Fixing last merge
This commit is contained in:
parent
0a919f825e
commit
ec1a86e098
@ -0,0 +1,848 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from scipy.signal import find_peaks
|
||||
from matplotlib.patches import Rectangle
|
||||
from scipy import stats
|
||||
import concurrent.futures
|
||||
from functools import partial
|
||||
from functools import lru_cache
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Color configuration
|
||||
# Plot colors
|
||||
DARK_BG_COLOR = '#181C27'
|
||||
LEGEND_BG_COLOR = '#333333'
|
||||
TITLE_COLOR = 'white'
|
||||
AXIS_LABEL_COLOR = 'white'
|
||||
|
||||
# Candlestick colors
|
||||
CANDLE_UP_COLOR = '#089981' # Green
|
||||
CANDLE_DOWN_COLOR = '#F23645' # Red
|
||||
|
||||
# Marker colors
|
||||
MIN_COLOR = 'red'
|
||||
MAX_COLOR = 'green'
|
||||
|
||||
# Line style colors
|
||||
MIN_LINE_STYLE = 'g--' # Green dashed
|
||||
MAX_LINE_STYLE = 'r--' # Red dashed
|
||||
SMA7_LINE_STYLE = 'y-' # Yellow solid
|
||||
SMA15_LINE_STYLE = 'm-' # Magenta solid
|
||||
|
||||
# SuperTrend colors
|
||||
ST_COLOR_UP = 'g-'
|
||||
ST_COLOR_DOWN = 'r-'
|
||||
|
||||
# Cache the calculation results by function parameters
|
||||
@lru_cache(maxsize=32)
|
||||
def cached_supertrend_calculation(period, multiplier, data_tuple):
|
||||
# Convert tuple back to numpy arrays
|
||||
high = np.array(data_tuple[0])
|
||||
low = np.array(data_tuple[1])
|
||||
close = np.array(data_tuple[2])
|
||||
|
||||
# Calculate TR and ATR using vectorized operations
|
||||
tr = np.zeros_like(close)
|
||||
tr[0] = high[0] - low[0]
|
||||
hc_range = np.abs(high[1:] - close[:-1])
|
||||
lc_range = np.abs(low[1:] - close[:-1])
|
||||
hl_range = high[1:] - low[1:]
|
||||
tr[1:] = np.maximum.reduce([hl_range, hc_range, lc_range])
|
||||
|
||||
# Use numpy's exponential moving average
|
||||
atr = np.zeros_like(tr)
|
||||
atr[0] = tr[0]
|
||||
multiplier_ema = 2.0 / (period + 1)
|
||||
for i in range(1, len(tr)):
|
||||
atr[i] = (tr[i] * multiplier_ema) + (atr[i-1] * (1 - multiplier_ema))
|
||||
|
||||
# Calculate bands
|
||||
upper_band = np.zeros_like(close)
|
||||
lower_band = np.zeros_like(close)
|
||||
for i in range(len(close)):
|
||||
hl_avg = (high[i] + low[i]) / 2
|
||||
upper_band[i] = hl_avg + (multiplier * atr[i])
|
||||
lower_band[i] = hl_avg - (multiplier * atr[i])
|
||||
|
||||
final_upper = np.zeros_like(close)
|
||||
final_lower = np.zeros_like(close)
|
||||
supertrend = np.zeros_like(close)
|
||||
trend = np.zeros_like(close)
|
||||
final_upper[0] = upper_band[0]
|
||||
final_lower[0] = lower_band[0]
|
||||
if close[0] <= upper_band[0]:
|
||||
supertrend[0] = upper_band[0]
|
||||
trend[0] = -1
|
||||
else:
|
||||
supertrend[0] = lower_band[0]
|
||||
trend[0] = 1
|
||||
for i in range(1, len(close)):
|
||||
if (upper_band[i] < final_upper[i-1]) or (close[i-1] > final_upper[i-1]):
|
||||
final_upper[i] = upper_band[i]
|
||||
else:
|
||||
final_upper[i] = final_upper[i-1]
|
||||
if (lower_band[i] > final_lower[i-1]) or (close[i-1] < final_lower[i-1]):
|
||||
final_lower[i] = lower_band[i]
|
||||
else:
|
||||
final_lower[i] = final_lower[i-1]
|
||||
if supertrend[i-1] == final_upper[i-1] and close[i] <= final_upper[i]:
|
||||
supertrend[i] = final_upper[i]
|
||||
trend[i] = -1
|
||||
elif supertrend[i-1] == final_upper[i-1] and close[i] > final_upper[i]:
|
||||
supertrend[i] = final_lower[i]
|
||||
trend[i] = 1
|
||||
elif supertrend[i-1] == final_lower[i-1] and close[i] >= final_lower[i]:
|
||||
supertrend[i] = final_lower[i]
|
||||
trend[i] = 1
|
||||
elif supertrend[i-1] == final_lower[i-1] and close[i] < final_lower[i]:
|
||||
supertrend[i] = final_upper[i]
|
||||
trend[i] = -1
|
||||
return {
|
||||
'supertrend': supertrend,
|
||||
'trend': trend,
|
||||
'upper_band': final_upper,
|
||||
'lower_band': final_lower
|
||||
}
|
||||
|
||||
def calculate_supertrend_external(data, period, multiplier):
|
||||
# Convert DataFrame columns to hashable tuples
|
||||
high_tuple = tuple(data['high'])
|
||||
low_tuple = tuple(data['low'])
|
||||
close_tuple = tuple(data['close'])
|
||||
|
||||
# Call the cached function
|
||||
return cached_supertrend_calculation(period, multiplier, (high_tuple, low_tuple, close_tuple))
|
||||
|
||||
def calculate_okx_fee(amount, is_maker=True):
|
||||
fee_rate = 0.0008 if is_maker else 0.0010
|
||||
return amount * fee_rate
|
||||
|
||||
class TrendDetectorSimple:
|
||||
def __init__(self, data, verbose=False, display=False):
|
||||
"""
|
||||
Initialize the TrendDetectorSimple class.
|
||||
|
||||
Parameters:
|
||||
- data: pandas DataFrame containing price data
|
||||
- verbose: boolean, whether to display detailed logging information
|
||||
- display: boolean, whether to enable display/plotting features
|
||||
"""
|
||||
|
||||
self.data = data
|
||||
self.verbose = verbose
|
||||
self.display = display
|
||||
|
||||
# Only define display-related variables if display is True
|
||||
if self.display:
|
||||
# Plot style configuration
|
||||
self.plot_style = 'dark_background'
|
||||
self.bg_color = DARK_BG_COLOR
|
||||
self.plot_size = (12, 8)
|
||||
|
||||
# Candlestick configuration
|
||||
self.candle_width = 0.6
|
||||
self.candle_up_color = CANDLE_UP_COLOR
|
||||
self.candle_down_color = CANDLE_DOWN_COLOR
|
||||
self.candle_alpha = 0.8
|
||||
self.wick_width = 1
|
||||
|
||||
# Marker configuration
|
||||
self.min_marker = '^'
|
||||
self.min_color = MIN_COLOR
|
||||
self.min_size = 100
|
||||
self.max_marker = 'v'
|
||||
self.max_color = MAX_COLOR
|
||||
self.max_size = 100
|
||||
self.marker_zorder = 100
|
||||
|
||||
# Line configuration
|
||||
self.line_width = 1
|
||||
self.min_line_style = MIN_LINE_STYLE
|
||||
self.max_line_style = MAX_LINE_STYLE
|
||||
self.sma7_line_style = SMA7_LINE_STYLE
|
||||
self.sma15_line_style = SMA15_LINE_STYLE
|
||||
|
||||
# Text configuration
|
||||
self.title_size = 14
|
||||
self.title_color = TITLE_COLOR
|
||||
self.axis_label_size = 12
|
||||
self.axis_label_color = AXIS_LABEL_COLOR
|
||||
|
||||
# Legend configuration
|
||||
self.legend_loc = 'best'
|
||||
self.legend_bg_color = LEGEND_BG_COLOR
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
self.logger = logging.getLogger('TrendDetectorSimple')
|
||||
|
||||
# Convert data to pandas DataFrame if it's not already
|
||||
if not isinstance(self.data, pd.DataFrame):
|
||||
if isinstance(self.data, list):
|
||||
self.data = pd.DataFrame({'close': self.data})
|
||||
else:
|
||||
raise ValueError("Data must be a pandas DataFrame or a list")
|
||||
|
||||
def calculate_tr(self):
|
||||
"""
|
||||
Calculate True Range (TR) for the price data.
|
||||
|
||||
True Range is the greatest of:
|
||||
1. Current high - current low
|
||||
2. |Current high - previous close|
|
||||
3. |Current low - previous close|
|
||||
|
||||
Returns:
|
||||
- Numpy array of TR values
|
||||
"""
|
||||
df = self.data.copy()
|
||||
high = df['high'].values
|
||||
low = df['low'].values
|
||||
close = df['close'].values
|
||||
|
||||
tr = np.zeros_like(close)
|
||||
tr[0] = high[0] - low[0] # First TR is just the first day's range
|
||||
|
||||
for i in range(1, len(close)):
|
||||
# Current high - current low
|
||||
hl_range = high[i] - low[i]
|
||||
# |Current high - previous close|
|
||||
hc_range = abs(high[i] - close[i-1])
|
||||
# |Current low - previous close|
|
||||
lc_range = abs(low[i] - close[i-1])
|
||||
|
||||
# TR is the maximum of these three values
|
||||
tr[i] = max(hl_range, hc_range, lc_range)
|
||||
|
||||
return tr
|
||||
|
||||
def calculate_atr(self, period=14):
|
||||
"""
|
||||
Calculate Average True Range (ATR) for the price data.
|
||||
|
||||
ATR is the exponential moving average of the True Range over a specified period.
|
||||
|
||||
Parameters:
|
||||
- period: int, the period for the ATR calculation (default: 14)
|
||||
|
||||
Returns:
|
||||
- Numpy array of ATR values
|
||||
"""
|
||||
|
||||
tr = self.calculate_tr()
|
||||
atr = np.zeros_like(tr)
|
||||
|
||||
# First ATR value is just the first TR
|
||||
atr[0] = tr[0]
|
||||
|
||||
# Calculate exponential moving average (EMA) of TR
|
||||
multiplier = 2.0 / (period + 1)
|
||||
|
||||
for i in range(1, len(tr)):
|
||||
atr[i] = (tr[i] * multiplier) + (atr[i-1] * (1 - multiplier))
|
||||
|
||||
return atr
|
||||
|
||||
def detect_trends(self):
|
||||
"""
|
||||
Detect trends by identifying local minima and maxima in the price data
|
||||
using scipy.signal.find_peaks.
|
||||
|
||||
Parameters:
|
||||
- prominence: float, required prominence of peaks (relative to the price range)
|
||||
- width: int, required width of peaks in data points
|
||||
|
||||
Returns:
|
||||
- DataFrame with columns for timestamps, prices, and trend indicators
|
||||
- Dictionary containing analysis results including linear regression, SMAs, and SuperTrend indicators
|
||||
"""
|
||||
df = self.data
|
||||
# close_prices = df['close'].values
|
||||
|
||||
# max_peaks, _ = find_peaks(close_prices)
|
||||
# min_peaks, _ = find_peaks(-close_prices)
|
||||
|
||||
# df['is_min'] = False
|
||||
# df['is_max'] = False
|
||||
|
||||
# for peak in max_peaks:
|
||||
# df.at[peak, 'is_max'] = True
|
||||
# for peak in min_peaks:
|
||||
# df.at[peak, 'is_min'] = True
|
||||
|
||||
# result = df[['timestamp', 'close', 'is_min', 'is_max']].copy()
|
||||
|
||||
# Perform linear regression on min_peaks and max_peaks
|
||||
# min_prices = df['close'].iloc[min_peaks].values
|
||||
# max_prices = df['close'].iloc[max_peaks].values
|
||||
|
||||
# Linear regression for min peaks if we have at least 2 points
|
||||
# min_slope, min_intercept, min_r_value, _, _ = stats.linregress(min_peaks, min_prices)
|
||||
# Linear regression for max peaks if we have at least 2 points
|
||||
# max_slope, max_intercept, max_r_value, _, _ = stats.linregress(max_peaks, max_prices)
|
||||
|
||||
# Calculate Simple Moving Averages (SMA) for 7 and 15 periods
|
||||
# sma_7 = pd.Series(close_prices).rolling(window=7, min_periods=1).mean().values
|
||||
# sma_15 = pd.Series(close_prices).rolling(window=15, min_periods=1).mean().values
|
||||
|
||||
analysis_results = {}
|
||||
# analysis_results['linear_regression'] = {
|
||||
# 'min': {
|
||||
# 'slope': min_slope,
|
||||
# 'intercept': min_intercept,
|
||||
# 'r_squared': min_r_value ** 2
|
||||
# },
|
||||
# 'max': {
|
||||
# 'slope': max_slope,
|
||||
# 'intercept': max_intercept,
|
||||
# 'r_squared': max_r_value ** 2
|
||||
# }
|
||||
# }
|
||||
# analysis_results['sma'] = {
|
||||
# '7': sma_7,
|
||||
# '15': sma_15
|
||||
# }
|
||||
|
||||
# Calculate SuperTrend indicators
|
||||
supertrend_results_list = self._calculate_supertrend_indicators()
|
||||
analysis_results['supertrend'] = supertrend_results_list
|
||||
|
||||
return analysis_results
|
||||
|
||||
def _calculate_supertrend_indicators(self):
|
||||
"""
|
||||
Calculate SuperTrend indicators with different parameter sets in parallel.
|
||||
Returns:
|
||||
- list, the SuperTrend results
|
||||
"""
|
||||
supertrend_params = [
|
||||
{"period": 12, "multiplier": 3.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
|
||||
{"period": 10, "multiplier": 1.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
|
||||
{"period": 11, "multiplier": 2.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN}
|
||||
]
|
||||
data = self.data.copy()
|
||||
|
||||
# For just 3 calculations, direct calculation might be faster than process pool
|
||||
results = []
|
||||
for p in supertrend_params:
|
||||
result = calculate_supertrend_external(data, p["period"], p["multiplier"])
|
||||
results.append(result)
|
||||
|
||||
supertrend_results_list = []
|
||||
for params, result in zip(supertrend_params, results):
|
||||
supertrend_results_list.append({
|
||||
"results": result,
|
||||
"params": params
|
||||
})
|
||||
return supertrend_results_list
|
||||
|
||||
def plot_trends(self, trend_data, analysis_results, view="both"):
|
||||
"""
|
||||
Plot the price data with detected trends using a candlestick chart.
|
||||
Also plots SuperTrend indicators with three different parameter sets.
|
||||
|
||||
Parameters:
|
||||
- trend_data: DataFrame, the output from detect_trends()
|
||||
- analysis_results: Dictionary containing analysis results from detect_trends()
|
||||
- view: str, one of 'both', 'trend', 'supertrend'; determines which plot(s) to display
|
||||
|
||||
Returns:
|
||||
- None (displays the plot)
|
||||
"""
|
||||
if not self.display:
|
||||
return # Do nothing if display is False
|
||||
|
||||
plt.style.use(self.plot_style)
|
||||
|
||||
if view == "both":
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(self.plot_size[0]*2, self.plot_size[1]))
|
||||
else:
|
||||
fig, ax = plt.subplots(figsize=self.plot_size)
|
||||
ax1 = ax2 = None
|
||||
if view == "trend":
|
||||
ax1 = ax
|
||||
elif view == "supertrend":
|
||||
ax2 = ax
|
||||
|
||||
fig.patch.set_facecolor(self.bg_color)
|
||||
if ax1: ax1.set_facecolor(self.bg_color)
|
||||
if ax2: ax2.set_facecolor(self.bg_color)
|
||||
|
||||
df = self.data.copy()
|
||||
|
||||
if ax1:
|
||||
self._plot_trend_analysis(ax1, df, trend_data, analysis_results)
|
||||
|
||||
if ax2:
|
||||
self._plot_supertrend_analysis(ax2, df, analysis_results['supertrend'])
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
def _plot_candlesticks(self, ax, df):
|
||||
"""
|
||||
Plot candlesticks on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
"""
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
for i in range(len(df)):
|
||||
# Get OHLC values for this candle
|
||||
open_val = df['open'].iloc[i]
|
||||
close_val = df['close'].iloc[i]
|
||||
high_val = df['high'].iloc[i]
|
||||
low_val = df['low'].iloc[i]
|
||||
|
||||
# Determine candle color
|
||||
color = self.candle_up_color if close_val >= open_val else self.candle_down_color
|
||||
|
||||
# Plot candle body
|
||||
body_height = abs(close_val - open_val)
|
||||
bottom = min(open_val, close_val)
|
||||
rect = Rectangle((i - self.candle_width/2, bottom), self.candle_width, body_height,
|
||||
color=color, alpha=self.candle_alpha)
|
||||
ax.add_patch(rect)
|
||||
|
||||
# Plot candle wicks
|
||||
ax.plot([i, i], [low_val, high_val], color=color, linewidth=self.wick_width)
|
||||
|
||||
def _plot_trend_analysis(self, ax, df, trend_data, analysis_results):
|
||||
"""
|
||||
Plot trend analysis on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- trend_data: pandas.DataFrame, the trend data
|
||||
- analysis_results: dict, the analysis results
|
||||
"""
|
||||
# Draw candlesticks
|
||||
self._plot_candlesticks(ax, df)
|
||||
|
||||
# Plot minima and maxima points
|
||||
self._plot_min_max_points(ax, df, trend_data)
|
||||
|
||||
# Plot trend lines and moving averages
|
||||
if analysis_results:
|
||||
self._plot_trend_lines(ax, df, analysis_results)
|
||||
|
||||
# Configure the subplot
|
||||
self._configure_subplot(ax, 'Price Chart with Trend Analysis', len(df))
|
||||
|
||||
def _plot_min_max_points(self, ax, df, trend_data):
|
||||
"""
|
||||
Plot minimum and maximum points on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- trend_data: pandas.DataFrame, the trend data
|
||||
"""
|
||||
min_indices = trend_data.index[trend_data['is_min'] == True].tolist()
|
||||
if min_indices:
|
||||
min_y = [df['close'].iloc[i] for i in min_indices]
|
||||
ax.scatter(min_indices, min_y, color=self.min_color, s=self.min_size,
|
||||
marker=self.min_marker, label='Local Minima', zorder=self.marker_zorder)
|
||||
|
||||
max_indices = trend_data.index[trend_data['is_max'] == True].tolist()
|
||||
if max_indices:
|
||||
max_y = [df['close'].iloc[i] for i in max_indices]
|
||||
ax.scatter(max_indices, max_y, color=self.max_color, s=self.max_size,
|
||||
marker=self.max_marker, label='Local Maxima', zorder=self.marker_zorder)
|
||||
|
||||
def _plot_trend_lines(self, ax, df, analysis_results):
|
||||
"""
|
||||
Plot trend lines on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- analysis_results: dict, the analysis results
|
||||
"""
|
||||
x_vals = np.arange(len(df))
|
||||
|
||||
# Minima regression line (support)
|
||||
min_slope = analysis_results['linear_regression']['min']['slope']
|
||||
min_intercept = analysis_results['linear_regression']['min']['intercept']
|
||||
min_line = min_slope * x_vals + min_intercept
|
||||
ax.plot(x_vals, min_line, self.min_line_style, linewidth=self.line_width,
|
||||
label='Minima Regression')
|
||||
|
||||
# Maxima regression line (resistance)
|
||||
max_slope = analysis_results['linear_regression']['max']['slope']
|
||||
max_intercept = analysis_results['linear_regression']['max']['intercept']
|
||||
max_line = max_slope * x_vals + max_intercept
|
||||
ax.plot(x_vals, max_line, self.max_line_style, linewidth=self.line_width,
|
||||
label='Maxima Regression')
|
||||
|
||||
# SMA-7 line
|
||||
sma_7 = analysis_results['sma']['7']
|
||||
ax.plot(x_vals, sma_7, self.sma7_line_style, linewidth=self.line_width,
|
||||
label='SMA-7')
|
||||
|
||||
# SMA-15 line
|
||||
sma_15 = analysis_results['sma']['15']
|
||||
valid_idx_15 = ~np.isnan(sma_15)
|
||||
ax.plot(x_vals[valid_idx_15], sma_15[valid_idx_15], self.sma15_line_style,
|
||||
linewidth=self.line_width, label='SMA-15')
|
||||
|
||||
def _configure_subplot(self, ax, title, data_length):
|
||||
"""
|
||||
Configure the subplot with title, labels, limits, and legend.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to configure
|
||||
- title: str, the title of the subplot
|
||||
- data_length: int, the length of the data
|
||||
"""
|
||||
# Set title and labels
|
||||
ax.set_title(title, fontsize=self.title_size, color=self.title_color)
|
||||
ax.set_xlabel('Date', fontsize=self.axis_label_size, color=self.axis_label_color)
|
||||
ax.set_ylabel('Price', fontsize=self.axis_label_size, color=self.axis_label_color)
|
||||
|
||||
# Set appropriate x-axis limits
|
||||
ax.set_xlim(-0.5, data_length - 0.5)
|
||||
|
||||
# Add a legend
|
||||
ax.legend(loc=self.legend_loc, facecolor=self.legend_bg_color)
|
||||
|
||||
def _plot_supertrend_analysis(self, ax, df, supertrend_results_list=None):
|
||||
"""
|
||||
Plot SuperTrend analysis on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- supertrend_results_list: list, the SuperTrend results (optional)
|
||||
"""
|
||||
self._plot_candlesticks(ax, df)
|
||||
self._plot_supertrend_lines(ax, df, supertrend_results_list, style='Both')
|
||||
self._configure_subplot(ax, 'Multiple SuperTrend Indicators', len(df))
|
||||
|
||||
def _plot_supertrend_lines(self, ax, df, supertrend_results_list, style="Horizontal"):
|
||||
"""
|
||||
Plot SuperTrend lines on the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- supertrend_results_list: list, the SuperTrend results
|
||||
"""
|
||||
x_vals = np.arange(len(df))
|
||||
|
||||
if style == 'Horizontal' or style == 'Both':
|
||||
if len(supertrend_results_list) != 3:
|
||||
raise ValueError("Expected exactly 3 SuperTrend results for meta calculation")
|
||||
|
||||
trends = [st["results"]["trend"] for st in supertrend_results_list]
|
||||
|
||||
band_height = 0.02 * (df["high"].max() - df["low"].min())
|
||||
y_base = df["low"].min() - band_height * 1.5
|
||||
|
||||
prev_color = None
|
||||
for i in range(1, len(x_vals)):
|
||||
t_vals = [t[i] for t in trends]
|
||||
up_count = t_vals.count(1)
|
||||
down_count = t_vals.count(-1)
|
||||
|
||||
if down_count == 3:
|
||||
color = "red"
|
||||
elif down_count == 2 and up_count == 1:
|
||||
color = "orange"
|
||||
elif down_count == 1 and up_count == 2:
|
||||
color = "yellow"
|
||||
elif up_count == 3:
|
||||
color = "green"
|
||||
else:
|
||||
continue # skip if unknown or inconsistent values
|
||||
|
||||
ax.add_patch(Rectangle(
|
||||
(x_vals[i-1], y_base),
|
||||
1,
|
||||
band_height,
|
||||
color=color,
|
||||
linewidth=0,
|
||||
alpha=0.6
|
||||
))
|
||||
# Draw a vertical line at the change of color
|
||||
if prev_color and prev_color != color:
|
||||
ax.axvline(x_vals[i-1], color="grey", alpha=0.3, linewidth=1)
|
||||
prev_color = color
|
||||
|
||||
ax.set_ylim(bottom=y_base - band_height * 0.5)
|
||||
if style == 'Curves' or style == 'Both':
|
||||
for st in supertrend_results_list:
|
||||
params = st["params"]
|
||||
results = st["results"]
|
||||
supertrend = results["supertrend"]
|
||||
trend = results["trend"]
|
||||
|
||||
# Plot SuperTrend line with color based on trend
|
||||
for i in range(1, len(x_vals)):
|
||||
if trend[i] == 1: # Uptrend
|
||||
ax.plot(x_vals[i-1:i+1], supertrend[i-1:i+1], params["color_up"], linewidth=self.line_width)
|
||||
else: # Downtrend
|
||||
ax.plot(x_vals[i-1:i+1], supertrend[i-1:i+1], params["color_down"], linewidth=self.line_width)
|
||||
self._plot_metasupertrend_lines(ax, df, supertrend_results_list)
|
||||
self._add_supertrend_legend(ax, supertrend_results_list)
|
||||
|
||||
def _plot_metasupertrend_lines(self, ax, df, supertrend_results_list):
|
||||
"""
|
||||
Plot a Meta SuperTrend line where all individual SuperTrends agree on trend.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to plot on
|
||||
- df: pandas.DataFrame, the data to plot
|
||||
- supertrend_results_list: list, each item contains SuperTrend 'results' and 'params'
|
||||
"""
|
||||
x_vals = np.arange(len(df))
|
||||
|
||||
if len(supertrend_results_list) != 3:
|
||||
raise ValueError("Expected exactly 3 SuperTrend results for meta calculation")
|
||||
|
||||
trends = [st["results"]["trend"] for st in supertrend_results_list]
|
||||
supertrends = [st["results"]["supertrend"] for st in supertrend_results_list]
|
||||
params = supertrend_results_list[0]["params"] # Use first config for styling
|
||||
|
||||
trends_arr = np.stack(trends, axis=1)
|
||||
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]), trends_arr[:,0], 0)
|
||||
|
||||
for i in range(1, len(x_vals)):
|
||||
t1, t2, t3 = trends[0][i], trends[1][i], trends[2][i]
|
||||
if t1 == t2 == t3:
|
||||
meta_trend = t1
|
||||
# Average the 3 supertrend values
|
||||
st_avg_prev = np.mean([s[i-1] for s in supertrends])
|
||||
st_avg_curr = np.mean([s[i] for s in supertrends])
|
||||
color = params["color_up"] if meta_trend == 1 else params["color_down"]
|
||||
ax.plot(x_vals[i-1:i+1], [st_avg_prev, st_avg_curr], color, linewidth=self.line_width)
|
||||
|
||||
def _add_supertrend_legend(self, ax, supertrend_results_list):
|
||||
"""
|
||||
Add SuperTrend legend entries to the given axis.
|
||||
|
||||
Parameters:
|
||||
- ax: matplotlib.axes.Axes, the axis to add legend entries to
|
||||
- supertrend_results_list: list, the SuperTrend results
|
||||
"""
|
||||
for st in supertrend_results_list:
|
||||
params = st["params"]
|
||||
period = params["period"]
|
||||
multiplier = params["multiplier"]
|
||||
color_up = params["color_up"]
|
||||
color_down = params["color_down"]
|
||||
|
||||
ax.plot([], [], color_up, linewidth=self.line_width,
|
||||
label=f'ST (P:{period}, M:{multiplier}) Up')
|
||||
ax.plot([], [], color_down, linewidth=self.line_width,
|
||||
label=f'ST (P:{period}, M:{multiplier}) Down')
|
||||
|
||||
def backtest_meta_supertrend(self, min1_df, initial_usd=10000, stop_loss_pct=0.05, debug=False):
|
||||
"""
|
||||
Backtest a simple strategy using the meta supertrend (all three supertrends agree).
|
||||
Buys when meta supertrend is positive, sells when negative, applies a percentage stop loss.
|
||||
|
||||
Parameters:
|
||||
- min1_df: pandas DataFrame, 1-minute timeframe data for more accurate stop loss checking (optional)
|
||||
- initial_usd: float, starting USD amount
|
||||
- stop_loss_pct: float, stop loss as a fraction (e.g. 0.05 for 5%)
|
||||
- debug: bool, whether to print debug info
|
||||
"""
|
||||
df = self.data.copy().reset_index(drop=True)
|
||||
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
||||
|
||||
# Get meta supertrend (all three agree)
|
||||
supertrend_results_list = self._calculate_supertrend_indicators()
|
||||
trends = [st['results']['trend'] for st in supertrend_results_list]
|
||||
trends_arr = np.stack(trends, axis=1)
|
||||
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
|
||||
trends_arr[:,0], 0)
|
||||
|
||||
position = 0 # 0 = no position, 1 = long
|
||||
entry_price = 0
|
||||
usd = initial_usd
|
||||
coin = 0
|
||||
trade_log = []
|
||||
max_balance = initial_usd
|
||||
drawdowns = []
|
||||
trades = []
|
||||
entry_time = None
|
||||
current_trade_min1_start_idx = None
|
||||
|
||||
min1_df['timestamp'] = pd.to_datetime(min1_df.index)
|
||||
|
||||
for i in range(1, len(df)):
|
||||
if i % 100 == 0 and debug:
|
||||
self.logger.debug(f"Progress: {i}/{len(df)} rows processed.")
|
||||
|
||||
price_open = df['open'].iloc[i]
|
||||
price_high = df['high'].iloc[i]
|
||||
price_low = df['low'].iloc[i]
|
||||
price_close = df['close'].iloc[i]
|
||||
date = df['timestamp'].iloc[i]
|
||||
prev_mt = meta_trend[i-1]
|
||||
curr_mt = meta_trend[i]
|
||||
|
||||
# Check stop loss if in position
|
||||
if position == 1:
|
||||
stop_price = entry_price * (1 - stop_loss_pct)
|
||||
|
||||
if current_trade_min1_start_idx is None:
|
||||
# First check after entry, find the entry point in 1-min data
|
||||
current_trade_min1_start_idx = min1_df.index[min1_df.index >= entry_time][0]
|
||||
|
||||
# Get the end index for current check
|
||||
current_min1_end_idx = min1_df.index[min1_df.index <= date][-1]
|
||||
|
||||
# Check all 1-minute candles in between for stop loss
|
||||
min1_slice = min1_df.loc[current_trade_min1_start_idx:current_min1_end_idx]
|
||||
if (min1_slice['low'] <= stop_price).any():
|
||||
# Stop loss triggered, find the exact candle
|
||||
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
|
||||
# More realistic fill: if open < stop, fill at open, else at stop
|
||||
if stop_candle['open'] < stop_price:
|
||||
sell_price = stop_candle['open']
|
||||
else:
|
||||
sell_price = stop_price
|
||||
if debug:
|
||||
print(f"STOP LOSS triggered: entry={entry_price}, stop={stop_price}, sell_price={sell_price}, entry_time={entry_time}, stop_time={stop_candle.name}")
|
||||
btc_to_sell = coin
|
||||
usd_gross = btc_to_sell * sell_price
|
||||
exit_fee = calculate_okx_fee(usd_gross, is_maker=False) # taker fee
|
||||
usd = usd_gross - exit_fee
|
||||
trade_log.append({
|
||||
'type': 'STOP',
|
||||
'entry': entry_price,
|
||||
'exit': sell_price,
|
||||
'entry_time': entry_time,
|
||||
'exit_time': stop_candle.name,
|
||||
'fee_usd': exit_fee
|
||||
})
|
||||
coin = 0
|
||||
position = 0
|
||||
entry_price = 0
|
||||
current_trade_min1_start_idx = None
|
||||
continue
|
||||
|
||||
# Update the start index for next check
|
||||
current_trade_min1_start_idx = current_min1_end_idx
|
||||
|
||||
# Entry: only if not in position and signal changes to 1
|
||||
if position == 0 and prev_mt != 1 and curr_mt == 1:
|
||||
# Buy at open, fee is charged in USD
|
||||
entry_fee = calculate_okx_fee(usd, is_maker=False)
|
||||
usd_after_fee = usd - entry_fee
|
||||
coin = usd_after_fee / price_open
|
||||
entry_price = price_open
|
||||
entry_time = date
|
||||
usd = 0
|
||||
position = 1
|
||||
current_trade_min1_start_idx = None # Will be set on first stop loss check
|
||||
trade_log.append({
|
||||
'type': 'BUY',
|
||||
'entry': entry_price,
|
||||
'exit': None,
|
||||
'entry_time': entry_time,
|
||||
'exit_time': None,
|
||||
'fee_usd': entry_fee
|
||||
})
|
||||
|
||||
# Exit: only if in position and signal changes from 1 to -1
|
||||
elif position == 1 and prev_mt == 1 and curr_mt == -1:
|
||||
# Sell at open, fee is charged in USD
|
||||
btc_to_sell = coin
|
||||
usd_gross = btc_to_sell * price_open
|
||||
exit_fee = calculate_okx_fee(usd_gross, is_maker=False)
|
||||
usd = usd_gross - exit_fee
|
||||
trade_log.append({
|
||||
'type': 'SELL',
|
||||
'entry': entry_price,
|
||||
'exit': price_open,
|
||||
'entry_time': entry_time,
|
||||
'exit_time': date,
|
||||
'fee_usd': exit_fee
|
||||
})
|
||||
coin = 0
|
||||
position = 0
|
||||
entry_price = 0
|
||||
current_trade_min1_start_idx = None
|
||||
|
||||
# Track drawdown
|
||||
balance = usd if position == 0 else coin * price_close
|
||||
if balance > max_balance:
|
||||
max_balance = balance
|
||||
drawdown = (max_balance - balance) / max_balance
|
||||
drawdowns.append(drawdown)
|
||||
|
||||
# If still in position at end, sell at last close
|
||||
if position == 1:
|
||||
btc_to_sell = coin
|
||||
usd_gross = btc_to_sell * df['close'].iloc[-1]
|
||||
exit_fee = calculate_okx_fee(usd_gross, is_maker=False)
|
||||
usd = usd_gross - exit_fee
|
||||
trade_log.append({
|
||||
'type': 'EOD',
|
||||
'entry': entry_price,
|
||||
'exit': df['close'].iloc[-1],
|
||||
'entry_time': entry_time,
|
||||
'exit_time': df['timestamp'].iloc[-1],
|
||||
'fee_usd': exit_fee
|
||||
})
|
||||
coin = 0
|
||||
position = 0
|
||||
entry_price = 0
|
||||
|
||||
# Calculate statistics
|
||||
final_balance = usd
|
||||
n_trades = len(trade_log)
|
||||
wins = [1 for t in trade_log if t['exit'] is not None and t['exit'] > t['entry']]
|
||||
win_rate = len(wins) / n_trades if n_trades > 0 else 0
|
||||
max_drawdown = max(drawdowns) if drawdowns else 0
|
||||
avg_trade = np.mean([t['exit']/t['entry']-1 for t in trade_log if t['exit'] is not None]) if trade_log else 0
|
||||
|
||||
trades = []
|
||||
total_fees_usd = 0.0
|
||||
for trade in trade_log:
|
||||
if trade['exit'] is not None:
|
||||
profit_pct = (trade['exit'] - trade['entry']) / trade['entry']
|
||||
else:
|
||||
profit_pct = 0.0
|
||||
trades.append({
|
||||
'entry_time': trade['entry_time'],
|
||||
'exit_time': trade['exit_time'],
|
||||
'entry': trade['entry'],
|
||||
'exit': trade['exit'],
|
||||
'profit_pct': profit_pct,
|
||||
'type': trade.get('type', 'SELL'),
|
||||
'fee_usd': trade.get('fee_usd')
|
||||
})
|
||||
fee_usd = trade.get('fee_usd')
|
||||
total_fees_usd += fee_usd
|
||||
|
||||
results = {
|
||||
"initial_usd": initial_usd,
|
||||
"final_usd": final_balance,
|
||||
"n_trades": n_trades,
|
||||
"win_rate": win_rate,
|
||||
"max_drawdown": max_drawdown,
|
||||
"avg_trade": avg_trade,
|
||||
"trade_log": trade_log,
|
||||
"trades": trades,
|
||||
"total_fees_usd": total_fees_usd,
|
||||
}
|
||||
if n_trades > 0:
|
||||
results["first_trade"] = {
|
||||
"entry_time": trade_log[0]['entry_time'],
|
||||
"entry": trade_log[0]['entry']
|
||||
}
|
||||
results["last_trade"] = {
|
||||
"exit_time": trade_log[-1]['exit_time'],
|
||||
"exit": trade_log[-1]['exit']
|
||||
}
|
||||
return results
|
||||
|
||||
2
main.py
2
main.py
@ -216,7 +216,7 @@ if __name__ == "__main__":
|
||||
combined_filename = os.path.join(f"{timestamp}_backtest_combined.csv")
|
||||
combined_fieldnames = [
|
||||
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
|
||||
"max_drawdown", "avg_trade", "profit_ratio", "final_usd"
|
||||
"max_drawdown", "avg_trade", "profit_ratio", "final_usd", "total_fees_usd"
|
||||
]
|
||||
storage.write_results_combined(combined_filename, combined_fieldnames, all_results_rows)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user