters**:
|
||||
- `period` (int, optional): The period for RSI calculation. Defaults to 14. Must be a positive integer.
|
||||
|
||||
### `calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame`
|
||||
|
||||
- **Description**: Calculates the RSI (using Wilder's smoothing by default) and adds it as an 'RSI' column to the input DataFrame. This method utilizes `calculate_custom_rsi` internally with `smoothing='EMA'`.
|
||||
- **Parameters**:\n - `data_df` (pd.DataFrame): DataFrame with historical price data. Must contain the `price_column`.\n - `price_column` (str, optional): The name of the column containing price data. Defaults to 'close'.
|
||||
- **Returns**: `pd.DataFrame` - A copy of the input DataFrame with an added 'RSI' column. If data length is insufficient for the period, the 'RSI' column will contain `np.nan`.
|
||||
|
||||
### `calculate_custom_rsi(price_series: pd.Series, window: int = 14, smoothing: str = 'SMA') -> pd.Series` (Static Method)
|
||||
|
||||
- **Description**: Calculates RSI with a specified window and smoothing method (SMA or EMA). This is the core calculation engine.
|
||||
- **Description**: Calculates the RSI and adds it as an 'RSI' column to the input DataFrame. Handles cases where data length is less than the period by returning the original DataFrame with a warning.
|
||||
- **Parameters**:
|
||||
- `price_series` (pd.Series): Series of prices.
|
||||
- `window` (int, optional): The period for RSI calculation. Defaults to 14. Must be a positive integer.
|
||||
- `smoothing` (str, optional): Smoothing method, can be 'SMA' (Simple Moving Average) or 'EMA' (Exponential Moving Average, specifically Wilder's smoothing when `alpha = 1/window`). Defaults to 'SMA'.
|
||||
- **Returns**: `pd.Series` - Series containing the RSI values. Returns a series of NaNs if data length is insufficient.
|
||||
- `data_df` (pd.DataFrame): DataFrame with historical price data. Must contain the `price_column`.
|
||||
- `price_column` (str, optional): The name of the column containing price data. Defaults to 'close'.
|
||||
- **Returns**: `pd.DataFrame` - The input DataFrame with an added 'RSI' column (containing `np.nan` for initial periods where RSI cannot be calculated). Returns a copy of the original DataFrame if the period is larger than the number of data points.
|
||||
|
||||
## Class: `BollingerBands`
|
||||
|
||||
Found in `cycles/Analysis/boillinger_band.py`.
|
||||
|
||||
Calculates Bollinger Bands.
|
||||
## **Bollinger Bands**
|
||||
### Mathematical Model
|
||||
1. **Middle Band**: Simple Moving Average (SMA) over `period`.
|
||||
1. **Middle Band**: 20-day Simple Moving Average (SMA)
|
||||
$$
|
||||
\\text{Middle Band} = \\text{SMA}(\\text{price}, \\text{period})
|
||||
\text{Middle Band} = \frac{1}{20} \sum_{i=1}^{20} \text{Close}_{t-i}
|
||||
$$
|
||||
2. **Standard Deviation (σ)**: Standard deviation of price over `period`.
|
||||
3. **Upper Band**: Middle Band + `num_std` × σ
|
||||
2. **Upper Band**: Middle Band + 2 × 20-day Standard Deviation (σ)
|
||||
$$
|
||||
\\text{Upper Band} = \\text{Middle Band} + \\text{num_std} \\times \\sigma_{\\text{period}}
|
||||
\text{Upper Band} = \text{Middle Band} + 2 \times \sigma_{20}
|
||||
$$
|
||||
4. **Lower Band**: Middle Band − `num_std` × σ
|
||||
3. **Lower Band**: Middle Band − 2 × 20-day Standard Deviation (σ)
|
||||
$$
|
||||
\\text{Lower Band} = \\text{Middle Band} - \\text{num_std} \\times \\sigma_{\\text{period}}
|
||||
\text{Lower Band} = \text{Middle Band} - 2 \times \sigma_{20}
|
||||
$$
|
||||
For the adaptive calculation in the `calculate` method (when `squeeze=False`):
|
||||
- **BBWidth**: `(Reference Upper Band - Reference Lower Band) / SMA`, where reference bands are typically calculated using a 2.0 standard deviation multiplier.
|
||||
- **MarketRegime**: Determined by comparing `BBWidth` to a threshold from the configuration. `1` for sideways, `0` for trending.
|
||||
- The `num_std` used for the final Upper and Lower Bands then varies based on this `MarketRegime` and the `bb_std_dev_multiplier` values for "trending" and "sideways" markets from the configuration, applied row-wise.
|
||||
|
||||
### `__init__(self, config: dict)`
|
||||
|
||||
### `__init__(self, period: int = 20, std_dev_multiplier: float = 2.0)`
|
||||
|
||||
- **Description**: Initializes the BollingerBands calculator.
|
||||
- **Parameters**:\n - `config` (dict): Configuration dictionary. It must contain:
|
||||
- `'bb_period'` (int): Positive integer for the moving average and standard deviation period.
|
||||
- `'trending'` (dict): Containing `'bb_std_dev_multiplier'` (float, positive) for trending markets.
|
||||
- `'sideways'` (dict): Containing `'bb_std_dev_multiplier'` (float, positive) for sideways markets.
|
||||
- `'bb_width'` (float): Positive float threshold for determining market regime.
|
||||
|
||||
### `calculate(self, data_df: pd.DataFrame, price_column: str = 'close', squeeze: bool = False) -> pd.DataFrame`
|
||||
|
||||
- **Description**: Calculates Bollinger Bands and adds relevant columns to the DataFrame.
|
||||
- If `squeeze` is `False` (default): Calculates adaptive Bollinger Bands. It determines the market regime (trending/sideways) based on `BBWidth` and applies different standard deviation multipliers (from the `config`) on a row-by-row basis. Adds 'SMA', 'UpperBand', 'LowerBand', 'BBWidth', and 'MarketRegime' columns.
|
||||
- If `squeeze` is `True`: Calculates simpler Bollinger Bands with a fixed window of 14 and a standard deviation multiplier of 1.5 by calling `calculate_custom_bands`. Adds 'SMA', 'UpperBand', 'LowerBand' columns; 'BBWidth' and 'MarketRegime' will be `NaN`.
|
||||
- **Parameters**:\n - `data_df` (pd.DataFrame): DataFrame with price data. Must include the `price_column`.\n - `price_column` (str, optional): The name of the column containing the price data. Defaults to 'close'.\n - `squeeze` (bool, optional): If `True`, calculates bands with fixed parameters (window 14, std 1.5). Defaults to `False`.
|
||||
- **Returns**: `pd.DataFrame` - A copy of the original DataFrame with added Bollinger Band related columns.
|
||||
|
||||
### `calculate_custom_bands(price_series: pd.Series, window: int = 20, num_std: float = 2.0, min_periods: int = None) -> tuple[pd.Series, pd.Series, pd.Series]` (Static Method)
|
||||
|
||||
- **Description**: Calculates Bollinger Bands with a specified window, standard deviation multiplier, and minimum periods.
|
||||
- **Parameters**:
|
||||
- `price_series` (pd.Series): Series of prices.
|
||||
- `window` (int, optional): The period for the moving average and standard deviation. Defaults to 20.
|
||||
- `num_std` (float, optional): The number of standard deviations for the upper and lower bands. Defaults to 2.0.
|
||||
- `min_periods` (int, optional): Minimum number of observations in window required to have a value. Defaults to `window` if `None`.
|
||||
- **Returns**: `tuple[pd.Series, pd.Series, pd.Series]` - A tuple containing the Upper band, SMA, and Lower band series.
|
||||
- `period` (int, optional): The period for the moving average and standard deviation. Defaults to 20. Must be a positive integer.
|
||||
- `std_dev_multiplier` (float, optional): The number of standard deviations for the upper and lower bands. Defaults to 2.0. Must be positive.
|
||||
|
||||
### `calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame`
|
||||
|
||||
- **Description**: Calculates Bollinger Bands and adds 'SMA' (Simple Moving Average), 'UpperBand', and 'LowerBand' columns to the DataFrame.
|
||||
- **Parameters**:
|
||||
- `data_df` (pd.DataFrame): DataFrame with price data. Must include the `price_column`.
|
||||
- `price_column` (str, optional): The name of the column containing the price data (e.g., 'close'). Defaults to 'close'.
|
||||
- **Returns**: `pd.DataFrame` - The original DataFrame with added columns: 'SMA', 'UpperBand', 'LowerBand'.
|
||||
|
||||
@ -1,405 +0,0 @@
|
||||
# Strategies Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
The Cycles framework implements advanced trading strategies with sophisticated timeframe management, signal processing, and multi-strategy combination capabilities. Each strategy can operate on its preferred timeframes while maintaining precise execution control.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Strategy System Components
|
||||
|
||||
1. **StrategyBase**: Abstract base class with timeframe management
|
||||
2. **Individual Strategies**: DefaultStrategy, BBRSStrategy implementations
|
||||
3. **StrategyManager**: Multi-strategy orchestration and signal combination
|
||||
4. **Timeframe System**: Automatic data resampling and signal mapping
|
||||
|
||||
### New Timeframe Management
|
||||
|
||||
Each strategy now controls its own timeframe requirements:
|
||||
|
||||
```python
|
||||
class MyStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["15min", "1h"] # Strategy specifies needed timeframes
|
||||
|
||||
def initialize(self, backtester):
|
||||
# Framework automatically resamples data
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Access resampled data
|
||||
data_15m = self.get_data_for_timeframe("15min")
|
||||
data_1h = self.get_data_for_timeframe("1h")
|
||||
```
|
||||
|
||||
## Available Strategies
|
||||
|
||||
### 1. Default Strategy (Meta-Trend Analysis)
|
||||
|
||||
**Purpose**: Meta-trend analysis using multiple Supertrend indicators
|
||||
|
||||
**Timeframe Behavior**:
|
||||
- **Configurable Primary Timeframe**: Set via `params["timeframe"]` (default: "15min")
|
||||
- **1-Minute Precision**: Always includes 1min data for precise stop-loss execution
|
||||
- **Example Timeframes**: `["15min", "1min"]` or `["5min", "1min"]`
|
||||
|
||||
**Configuration**:
|
||||
```json
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"timeframe": "15min", // Configurable: "5min", "15min", "1h", etc.
|
||||
"stop_loss_pct": 0.03 // Stop loss percentage
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Algorithm**:
|
||||
1. Calculate 3 Supertrend indicators with different parameters on primary timeframe
|
||||
2. Determine meta-trend: all three must agree for directional signal
|
||||
3. **Entry**: Meta-trend changes from != 1 to == 1 (all trends align upward)
|
||||
4. **Exit**: Meta-trend changes to -1 (trend reversal) or stop-loss triggered
|
||||
5. **Stop-Loss**: 1-minute precision using percentage-based threshold
|
||||
|
||||
**Strengths**:
|
||||
- Robust trend following with multiple confirmations
|
||||
- Configurable for different market timeframes
|
||||
- Precise risk management
|
||||
- Low false signals in trending markets
|
||||
|
||||
**Best Use Cases**:
|
||||
- Medium to long-term trend following
|
||||
- Markets with clear directional movements
|
||||
- Risk-conscious trading with defined exits
|
||||
|
||||
### 2. BBRS Strategy (Bollinger Bands + RSI)
|
||||
|
||||
**Purpose**: Market regime-adaptive strategy combining Bollinger Bands and RSI
|
||||
|
||||
**Timeframe Behavior**:
|
||||
- **1-Minute Input**: Strategy receives 1-minute data
|
||||
- **Internal Resampling**: Underlying Strategy class handles resampling to 15min/1h
|
||||
- **No Double-Resampling**: Avoids conflicts with existing resampling logic
|
||||
- **Signal Mapping**: Results mapped back to 1-minute resolution
|
||||
|
||||
**Configuration**:
|
||||
```json
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"bb_width": 0.05, // Bollinger Band width threshold
|
||||
"bb_period": 20, // Bollinger Band period
|
||||
"rsi_period": 14, // RSI calculation period
|
||||
"trending_rsi_threshold": [30, 70], // RSI thresholds for trending market
|
||||
"trending_bb_multiplier": 2.5, // BB multiplier for trending market
|
||||
"sideways_rsi_threshold": [40, 60], // RSI thresholds for sideways market
|
||||
"sideways_bb_multiplier": 1.8, // BB multiplier for sideways market
|
||||
"strategy_name": "MarketRegimeStrategy", // Implementation variant
|
||||
"SqueezeStrategy": true, // Enable squeeze detection
|
||||
"stop_loss_pct": 0.05 // Stop loss percentage
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Algorithm**:
|
||||
|
||||
**MarketRegimeStrategy** (Primary Implementation):
|
||||
1. **Market Regime Detection**: Determines if market is trending or sideways
|
||||
2. **Adaptive Parameters**: Adjusts BB/RSI thresholds based on market regime
|
||||
3. **Trending Market Entry**: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike
|
||||
4. **Sideways Market Entry**: Price ≤ Lower Band ∧ RSI ≤ 40
|
||||
5. **Exit Conditions**: Opposite band touch, RSI reversal, or stop-loss
|
||||
6. **Volume Confirmation**: Requires 1.5× average volume for trending signals
|
||||
|
||||
**CryptoTradingStrategy** (Alternative Implementation):
|
||||
1. **Multi-Timeframe Analysis**: Combines 15-minute and 1-hour Bollinger Bands
|
||||
2. **Entry**: Price ≤ both 15m & 1h lower bands + RSI < 35 + Volume surge
|
||||
3. **Exit**: 2:1 risk-reward ratio with ATR-based stops
|
||||
4. **Adaptive Volatility**: Uses ATR for dynamic stop-loss/take-profit
|
||||
|
||||
**Strengths**:
|
||||
- Adapts to different market regimes
|
||||
- Multiple timeframe confirmation (internal)
|
||||
- Volume analysis for signal quality
|
||||
- Sophisticated entry/exit conditions
|
||||
|
||||
**Best Use Cases**:
|
||||
- Volatile cryptocurrency markets
|
||||
- Markets with alternating trending/sideways periods
|
||||
- Short to medium-term trading
|
||||
|
||||
## Strategy Combination
|
||||
|
||||
### Multi-Strategy Architecture
|
||||
|
||||
The StrategyManager allows combining multiple strategies with configurable rules:
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 0.6,
|
||||
"params": {"timeframe": "15min"}
|
||||
},
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 0.4,
|
||||
"params": {"strategy_name": "MarketRegimeStrategy"}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Signal Combination Methods
|
||||
|
||||
**Entry Combinations**:
|
||||
- **`any`**: Enter if ANY strategy signals entry
|
||||
- **`all`**: Enter only if ALL strategies signal entry
|
||||
- **`majority`**: Enter if majority of strategies signal entry
|
||||
- **`weighted_consensus`**: Enter based on weighted confidence average
|
||||
|
||||
**Exit Combinations**:
|
||||
- **`any`**: Exit if ANY strategy signals exit (recommended for risk management)
|
||||
- **`all`**: Exit only if ALL strategies agree
|
||||
- **`priority`**: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
### Default Strategy Performance
|
||||
|
||||
**Strengths**:
|
||||
- **Trend Accuracy**: High accuracy in strong trending markets
|
||||
- **Risk Management**: Defined stop-losses with 1-minute precision
|
||||
- **Low Noise**: Multiple Supertrend confirmation reduces false signals
|
||||
- **Adaptable**: Works across different timeframes
|
||||
|
||||
**Weaknesses**:
|
||||
- **Sideways Markets**: May generate false signals in ranging markets
|
||||
- **Lag**: Multiple confirmations can delay entry/exit signals
|
||||
- **Whipsaws**: Vulnerable to rapid trend reversals
|
||||
|
||||
**Optimal Conditions**:
|
||||
- Clear trending markets
|
||||
- Medium to low volatility trending
|
||||
- Sufficient data history for Supertrend calculation
|
||||
|
||||
### BBRS Strategy Performance
|
||||
|
||||
**Strengths**:
|
||||
- **Market Adaptation**: Automatically adjusts to market regime
|
||||
- **Volume Confirmation**: Reduces false signals with volume analysis
|
||||
- **Multi-Timeframe**: Internal analysis across multiple timeframes
|
||||
- **Volatility Handling**: Designed for cryptocurrency volatility
|
||||
|
||||
**Weaknesses**:
|
||||
- **Complexity**: More parameters to optimize
|
||||
- **Market Noise**: Can be sensitive to short-term noise
|
||||
- **Volume Dependency**: Requires reliable volume data
|
||||
|
||||
**Optimal Conditions**:
|
||||
- High-volume cryptocurrency markets
|
||||
- Markets with clear regime shifts
|
||||
- Sufficient data for regime detection
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Single Strategy Backtests
|
||||
|
||||
```bash
|
||||
# Default strategy on 15-minute timeframe
|
||||
uv run .\main.py .\configs\config_default.json
|
||||
|
||||
# Default strategy on 5-minute timeframe
|
||||
uv run .\main.py .\configs\config_default_5min.json
|
||||
|
||||
# BBRS strategy with market regime detection
|
||||
uv run .\main.py .\configs\config_bbrs.json
|
||||
```
|
||||
|
||||
### Multi-Strategy Backtests
|
||||
|
||||
```bash
|
||||
# Combined strategies with weighted consensus
|
||||
uv run .\main.py .\configs\config_combined.json
|
||||
```
|
||||
|
||||
### Custom Configurations
|
||||
|
||||
**Aggressive Default Strategy**:
|
||||
```json
|
||||
{
|
||||
"name": "default",
|
||||
"params": {
|
||||
"timeframe": "5min", // Faster signals
|
||||
"stop_loss_pct": 0.02 // Tighter stop-loss
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Conservative BBRS Strategy**:
|
||||
```json
|
||||
{
|
||||
"name": "bbrs",
|
||||
"params": {
|
||||
"bb_width": 0.03, // Tighter BB width
|
||||
"stop_loss_pct": 0.07, // Wider stop-loss
|
||||
"SqueezeStrategy": false // Disable squeeze for simplicity
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Development Guidelines
|
||||
|
||||
### Creating New Strategies
|
||||
|
||||
1. **Inherit from StrategyBase**:
|
||||
```python
|
||||
from cycles.strategies.base import StrategyBase, StrategySignal
|
||||
|
||||
class NewStrategy(StrategyBase):
|
||||
def __init__(self, weight=1.0, params=None):
|
||||
super().__init__("new_strategy", weight, params)
|
||||
```
|
||||
|
||||
2. **Specify Timeframes**:
|
||||
```python
|
||||
def get_timeframes(self):
|
||||
return ["1h"] # Specify required timeframes
|
||||
```
|
||||
|
||||
3. **Implement Core Methods**:
|
||||
```python
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
# Calculate indicators...
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Entry logic...
|
||||
return StrategySignal("ENTRY", confidence=0.8)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index):
|
||||
# Exit logic...
|
||||
return StrategySignal("EXIT", confidence=1.0)
|
||||
```
|
||||
|
||||
4. **Register Strategy**:
|
||||
```python
|
||||
# In StrategyManager._load_strategies()
|
||||
elif name == "new_strategy":
|
||||
strategies.append(NewStrategy(weight, params))
|
||||
```
|
||||
|
||||
### Timeframe Best Practices
|
||||
|
||||
1. **Minimize Timeframe Requirements**:
|
||||
```python
|
||||
def get_timeframes(self):
|
||||
return ["15min"] # Only what's needed
|
||||
```
|
||||
|
||||
2. **Include 1min for Stop-Loss**:
|
||||
```python
|
||||
def get_timeframes(self):
|
||||
primary_tf = self.params.get("timeframe", "15min")
|
||||
timeframes = [primary_tf]
|
||||
if "1min" not in timeframes:
|
||||
timeframes.append("1min")
|
||||
return timeframes
|
||||
```
|
||||
|
||||
3. **Handle Multi-Timeframe Synchronization**:
|
||||
```python
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Get current timestamp from primary timeframe
|
||||
primary_data = self.get_primary_timeframe_data()
|
||||
current_time = primary_data.index[df_index]
|
||||
|
||||
# Map to other timeframes
|
||||
hourly_data = self.get_data_for_timeframe("1h")
|
||||
h1_idx = hourly_data.index.get_indexer([current_time], method='ffill')[0]
|
||||
```
|
||||
|
||||
## Testing and Validation
|
||||
|
||||
### Strategy Testing Workflow
|
||||
|
||||
1. **Individual Strategy Testing**:
|
||||
- Test each strategy independently
|
||||
- Validate on different timeframes
|
||||
- Check edge cases and data sufficiency
|
||||
|
||||
2. **Multi-Strategy Testing**:
|
||||
- Test strategy combinations
|
||||
- Validate combination rules
|
||||
- Monitor for signal conflicts
|
||||
|
||||
3. **Timeframe Validation**:
|
||||
- Ensure consistent behavior across timeframes
|
||||
- Validate data alignment
|
||||
- Check memory usage with large datasets
|
||||
|
||||
### Performance Monitoring
|
||||
|
||||
```python
|
||||
# Get strategy summary
|
||||
summary = strategy_manager.get_strategy_summary()
|
||||
print(f"Strategies: {[s['name'] for s in summary['strategies']]}")
|
||||
print(f"Timeframes: {summary['all_timeframes']}")
|
||||
|
||||
# Monitor individual strategy performance
|
||||
for strategy in strategy_manager.strategies:
|
||||
print(f"{strategy.name}: {strategy.get_timeframes()}")
|
||||
```
|
||||
|
||||
## Advanced Topics
|
||||
|
||||
### Multi-Timeframe Strategy Development
|
||||
|
||||
For strategies requiring multiple timeframes:
|
||||
|
||||
```python
|
||||
class MultiTimeframeStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["5min", "15min", "1h"]
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Analyze multiple timeframes
|
||||
data_5m = self.get_data_for_timeframe("5min")
|
||||
data_15m = self.get_data_for_timeframe("15min")
|
||||
data_1h = self.get_data_for_timeframe("1h")
|
||||
|
||||
# Synchronize across timeframes
|
||||
current_time = data_5m.index[df_index]
|
||||
idx_15m = data_15m.index.get_indexer([current_time], method='ffill')[0]
|
||||
idx_1h = data_1h.index.get_indexer([current_time], method='ffill')[0]
|
||||
|
||||
# Multi-timeframe logic
|
||||
short_signal = self._analyze_5min(data_5m, df_index)
|
||||
medium_signal = self._analyze_15min(data_15m, idx_15m)
|
||||
long_signal = self._analyze_1h(data_1h, idx_1h)
|
||||
|
||||
# Combine signals with appropriate confidence
|
||||
if short_signal and medium_signal and long_signal:
|
||||
return StrategySignal("ENTRY", confidence=0.9)
|
||||
elif short_signal and medium_signal:
|
||||
return StrategySignal("ENTRY", confidence=0.7)
|
||||
else:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
### Strategy Optimization
|
||||
|
||||
1. **Parameter Optimization**: Systematic testing of strategy parameters
|
||||
2. **Timeframe Optimization**: Finding optimal timeframes for each strategy
|
||||
3. **Combination Optimization**: Optimizing weights and combination rules
|
||||
4. **Market Regime Adaptation**: Adapting strategies to different market conditions
|
||||
|
||||
For detailed timeframe system documentation, see [Timeframe System](./timeframe_system.md).
|
||||
@ -1,390 +0,0 @@
|
||||
# Strategy Manager Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
The Strategy Manager is a sophisticated orchestration system that enables the combination of multiple trading strategies with configurable signal aggregation rules. It supports multi-timeframe analysis, weighted consensus voting, and flexible signal combination methods.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Core Components
|
||||
|
||||
1. **StrategyBase**: Abstract base class defining the strategy interface
|
||||
2. **StrategySignal**: Encapsulates trading signals with confidence levels
|
||||
3. **StrategyManager**: Orchestrates multiple strategies and combines signals
|
||||
4. **Strategy Implementations**: DefaultStrategy, BBRSStrategy, etc.
|
||||
|
||||
### New Timeframe System
|
||||
|
||||
The framework now supports strategy-level timeframe management:
|
||||
|
||||
- **Strategy-Controlled Timeframes**: Each strategy specifies its required timeframes
|
||||
- **Automatic Data Resampling**: Framework automatically resamples 1-minute data to strategy needs
|
||||
- **Multi-Timeframe Support**: Strategies can use multiple timeframes simultaneously
|
||||
- **Precision Stop-Loss**: All strategies maintain 1-minute data for precise execution
|
||||
|
||||
```python
|
||||
class MyStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["15min", "1h"] # Strategy needs both timeframes
|
||||
|
||||
def initialize(self, backtester):
|
||||
# Access resampled data
|
||||
data_15m = self.get_data_for_timeframe("15min")
|
||||
data_1h = self.get_data_for_timeframe("1h")
|
||||
# Setup indicators...
|
||||
```
|
||||
|
||||
## Strategy Interface
|
||||
|
||||
### StrategyBase Class
|
||||
|
||||
All strategies must inherit from `StrategyBase` and implement:
|
||||
|
||||
```python
|
||||
from cycles.strategies.base import StrategyBase, StrategySignal
|
||||
|
||||
class MyStrategy(StrategyBase):
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""Specify required timeframes"""
|
||||
return ["15min"]
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
"""Setup strategy with data"""
|
||||
self._resample_data(backtester.original_df)
|
||||
# Calculate indicators...
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""Generate entry signals"""
|
||||
if condition_met:
|
||||
return StrategySignal("ENTRY", confidence=0.8)
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
|
||||
"""Generate exit signals"""
|
||||
if exit_condition:
|
||||
return StrategySignal("EXIT", confidence=1.0,
|
||||
metadata={"type": "SELL_SIGNAL"})
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
### StrategySignal Class
|
||||
|
||||
Encapsulates trading signals with metadata:
|
||||
|
||||
```python
|
||||
# Entry signal with high confidence
|
||||
entry_signal = StrategySignal("ENTRY", confidence=0.9)
|
||||
|
||||
# Exit signal with specific price
|
||||
exit_signal = StrategySignal("EXIT", confidence=1.0, price=50000,
|
||||
metadata={"type": "STOP_LOSS"})
|
||||
|
||||
# Hold signal
|
||||
hold_signal = StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
## Available Strategies
|
||||
|
||||
### 1. Default Strategy
|
||||
|
||||
Meta-trend analysis using multiple Supertrend indicators.
|
||||
|
||||
**Features:**
|
||||
- Uses 3 Supertrend indicators with different parameters
|
||||
- Configurable timeframe (default: 15min)
|
||||
- Entry when all trends align upward
|
||||
- Exit on trend reversal or stop-loss
|
||||
|
||||
**Configuration:**
|
||||
```json
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"timeframe": "15min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Timeframes:**
|
||||
- Primary: Configurable (default 15min)
|
||||
- Stop-loss: Always includes 1min for precision
|
||||
|
||||
### 2. BBRS Strategy
|
||||
|
||||
Bollinger Bands + RSI with market regime detection.
|
||||
|
||||
**Features:**
|
||||
- Market regime detection (trending vs sideways)
|
||||
- Adaptive parameters based on market conditions
|
||||
- Volume analysis and confirmation
|
||||
- Multi-timeframe internal analysis (1min → 15min/1h)
|
||||
|
||||
**Configuration:**
|
||||
```json
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"strategy_name": "MarketRegimeStrategy",
|
||||
"stop_loss_pct": 0.05
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Timeframes:**
|
||||
- Input: 1min (Strategy class handles internal resampling)
|
||||
- Internal: 15min, 1h (handled by underlying Strategy class)
|
||||
- Output: Mapped back to 1min for backtesting
|
||||
|
||||
## Signal Combination
|
||||
|
||||
### Entry Signal Combination
|
||||
|
||||
```python
|
||||
combination_rules = {
|
||||
"entry": "weighted_consensus", # or "any", "all", "majority"
|
||||
"min_confidence": 0.6
|
||||
}
|
||||
```
|
||||
|
||||
**Methods:**
|
||||
- **`any`**: Enter if ANY strategy signals entry
|
||||
- **`all`**: Enter only if ALL strategies signal entry
|
||||
- **`majority`**: Enter if majority of strategies signal entry
|
||||
- **`weighted_consensus`**: Enter based on weighted average confidence
|
||||
|
||||
### Exit Signal Combination
|
||||
|
||||
```python
|
||||
combination_rules = {
|
||||
"exit": "priority" # or "any", "all"
|
||||
}
|
||||
```
|
||||
|
||||
**Methods:**
|
||||
- **`any`**: Exit if ANY strategy signals exit (recommended for risk management)
|
||||
- **`all`**: Exit only if ALL strategies agree
|
||||
- **`priority`**: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
|
||||
|
||||
## Configuration
|
||||
|
||||
### Basic Strategy Manager Setup
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 0.6,
|
||||
"params": {
|
||||
"timeframe": "15min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 0.4,
|
||||
"params": {
|
||||
"bb_width": 0.05,
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "weighted_consensus",
|
||||
"exit": "any",
|
||||
"min_confidence": 0.5
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Timeframe Examples
|
||||
|
||||
**Single Timeframe Strategy:**
|
||||
```json
|
||||
{
|
||||
"name": "default",
|
||||
"params": {
|
||||
"timeframe": "5min" # Strategy works on 5-minute data
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Multi-Timeframe Strategy (Future Enhancement):**
|
||||
```json
|
||||
{
|
||||
"name": "multi_tf_strategy",
|
||||
"params": {
|
||||
"timeframes": ["5min", "15min", "1h"], # Multiple timeframes
|
||||
"primary_timeframe": "15min"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Create Strategy Manager
|
||||
|
||||
```python
|
||||
from cycles.strategies import create_strategy_manager
|
||||
|
||||
config = {
|
||||
"strategies": [
|
||||
{"name": "default", "weight": 1.0, "params": {"timeframe": "15min"}}
|
||||
],
|
||||
"combination_rules": {
|
||||
"entry": "any",
|
||||
"exit": "any"
|
||||
}
|
||||
}
|
||||
|
||||
strategy_manager = create_strategy_manager(config)
|
||||
```
|
||||
|
||||
### Initialize and Use
|
||||
|
||||
```python
|
||||
# Initialize with backtester
|
||||
strategy_manager.initialize(backtester)
|
||||
|
||||
# Get signals during backtesting
|
||||
entry_signal = strategy_manager.get_entry_signal(backtester, df_index)
|
||||
exit_signal, exit_price = strategy_manager.get_exit_signal(backtester, df_index)
|
||||
|
||||
# Get strategy summary
|
||||
summary = strategy_manager.get_strategy_summary()
|
||||
print(f"Loaded strategies: {[s['name'] for s in summary['strategies']]}")
|
||||
print(f"All timeframes: {summary['all_timeframes']}")
|
||||
```
|
||||
|
||||
## Extending the System
|
||||
|
||||
### Adding New Strategies
|
||||
|
||||
1. **Create Strategy Class:**
|
||||
```python
|
||||
class NewStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["1h"] # Specify required timeframes
|
||||
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
# Setup indicators...
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Implement entry logic
|
||||
pass
|
||||
|
||||
def get_exit_signal(self, backtester, df_index):
|
||||
# Implement exit logic
|
||||
pass
|
||||
```
|
||||
|
||||
2. **Register in StrategyManager:**
|
||||
```python
|
||||
# In StrategyManager._load_strategies()
|
||||
elif name == "new_strategy":
|
||||
strategies.append(NewStrategy(weight, params))
|
||||
```
|
||||
|
||||
### Multi-Timeframe Strategy Development
|
||||
|
||||
For strategies requiring multiple timeframes:
|
||||
|
||||
```python
|
||||
class MultiTimeframeStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["5min", "15min", "1h"]
|
||||
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Access different timeframes
|
||||
data_5m = self.get_data_for_timeframe("5min")
|
||||
data_15m = self.get_data_for_timeframe("15min")
|
||||
data_1h = self.get_data_for_timeframe("1h")
|
||||
|
||||
# Calculate indicators on each timeframe
|
||||
# ...
|
||||
|
||||
def _calculate_signal_confidence(self, backtester, df_index):
|
||||
# Analyze multiple timeframes for confidence
|
||||
primary_signal = self._get_primary_signal(df_index)
|
||||
confirmation = self._get_timeframe_confirmation(df_index)
|
||||
|
||||
return primary_signal * confirmation
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Timeframe Management
|
||||
|
||||
- **Efficient Resampling**: Each strategy resamples data once during initialization
|
||||
- **Memory Usage**: Only required timeframes are kept in memory
|
||||
- **Signal Mapping**: Efficient mapping between timeframes using pandas reindex
|
||||
|
||||
### Strategy Combination
|
||||
|
||||
- **Lazy Evaluation**: Signals calculated only when needed
|
||||
- **Error Handling**: Individual strategy failures don't crash the system
|
||||
- **Logging**: Comprehensive logging for debugging and monitoring
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Strategy Design:**
|
||||
- Specify minimal required timeframes
|
||||
- Include 1min for stop-loss precision
|
||||
- Use confidence levels effectively
|
||||
|
||||
2. **Signal Combination:**
|
||||
- Use `any` for exits (risk management)
|
||||
- Use `weighted_consensus` for entries
|
||||
- Set appropriate minimum confidence levels
|
||||
|
||||
3. **Error Handling:**
|
||||
- Implement robust initialization checks
|
||||
- Handle missing data gracefully
|
||||
- Log strategy-specific warnings
|
||||
|
||||
4. **Testing:**
|
||||
- Test strategies individually before combining
|
||||
- Validate timeframe requirements
|
||||
- Monitor memory usage with large datasets
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Timeframe Mismatches:**
|
||||
- Ensure strategy specifies correct timeframes
|
||||
- Check data availability for all timeframes
|
||||
|
||||
2. **Signal Conflicts:**
|
||||
- Review combination rules
|
||||
- Adjust confidence thresholds
|
||||
- Monitor strategy weights
|
||||
|
||||
3. **Performance Issues:**
|
||||
- Minimize timeframe requirements
|
||||
- Optimize indicator calculations
|
||||
- Use efficient pandas operations
|
||||
|
||||
### Debugging Tips
|
||||
|
||||
- Enable detailed logging: `logging.basicConfig(level=logging.DEBUG)`
|
||||
- Use strategy summary: `manager.get_strategy_summary()`
|
||||
- Test individual strategies before combining
|
||||
- Monitor signal confidence levels
|
||||
|
||||
---
|
||||
|
||||
**Version**: 1.0.0
|
||||
**Last Updated**: January 2025
|
||||
**TCP Cycles Project**
|
||||
@ -1,488 +0,0 @@
|
||||
# Timeframe System Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
The Cycles framework features a sophisticated timeframe management system that allows strategies to operate on their preferred timeframes while maintaining precise execution control. This system supports both single-timeframe and multi-timeframe strategies with automatic data resampling and intelligent signal mapping.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Core Concepts
|
||||
|
||||
1. **Strategy-Controlled Timeframes**: Each strategy specifies its required timeframes
|
||||
2. **Automatic Resampling**: Framework resamples 1-minute data to strategy needs
|
||||
3. **Precision Execution**: All strategies maintain 1-minute data for accurate stop-loss execution
|
||||
4. **Signal Mapping**: Intelligent mapping between different timeframe resolutions
|
||||
|
||||
### Data Flow
|
||||
|
||||
```
|
||||
Original 1min Data
|
||||
↓
|
||||
Strategy.get_timeframes() → ["15min", "1h"]
|
||||
↓
|
||||
Automatic Resampling
|
||||
↓
|
||||
Strategy Logic (15min + 1h analysis)
|
||||
↓
|
||||
Signal Generation
|
||||
↓
|
||||
Map to Working Timeframe
|
||||
↓
|
||||
Backtesting Engine
|
||||
```
|
||||
|
||||
## Strategy Timeframe Interface
|
||||
|
||||
### StrategyBase Methods
|
||||
|
||||
All strategies inherit timeframe capabilities from `StrategyBase`:
|
||||
|
||||
```python
|
||||
class MyStrategy(StrategyBase):
|
||||
def get_timeframes(self) -> List[str]:
|
||||
"""Specify required timeframes for this strategy"""
|
||||
return ["15min", "1h"] # Strategy needs both timeframes
|
||||
|
||||
def initialize(self, backtester) -> None:
|
||||
# Automatic resampling happens here
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Access resampled data
|
||||
data_15m = self.get_data_for_timeframe("15min")
|
||||
data_1h = self.get_data_for_timeframe("1h")
|
||||
|
||||
# Calculate indicators on each timeframe
|
||||
self.indicators_15m = self._calculate_indicators(data_15m)
|
||||
self.indicators_1h = self._calculate_indicators(data_1h)
|
||||
|
||||
self.initialized = True
|
||||
```
|
||||
|
||||
### Data Access Methods
|
||||
|
||||
```python
|
||||
# Get data for specific timeframe
|
||||
data_15m = strategy.get_data_for_timeframe("15min")
|
||||
|
||||
# Get primary timeframe data (first in list)
|
||||
primary_data = strategy.get_primary_timeframe_data()
|
||||
|
||||
# Check available timeframes
|
||||
timeframes = strategy.get_timeframes()
|
||||
```
|
||||
|
||||
## Supported Timeframes
|
||||
|
||||
### Standard Timeframes
|
||||
|
||||
- **`"1min"`**: 1-minute bars (original resolution)
|
||||
- **`"5min"`**: 5-minute bars
|
||||
- **`"15min"`**: 15-minute bars
|
||||
- **`"30min"`**: 30-minute bars
|
||||
- **`"1h"`**: 1-hour bars
|
||||
- **`"4h"`**: 4-hour bars
|
||||
- **`"1d"`**: Daily bars
|
||||
|
||||
### Custom Timeframes
|
||||
|
||||
Any pandas-compatible frequency string is supported:
|
||||
- **`"2min"`**: 2-minute bars
|
||||
- **`"10min"`**: 10-minute bars
|
||||
- **`"2h"`**: 2-hour bars
|
||||
- **`"12h"`**: 12-hour bars
|
||||
|
||||
## Strategy Examples
|
||||
|
||||
### Single Timeframe Strategy
|
||||
|
||||
```python
|
||||
class SingleTimeframeStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["15min"] # Only needs 15-minute data
|
||||
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Work with 15-minute data
|
||||
data = self.get_primary_timeframe_data()
|
||||
self.indicators = self._calculate_indicators(data)
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# df_index refers to 15-minute data
|
||||
if self.indicators['signal'][df_index]:
|
||||
return StrategySignal("ENTRY", confidence=0.8)
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
### Multi-Timeframe Strategy
|
||||
|
||||
```python
|
||||
class MultiTimeframeStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["15min", "1h", "4h"] # Multiple timeframes
|
||||
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
# Access different timeframes
|
||||
self.data_15m = self.get_data_for_timeframe("15min")
|
||||
self.data_1h = self.get_data_for_timeframe("1h")
|
||||
self.data_4h = self.get_data_for_timeframe("4h")
|
||||
|
||||
# Calculate indicators on each timeframe
|
||||
self.trend_4h = self._calculate_trend(self.data_4h)
|
||||
self.momentum_1h = self._calculate_momentum(self.data_1h)
|
||||
self.entry_signals_15m = self._calculate_entries(self.data_15m)
|
||||
|
||||
self.initialized = True
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Primary timeframe is 15min (first in list)
|
||||
# Map df_index to other timeframes for confirmation
|
||||
|
||||
# Get current 15min timestamp
|
||||
current_time = self.data_15m.index[df_index]
|
||||
|
||||
# Find corresponding indices in other timeframes
|
||||
h1_idx = self.data_1h.index.get_indexer([current_time], method='ffill')[0]
|
||||
h4_idx = self.data_4h.index.get_indexer([current_time], method='ffill')[0]
|
||||
|
||||
# Multi-timeframe confirmation
|
||||
trend_ok = self.trend_4h[h4_idx] > 0
|
||||
momentum_ok = self.momentum_1h[h1_idx] > 0.5
|
||||
entry_signal = self.entry_signals_15m[df_index]
|
||||
|
||||
if trend_ok and momentum_ok and entry_signal:
|
||||
confidence = 0.9 # High confidence with all timeframes aligned
|
||||
return StrategySignal("ENTRY", confidence=confidence)
|
||||
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
### Configurable Timeframe Strategy
|
||||
|
||||
```python
|
||||
class ConfigurableStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
# Strategy timeframe configurable via parameters
|
||||
primary_tf = self.params.get("timeframe", "15min")
|
||||
return [primary_tf, "1min"] # Primary + 1min for stop-loss
|
||||
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
primary_tf = self.get_timeframes()[0]
|
||||
self.data = self.get_data_for_timeframe(primary_tf)
|
||||
|
||||
# Indicator parameters can also be timeframe-dependent
|
||||
if primary_tf == "5min":
|
||||
self.ma_period = 20
|
||||
elif primary_tf == "15min":
|
||||
self.ma_period = 14
|
||||
else:
|
||||
self.ma_period = 10
|
||||
|
||||
self.indicators = self._calculate_indicators(self.data)
|
||||
self.initialized = True
|
||||
```
|
||||
|
||||
## Built-in Strategy Timeframe Behavior
|
||||
|
||||
### Default Strategy
|
||||
|
||||
**Timeframes**: Configurable primary + 1min for stop-loss
|
||||
|
||||
```python
|
||||
# Configuration
|
||||
{
|
||||
"name": "default",
|
||||
"params": {
|
||||
"timeframe": "5min" # Configurable timeframe
|
||||
}
|
||||
}
|
||||
|
||||
# Resulting timeframes: ["5min", "1min"]
|
||||
```
|
||||
|
||||
**Features**:
|
||||
- Supertrend analysis on configured timeframe
|
||||
- 1-minute precision for stop-loss execution
|
||||
- Optimized for 15-minute default, but works on any timeframe
|
||||
|
||||
### BBRS Strategy
|
||||
|
||||
**Timeframes**: 1min input (internal resampling)
|
||||
|
||||
```python
|
||||
# Configuration
|
||||
{
|
||||
"name": "bbrs",
|
||||
"params": {
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
}
|
||||
|
||||
# Resulting timeframes: ["1min"]
|
||||
```
|
||||
|
||||
**Features**:
|
||||
- Uses 1-minute data as input
|
||||
- Internal resampling to 15min/1h by Strategy class
|
||||
- Signals mapped back to 1-minute resolution
|
||||
- No double-resampling issues
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Timeframe Synchronization
|
||||
|
||||
When working with multiple timeframes, synchronization is crucial:
|
||||
|
||||
```python
|
||||
def _get_synchronized_signals(self, df_index, primary_timeframe="15min"):
|
||||
"""Get signals synchronized across timeframes"""
|
||||
|
||||
# Get timestamp from primary timeframe
|
||||
primary_data = self.get_data_for_timeframe(primary_timeframe)
|
||||
current_time = primary_data.index[df_index]
|
||||
|
||||
signals = {}
|
||||
for tf in self.get_timeframes():
|
||||
if tf == primary_timeframe:
|
||||
signals[tf] = df_index
|
||||
else:
|
||||
# Find corresponding index in other timeframe
|
||||
tf_data = self.get_data_for_timeframe(tf)
|
||||
tf_idx = tf_data.index.get_indexer([current_time], method='ffill')[0]
|
||||
signals[tf] = tf_idx
|
||||
|
||||
return signals
|
||||
```
|
||||
|
||||
### Dynamic Timeframe Selection
|
||||
|
||||
Strategies can adapt timeframes based on market conditions:
|
||||
|
||||
```python
|
||||
class AdaptiveStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
# Fixed set of timeframes strategy might need
|
||||
return ["5min", "15min", "1h"]
|
||||
|
||||
def _select_active_timeframe(self, market_volatility):
|
||||
"""Select timeframe based on market conditions"""
|
||||
if market_volatility > 0.8:
|
||||
return "5min" # High volatility -> shorter timeframe
|
||||
elif market_volatility > 0.4:
|
||||
return "15min" # Medium volatility -> medium timeframe
|
||||
else:
|
||||
return "1h" # Low volatility -> longer timeframe
|
||||
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Calculate market volatility
|
||||
volatility = self._calculate_volatility(df_index)
|
||||
|
||||
# Select appropriate timeframe
|
||||
active_tf = self._select_active_timeframe(volatility)
|
||||
|
||||
# Generate signal on selected timeframe
|
||||
return self._generate_signal_for_timeframe(active_tf, df_index)
|
||||
```
|
||||
|
||||
## Configuration Examples
|
||||
|
||||
### Single Timeframe Configuration
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"timeframe": "15min",
|
||||
"stop_loss_pct": 0.03
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Multi-Timeframe Configuration
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "multi_timeframe_strategy",
|
||||
"weight": 1.0,
|
||||
"params": {
|
||||
"primary_timeframe": "15min",
|
||||
"confirmation_timeframes": ["1h", "4h"],
|
||||
"signal_timeframe": "5min"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Mixed Strategy Configuration
|
||||
|
||||
```json
|
||||
{
|
||||
"strategies": [
|
||||
{
|
||||
"name": "default",
|
||||
"weight": 0.6,
|
||||
"params": {
|
||||
"timeframe": "15min"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "bbrs",
|
||||
"weight": 0.4,
|
||||
"params": {
|
||||
"strategy_name": "MarketRegimeStrategy"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Memory Usage
|
||||
|
||||
- Only required timeframes are resampled and stored
|
||||
- Original 1-minute data shared across all strategies
|
||||
- Efficient pandas resampling with minimal memory overhead
|
||||
|
||||
### Processing Speed
|
||||
|
||||
- Resampling happens once during initialization
|
||||
- No repeated resampling during backtesting
|
||||
- Vectorized operations on pre-computed timeframes
|
||||
|
||||
### Data Alignment
|
||||
|
||||
- All timeframes aligned to original 1-minute timestamps
|
||||
- Forward-fill resampling ensures data availability
|
||||
- Intelligent handling of missing data points
|
||||
|
||||
## Best Practices
|
||||
|
||||
### 1. Minimize Timeframe Requirements
|
||||
|
||||
```python
|
||||
# Good - minimal timeframes
|
||||
def get_timeframes(self):
|
||||
return ["15min"]
|
||||
|
||||
# Less optimal - unnecessary timeframes
|
||||
def get_timeframes(self):
|
||||
return ["1min", "5min", "15min", "1h", "4h", "1d"]
|
||||
```
|
||||
|
||||
### 2. Use Appropriate Timeframes for Strategy Logic
|
||||
|
||||
```python
|
||||
# Good - timeframe matches strategy logic
|
||||
class TrendStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["1h"] # Trend analysis works well on hourly data
|
||||
|
||||
class ScalpingStrategy(StrategyBase):
|
||||
def get_timeframes(self):
|
||||
return ["1min", "5min"] # Scalping needs fine-grained data
|
||||
```
|
||||
|
||||
### 3. Include 1min for Stop-Loss Precision
|
||||
|
||||
```python
|
||||
def get_timeframes(self):
|
||||
primary_tf = self.params.get("timeframe", "15min")
|
||||
timeframes = [primary_tf]
|
||||
|
||||
# Always include 1min for precise stop-loss
|
||||
if "1min" not in timeframes:
|
||||
timeframes.append("1min")
|
||||
|
||||
return timeframes
|
||||
```
|
||||
|
||||
### 4. Handle Timeframe Edge Cases
|
||||
|
||||
```python
|
||||
def get_entry_signal(self, backtester, df_index):
|
||||
# Check bounds for all timeframes
|
||||
if df_index >= len(self.get_primary_timeframe_data()):
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
|
||||
# Robust timeframe indexing
|
||||
try:
|
||||
signal = self._calculate_signal(df_index)
|
||||
return signal
|
||||
except IndexError:
|
||||
return StrategySignal("HOLD", confidence=0.0)
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Index Out of Bounds**
|
||||
```python
|
||||
# Problem: Different timeframes have different lengths
|
||||
# Solution: Always check bounds
|
||||
if df_index < len(self.data_1h):
|
||||
signal = self.data_1h[df_index]
|
||||
```
|
||||
|
||||
2. **Timeframe Misalignment**
|
||||
```python
|
||||
# Problem: Assuming same index across timeframes
|
||||
# Solution: Use timestamp-based alignment
|
||||
current_time = primary_data.index[df_index]
|
||||
h1_idx = hourly_data.index.get_indexer([current_time], method='ffill')[0]
|
||||
```
|
||||
|
||||
3. **Memory Issues with Large Datasets**
|
||||
```python
|
||||
# Solution: Only include necessary timeframes
|
||||
def get_timeframes(self):
|
||||
# Return minimal set
|
||||
return ["15min"] # Not ["1min", "5min", "15min", "1h"]
|
||||
```
|
||||
|
||||
### Debugging Tips
|
||||
|
||||
```python
|
||||
# Log timeframe information
|
||||
def initialize(self, backtester):
|
||||
self._resample_data(backtester.original_df)
|
||||
|
||||
for tf in self.get_timeframes():
|
||||
data = self.get_data_for_timeframe(tf)
|
||||
print(f"Timeframe {tf}: {len(data)} bars, "
|
||||
f"from {data.index[0]} to {data.index[-1]}")
|
||||
|
||||
self.initialized = True
|
||||
```
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
### Planned Features
|
||||
|
||||
1. **Dynamic Timeframe Switching**: Strategies adapt timeframes based on market conditions
|
||||
2. **Timeframe Confidence Weighting**: Different confidence levels per timeframe
|
||||
3. **Cross-Timeframe Signal Validation**: Automatic signal confirmation across timeframes
|
||||
4. **Optimized Memory Management**: Lazy loading and caching for large datasets
|
||||
|
||||
### Extension Points
|
||||
|
||||
The timeframe system is designed for easy extension:
|
||||
|
||||
- Custom resampling methods
|
||||
- Alternative timeframe synchronization strategies
|
||||
- Market-specific timeframe preferences
|
||||
- Real-time timeframe adaptation
|
||||
183
test_bbrsi.py
183
test_bbrsi.py
@ -2,10 +2,11 @@ import logging
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import datetime
|
||||
|
||||
from cycles.utils.storage import Storage
|
||||
from cycles.Analysis.strategies import Strategy
|
||||
from cycles.utils.data_utils import aggregate_to_daily
|
||||
from cycles.Analysis.boillinger_band import BollingerBands
|
||||
from cycles.Analysis.rsi import RSI
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
@ -16,145 +17,115 @@ logging.basicConfig(
|
||||
]
|
||||
)
|
||||
|
||||
config = {
|
||||
"start_date": "2025-03-01",
|
||||
"stop_date": datetime.datetime.today().strftime('%Y-%m-%d'),
|
||||
config_minute = {
|
||||
"start_date": "2022-01-01",
|
||||
"stop_date": "2023-01-01",
|
||||
"data_file": "btcusd_1-min_data.csv"
|
||||
}
|
||||
|
||||
config_strategy = {
|
||||
"bb_width": 0.05,
|
||||
"bb_period": 20,
|
||||
"rsi_period": 14,
|
||||
"trending": {
|
||||
"rsi_threshold": [30, 70],
|
||||
"bb_std_dev_multiplier": 2.5,
|
||||
},
|
||||
"sideways": {
|
||||
"rsi_threshold": [40, 60],
|
||||
"bb_std_dev_multiplier": 1.8,
|
||||
},
|
||||
"strategy_name": "MarketRegimeStrategy", # CryptoTradingStrategy
|
||||
"SqueezeStrategy": True
|
||||
config_day = {
|
||||
"start_date": "2022-01-01",
|
||||
"stop_date": "2023-01-01",
|
||||
"data_file": "btcusd_1-day_data.csv"
|
||||
}
|
||||
|
||||
IS_DAY = False
|
||||
IS_DAY = True
|
||||
|
||||
def no_strategy(data_bb, data_with_rsi):
|
||||
buy_condition = pd.Series([False] * len(data_bb), index=data_bb.index)
|
||||
sell_condition = pd.Series([False] * len(data_bb), index=data_bb.index)
|
||||
return buy_condition, sell_condition
|
||||
|
||||
def strategy_1(data_bb, data_with_rsi):
|
||||
# Long trade: price move below lower Bollinger band and RSI go below 25
|
||||
buy_condition = (data_bb['close'] < data_bb['LowerBand']) & (data_bb['RSI'] < 25)
|
||||
# Short only: price move above top Bollinger band and RSI goes over 75
|
||||
sell_condition = (data_bb['close'] > data_bb['UpperBand']) & (data_bb['RSI'] > 75)
|
||||
return buy_condition, sell_condition
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Load data
|
||||
storage = Storage(logging=logging)
|
||||
|
||||
if IS_DAY:
|
||||
config = config_day
|
||||
else:
|
||||
config = config_minute
|
||||
|
||||
data = storage.load_data(config["data_file"], config["start_date"], config["stop_date"])
|
||||
|
||||
# Run strategy
|
||||
strategy = Strategy(config=config_strategy, logging=logging)
|
||||
processed_data = strategy.run(data.copy(), config_strategy["strategy_name"])
|
||||
if not IS_DAY:
|
||||
data_daily = aggregate_to_daily(data)
|
||||
storage.save_data(data, "btcusd_1-day_data.csv")
|
||||
df_to_plot = data_daily
|
||||
else:
|
||||
df_to_plot = data
|
||||
|
||||
# Get buy and sell signals
|
||||
buy_condition = processed_data.get('BuySignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
sell_condition = processed_data.get('SellSignal', pd.Series(False, index=processed_data.index)).astype(bool)
|
||||
bb = BollingerBands(period=30, std_dev_multiplier=2.0)
|
||||
data_bb = bb.calculate(df_to_plot.copy())
|
||||
|
||||
buy_signals = processed_data[buy_condition]
|
||||
sell_signals = processed_data[sell_condition]
|
||||
rsi_calculator = RSI(period=13)
|
||||
data_with_rsi = rsi_calculator.calculate(df_to_plot.copy(), price_column='close')
|
||||
|
||||
# Plot the data with seaborn library
|
||||
if processed_data is not None and not processed_data.empty:
|
||||
# Combine BB and RSI data into a single DataFrame for signal generation
|
||||
# Ensure indices are aligned; they should be as both are from df_to_plot.copy()
|
||||
if 'RSI' in data_with_rsi.columns:
|
||||
data_bb['RSI'] = data_with_rsi['RSI']
|
||||
else:
|
||||
# If RSI wasn't calculated (e.g., not enough data), create a dummy column with NaNs
|
||||
# to prevent errors later, though signals won't be generated.
|
||||
data_bb['RSI'] = pd.Series(index=data_bb.index, dtype=float)
|
||||
logging.warning("RSI column not found or not calculated. Signals relying on RSI may not be generated.")
|
||||
|
||||
strategy = 1
|
||||
if strategy == 1:
|
||||
buy_condition, sell_condition = strategy_1(data_bb, data_with_rsi)
|
||||
else:
|
||||
buy_condition, sell_condition = no_strategy(data_bb, data_with_rsi)
|
||||
|
||||
buy_signals = data_bb[buy_condition]
|
||||
sell_signals = data_bb[sell_condition]
|
||||
|
||||
# plot the data with seaborn library
|
||||
if df_to_plot is not None and not df_to_plot.empty:
|
||||
# Create a figure with two subplots, sharing the x-axis
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 8), sharex=True)
|
||||
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 8), sharex=True)
|
||||
|
||||
strategy_name = config_strategy["strategy_name"]
|
||||
|
||||
# Plot 1: Close Price and Strategy-Specific Bands/Levels
|
||||
sns.lineplot(x=processed_data.index, y='close', data=processed_data, label='Close Price', ax=ax1)
|
||||
|
||||
# Use standardized column names for bands
|
||||
if 'UpperBand' in processed_data.columns and 'LowerBand' in processed_data.columns:
|
||||
# Instead of lines, shade the area between upper and lower bands
|
||||
ax1.fill_between(processed_data.index,
|
||||
processed_data['LowerBand'],
|
||||
processed_data['UpperBand'],
|
||||
alpha=0.1, color='blue', label='Bollinger Bands')
|
||||
else:
|
||||
logging.warning(f"{strategy_name}: UpperBand or LowerBand not found for plotting.")
|
||||
|
||||
# Add strategy-specific extra indicators if available
|
||||
if strategy_name == "CryptoTradingStrategy":
|
||||
if 'StopLoss' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='StopLoss', data=processed_data, label='Stop Loss', ax=ax1, linestyle='--', color='orange')
|
||||
if 'TakeProfit' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='TakeProfit', data=processed_data, label='Take Profit', ax=ax1, linestyle='--', color='purple')
|
||||
|
||||
# Plot 1: Close Price and Bollinger Bands
|
||||
sns.lineplot(x=data_bb.index, y='close', data=data_bb, label='Close Price', ax=ax1)
|
||||
sns.lineplot(x=data_bb.index, y='UpperBand', data=data_bb, label='Upper Band (BB)', ax=ax1)
|
||||
sns.lineplot(x=data_bb.index, y='LowerBand', data=data_bb, label='Lower Band (BB)', ax=ax1)
|
||||
# Plot Buy/Sell signals on Price chart
|
||||
if not buy_signals.empty:
|
||||
ax1.scatter(buy_signals.index, buy_signals['close'], color='green', marker='o', s=20, label='Buy Signal', zorder=5)
|
||||
if not sell_signals.empty:
|
||||
ax1.scatter(sell_signals.index, sell_signals['close'], color='red', marker='o', s=20, label='Sell Signal', zorder=5)
|
||||
ax1.set_title(f'Price and Signals ({strategy_name})')
|
||||
ax1.set_title('Price and Bollinger Bands with Signals')
|
||||
ax1.set_ylabel('Price')
|
||||
ax1.legend()
|
||||
ax1.grid(True)
|
||||
|
||||
# Plot 2: RSI and Strategy-Specific Thresholds
|
||||
if 'RSI' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='RSI', data=processed_data, label=f'RSI (' + str(config_strategy.get("rsi_period", 14)) + ')', ax=ax2, color='purple')
|
||||
if strategy_name == "MarketRegimeStrategy":
|
||||
# Get threshold values
|
||||
upper_threshold = config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[1]
|
||||
lower_threshold = config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[0]
|
||||
|
||||
# Shade overbought area (upper)
|
||||
ax2.fill_between(processed_data.index, upper_threshold, 100,
|
||||
alpha=0.1, color='red', label=f'Overbought (>{upper_threshold})')
|
||||
|
||||
# Shade oversold area (lower)
|
||||
ax2.fill_between(processed_data.index, 0, lower_threshold,
|
||||
alpha=0.1, color='green', label=f'Oversold (<{lower_threshold})')
|
||||
|
||||
elif strategy_name == "CryptoTradingStrategy":
|
||||
# Shade overbought area (upper)
|
||||
ax2.fill_between(processed_data.index, 65, 100,
|
||||
alpha=0.1, color='red', label='Overbought (>65)')
|
||||
|
||||
# Shade oversold area (lower)
|
||||
ax2.fill_between(processed_data.index, 0, 35,
|
||||
alpha=0.1, color='green', label='Oversold (<35)')
|
||||
|
||||
# Plot 2: RSI
|
||||
if 'RSI' in data_bb.columns: # Check data_bb now as it should contain RSI
|
||||
sns.lineplot(x=data_bb.index, y='RSI', data=data_bb, label='RSI (14)', ax=ax2, color='purple')
|
||||
ax2.axhline(75, color='red', linestyle='--', linewidth=0.8, label='Overbought (75)')
|
||||
ax2.axhline(25, color='green', linestyle='--', linewidth=0.8, label='Oversold (25)')
|
||||
# Plot Buy/Sell signals on RSI chart
|
||||
if not buy_signals.empty and 'RSI' in buy_signals.columns:
|
||||
if not buy_signals.empty:
|
||||
ax2.scatter(buy_signals.index, buy_signals['RSI'], color='green', marker='o', s=20, label='Buy Signal (RSI)', zorder=5)
|
||||
if not sell_signals.empty and 'RSI' in sell_signals.columns:
|
||||
if not sell_signals.empty:
|
||||
ax2.scatter(sell_signals.index, sell_signals['RSI'], color='red', marker='o', s=20, label='Sell Signal (RSI)', zorder=5)
|
||||
ax2.set_title('Relative Strength Index (RSI) with Signals')
|
||||
ax2.set_ylabel('RSI Value')
|
||||
ax2.set_ylim(0, 100)
|
||||
ax2.set_ylim(0, 100) # RSI is typically bounded between 0 and 100
|
||||
ax2.legend()
|
||||
ax2.grid(True)
|
||||
else:
|
||||
logging.info("RSI data not available for plotting.")
|
||||
|
||||
# Plot 3: Strategy-Specific Indicators
|
||||
ax3.clear() # Clear previous plot content if any
|
||||
if 'BBWidth' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='BBWidth', data=processed_data, label='BB Width', ax=ax3)
|
||||
|
||||
if strategy_name == "MarketRegimeStrategy":
|
||||
if 'MarketRegime' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='MarketRegime', data=processed_data, label='Market Regime (Sideways: 1, Trending: 0)', ax=ax3)
|
||||
ax3.set_title('Bollinger Bands Width & Market Regime')
|
||||
ax3.set_ylabel('Value')
|
||||
elif strategy_name == "CryptoTradingStrategy":
|
||||
if 'VolumeMA' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='VolumeMA', data=processed_data, label='Volume MA', ax=ax3)
|
||||
if 'volume' in processed_data.columns:
|
||||
sns.lineplot(x=processed_data.index, y='volume', data=processed_data, label='Volume', ax=ax3, alpha=0.5)
|
||||
ax3.set_title('Volume Analysis')
|
||||
ax3.set_ylabel('Volume')
|
||||
|
||||
ax3.legend()
|
||||
ax3.grid(True)
|
||||
|
||||
plt.xlabel('Date')
|
||||
fig.tight_layout()
|
||||
plt.xlabel('Date') # Common X-axis label
|
||||
fig.tight_layout() # Adjust layout to prevent overlapping titles/labels
|
||||
plt.show()
|
||||
else:
|
||||
logging.info("No data to plot.")
|
||||
|
||||
@ -1,229 +0,0 @@
|
||||
import os
|
||||
import time
|
||||
import hmac
|
||||
import hashlib
|
||||
import base64
|
||||
import json
|
||||
import pandas as pd
|
||||
import threading
|
||||
from websocket import create_connection, WebSocketTimeoutException
|
||||
|
||||
class CryptoComTrader:
|
||||
ENV_URLS = {
|
||||
"production": {
|
||||
"WS_URL": "wss://deriv-stream.crypto.com/v1/market",
|
||||
"WS_PRIVATE_URL": "wss://deriv-stream.crypto.com/v1/user"
|
||||
},
|
||||
"uat": {
|
||||
"WS_URL": "wss://uat-deriv-stream.3ona.co/v1/market",
|
||||
"WS_PRIVATE_URL": "wss://uat-deriv-stream.3ona.co/v1/user"
|
||||
}
|
||||
}
|
||||
|
||||
def __init__(self):
|
||||
self.env = os.getenv("CRYPTOCOM_ENV", "UAT").lower()
|
||||
urls = self.ENV_URLS.get(self.env, self.ENV_URLS["production"])
|
||||
self.WS_URL = urls["WS_URL"]
|
||||
self.WS_PRIVATE_URL = urls["WS_PRIVATE_URL"]
|
||||
self.api_key = os.getenv("CRYPTOCOM_API_KEY")
|
||||
self.api_secret = os.getenv("CRYPTOCOM_API_SECRET")
|
||||
self.ws = None
|
||||
self.ws_private = None
|
||||
self._lock = threading.Lock()
|
||||
self._private_lock = threading.Lock()
|
||||
self._connect_ws()
|
||||
|
||||
def _connect_ws(self):
|
||||
if self.ws is None:
|
||||
self.ws = create_connection(self.WS_URL, timeout=10)
|
||||
if self.api_key and self.api_secret and self.ws_private is None:
|
||||
self.ws_private = create_connection(self.WS_PRIVATE_URL, timeout=10)
|
||||
|
||||
def _send_ws(self, payload, private=False):
|
||||
ws = self.ws_private if private else self.ws
|
||||
lock = self._private_lock if private else self._lock
|
||||
with lock:
|
||||
ws.send(json.dumps(payload))
|
||||
try:
|
||||
resp = ws.recv()
|
||||
return json.loads(resp)
|
||||
except WebSocketTimeoutException:
|
||||
return None
|
||||
|
||||
def _sign(self, params):
|
||||
t = str(int(time.time() * 1000))
|
||||
params['id'] = t
|
||||
params['nonce'] = t
|
||||
params['api_key'] = self.api_key
|
||||
param_str = json.dumps(params, separators=(',', ':'), sort_keys=True)
|
||||
sig = hmac.new(
|
||||
bytes(self.api_secret, 'utf-8'),
|
||||
msg=bytes(param_str, 'utf-8'),
|
||||
digestmod=hashlib.sha256
|
||||
).hexdigest()
|
||||
params['sig'] = sig
|
||||
return params
|
||||
|
||||
def get_price(self):
|
||||
"""
|
||||
Get the latest ask price for BTC_USDC using WebSocket ticker subscription (one-shot).
|
||||
"""
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "subscribe",
|
||||
"params": {"channels": ["ticker.BTC_USDC"]}
|
||||
}
|
||||
resp = self._send_ws(payload)
|
||||
# Wait for ticker update
|
||||
while True:
|
||||
data = self.ws.recv()
|
||||
msg = json.loads(data)
|
||||
if msg.get("method") == "ticker.update":
|
||||
# 'a' is ask price
|
||||
return msg["params"]["data"][0].get("a")
|
||||
|
||||
def get_order_book(self, depth=10):
|
||||
"""
|
||||
Fetch the order book for BTC_USDC with the specified depth using WebSocket (one-shot).
|
||||
Returns a dict with 'bids' and 'asks'.
|
||||
"""
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "subscribe",
|
||||
"params": {"channels": [f"book.BTC_USDC.{depth}"]}
|
||||
}
|
||||
resp = self._send_ws(payload)
|
||||
# Wait for book update
|
||||
while True:
|
||||
data = self.ws.recv()
|
||||
msg = json.loads(data)
|
||||
if msg.get("method") == "book.update":
|
||||
book = msg["params"]["data"][0]
|
||||
return {
|
||||
"bids": book.get("bids", []),
|
||||
"asks": book.get("asks", [])
|
||||
}
|
||||
|
||||
def _authenticate(self):
|
||||
"""
|
||||
Authenticate the private WebSocket connection. Only needs to be done once per session.
|
||||
"""
|
||||
if not self.api_key or not self.api_secret:
|
||||
raise ValueError("API key and secret must be set in environment variables.")
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "public/auth",
|
||||
"api_key": self.api_key,
|
||||
"nonce": int(time.time() * 1000),
|
||||
}
|
||||
# For auth, sig is HMAC_SHA256(method + id + api_key + nonce)
|
||||
sig_payload = (
|
||||
payload["method"] + str(payload["id"]) + self.api_key + str(payload["nonce"])
|
||||
)
|
||||
payload["sig"] = hmac.new(
|
||||
bytes(self.api_secret, "utf-8"),
|
||||
msg=bytes(sig_payload, "utf-8"),
|
||||
digestmod=hashlib.sha256,
|
||||
).hexdigest()
|
||||
resp = self._send_ws(payload, private=True)
|
||||
if not resp or resp.get("code") != 0:
|
||||
raise Exception(f"WebSocket authentication failed: {resp}")
|
||||
|
||||
def _ensure_private_auth(self):
|
||||
if self.ws_private is None:
|
||||
self._connect_ws()
|
||||
time.sleep(1) # recommended by docs
|
||||
self._authenticate()
|
||||
|
||||
def get_balance(self, currency="USDC"):
|
||||
"""
|
||||
Fetch user balance using WebSocket private API.
|
||||
"""
|
||||
self._ensure_private_auth()
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "private/user-balance",
|
||||
"params": {},
|
||||
"nonce": int(time.time() * 1000),
|
||||
}
|
||||
resp = self._send_ws(payload, private=True)
|
||||
if resp and resp.get("code") == 0:
|
||||
balances = resp.get("result", {}).get("data", [])
|
||||
if currency:
|
||||
return [b for b in balances if b.get("instrument_name") == currency]
|
||||
return balances
|
||||
return []
|
||||
|
||||
def place_order(self, side, amount):
|
||||
"""
|
||||
Place a market order using WebSocket private API.
|
||||
side: 'BUY' or 'SELL', amount: in BTC
|
||||
"""
|
||||
self._ensure_private_auth()
|
||||
params = {
|
||||
"instrument_name": "BTC_USDC",
|
||||
"side": side,
|
||||
"type": "MARKET",
|
||||
"quantity": str(amount),
|
||||
}
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "private/create-order",
|
||||
"params": params,
|
||||
"nonce": int(time.time() * 1000),
|
||||
}
|
||||
resp = self._send_ws(payload, private=True)
|
||||
return resp
|
||||
|
||||
def buy_btc(self, amount):
|
||||
return self.place_order("BUY", amount)
|
||||
|
||||
def sell_btc(self, amount):
|
||||
return self.place_order("SELL", amount)
|
||||
|
||||
def get_candlesticks(self, timeframe='1m', count=100):
|
||||
"""
|
||||
Fetch candlestick (OHLCV) data for BTC_USDC using WebSocket.
|
||||
Args:
|
||||
timeframe (str): Timeframe for each candle (e.g., '1m', '5m', '15m', '1h', '4h', '1d').
|
||||
count (int): Number of candles to fetch (max 1000 per API docs).
|
||||
Returns:
|
||||
pd.DataFrame: DataFrame with columns ['timestamp', 'open', 'high', 'low', 'close', 'volume']
|
||||
"""
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "public/get-candlestick",
|
||||
"params": {
|
||||
"instrument_name": "BTC_USDC",
|
||||
"timeframe": timeframe,
|
||||
"count": count
|
||||
}
|
||||
}
|
||||
resp = self._send_ws(payload)
|
||||
candles = resp.get("result", {}).get("data", []) if resp else []
|
||||
if not candles:
|
||||
return pd.DataFrame(columns=["timestamp", "open", "high", "low", "close", "volume"])
|
||||
df = pd.DataFrame(candles)
|
||||
df['timestamp'] = pd.to_datetime(df['t'], unit='ms')
|
||||
df = df.rename(columns={
|
||||
'o': 'open',
|
||||
'h': 'high',
|
||||
'l': 'low',
|
||||
'c': 'close',
|
||||
'v': 'volume'
|
||||
})
|
||||
return df[['timestamp', 'open', 'high', 'low', 'close', 'volume']].sort_values('timestamp')
|
||||
|
||||
def get_instruments(self):
|
||||
"""
|
||||
Fetch the list of available trading instruments from Crypto.com using WebSocket.
|
||||
Returns:
|
||||
list: List of instrument dicts.
|
||||
"""
|
||||
payload = {
|
||||
"id": int(time.time() * 1000),
|
||||
"method": "public/get-instruments",
|
||||
"params": {}
|
||||
}
|
||||
resp = self._send_ws(payload)
|
||||
return resp.get("result", {}).get("data", []) if resp else []
|
||||
@ -1,84 +0,0 @@
|
||||
import time
|
||||
import plotly.graph_objs as go
|
||||
import plotly.io as pio
|
||||
from cryptocom_trader import CryptoComTrader
|
||||
|
||||
|
||||
def plot_candlesticks(df):
|
||||
if df.empty:
|
||||
print("No data to plot.")
|
||||
return None
|
||||
|
||||
# Convert columns to float
|
||||
for col in ['open', 'high', 'low', 'close', 'volume']:
|
||||
df[col] = df[col].astype(float)
|
||||
|
||||
# Plotly expects datetime for x-axis
|
||||
fig = go.Figure(data=[go.Candlestick(
|
||||
x=df['timestamp'],
|
||||
open=df['open'],
|
||||
high=df['high'],
|
||||
low=df['low'],
|
||||
close=df['close'],
|
||||
increasing_line_color='#089981',
|
||||
decreasing_line_color='#F23645'
|
||||
)])
|
||||
|
||||
fig.update_layout(
|
||||
title='BTC/USDC Realtime Candlestick (1m)',
|
||||
yaxis_title='Price (USDC)',
|
||||
xaxis_title='Time',
|
||||
xaxis_rangeslider_visible=False,
|
||||
template='plotly_dark'
|
||||
)
|
||||
return fig
|
||||
|
||||
|
||||
def main():
|
||||
trader = CryptoComTrader()
|
||||
pio.renderers.default = "browser" # Open in browser
|
||||
|
||||
# Fetch and print BTC/USDC-related instruments
|
||||
instruments = trader.get_instruments()
|
||||
btc_usdc_instruments = [
|
||||
inst for inst in instruments
|
||||
if (
|
||||
('BTC' in inst.get('base_ccy', '') or 'BTC' in inst.get('base_currency', '')) and
|
||||
('USDC' in inst.get('quote_ccy', '') or 'USDC' in inst.get('quote_currency', ''))
|
||||
)
|
||||
]
|
||||
print("BTC/USDC-related instruments:")
|
||||
for inst in btc_usdc_instruments:
|
||||
print(inst)
|
||||
|
||||
# Optionally, show balance (private API)
|
||||
try:
|
||||
balance = trader.get_balance("USDC")
|
||||
print("USDC Balance:", balance)
|
||||
except Exception as e:
|
||||
print("[WARN] Could not fetch balance (private API):", e)
|
||||
|
||||
all_instruments = trader.get_instruments()
|
||||
for inst in all_instruments:
|
||||
print(inst)
|
||||
|
||||
while True:
|
||||
try:
|
||||
df = trader.get_candlesticks(timeframe='1m', count=60)
|
||||
# fig = plot_candlesticks(df)
|
||||
# if fig:
|
||||
# fig.show()
|
||||
if not df.empty:
|
||||
print(df[['high', 'low', 'open', 'close', 'volume']])
|
||||
else:
|
||||
print("No data to print.")
|
||||
time.sleep(10)
|
||||
except KeyboardInterrupt:
|
||||
print('Exiting...')
|
||||
break
|
||||
except Exception as e:
|
||||
print(f'Error: {e}')
|
||||
time.sleep(10)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user