indicators
This commit is contained in:
parent
e89317c65e
commit
d985830ecd
36
cycles/IncStrategies/indicators/__init__.py
Normal file
36
cycles/IncStrategies/indicators/__init__.py
Normal file
@ -0,0 +1,36 @@
|
||||
"""
|
||||
Incremental Indicator States Module
|
||||
|
||||
This module contains indicator state classes that maintain calculation state
|
||||
for incremental processing of technical indicators.
|
||||
|
||||
All indicator states implement the IndicatorState interface and provide:
|
||||
- Incremental updates with new data points
|
||||
- Constant memory usage regardless of data history
|
||||
- Identical results to traditional batch calculations
|
||||
- Warm-up detection for reliable indicator values
|
||||
|
||||
Classes:
|
||||
IndicatorState: Abstract base class for all indicator states
|
||||
MovingAverageState: Incremental moving average calculation
|
||||
RSIState: Incremental RSI calculation
|
||||
ATRState: Incremental Average True Range calculation
|
||||
SupertrendState: Incremental Supertrend calculation
|
||||
BollingerBandsState: Incremental Bollinger Bands calculation
|
||||
"""
|
||||
|
||||
from .base import IndicatorState
|
||||
from .moving_average import MovingAverageState
|
||||
from .rsi import RSIState
|
||||
from .atr import ATRState
|
||||
from .supertrend import SupertrendState
|
||||
from .bollinger_bands import BollingerBandsState
|
||||
|
||||
__all__ = [
|
||||
'IndicatorState',
|
||||
'MovingAverageState',
|
||||
'RSIState',
|
||||
'ATRState',
|
||||
'SupertrendState',
|
||||
'BollingerBandsState'
|
||||
]
|
||||
242
cycles/IncStrategies/indicators/atr.py
Normal file
242
cycles/IncStrategies/indicators/atr.py
Normal file
@ -0,0 +1,242 @@
|
||||
"""
|
||||
Average True Range (ATR) Indicator State
|
||||
|
||||
This module implements incremental ATR calculation that maintains constant memory usage
|
||||
and provides identical results to traditional batch calculations. ATR is used by
|
||||
Supertrend and other volatility-based indicators.
|
||||
"""
|
||||
|
||||
from typing import Dict, Union, Optional
|
||||
from .base import OHLCIndicatorState
|
||||
from .moving_average import ExponentialMovingAverageState
|
||||
|
||||
|
||||
class ATRState(OHLCIndicatorState):
|
||||
"""
|
||||
Incremental Average True Range calculation state.
|
||||
|
||||
ATR measures market volatility by calculating the average of true ranges over
|
||||
a specified period. True Range is the maximum of:
|
||||
1. Current High - Current Low
|
||||
2. |Current High - Previous Close|
|
||||
3. |Current Low - Previous Close|
|
||||
|
||||
This implementation uses exponential moving average for smoothing, which is
|
||||
more responsive than simple moving average and requires less memory.
|
||||
|
||||
Attributes:
|
||||
period (int): The ATR period
|
||||
ema_state (ExponentialMovingAverageState): EMA state for smoothing true ranges
|
||||
previous_close (float): Previous period's close price
|
||||
|
||||
Example:
|
||||
atr = ATRState(period=14)
|
||||
|
||||
# Add OHLC data incrementally
|
||||
ohlc = {'open': 100, 'high': 105, 'low': 98, 'close': 103}
|
||||
atr_value = atr.update(ohlc) # Returns current ATR value
|
||||
|
||||
# Check if warmed up
|
||||
if atr.is_warmed_up():
|
||||
current_atr = atr.get_current_value()
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 14):
|
||||
"""
|
||||
Initialize ATR state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for ATR calculation (default: 14)
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not a positive integer
|
||||
"""
|
||||
super().__init__(period)
|
||||
self.ema_state = ExponentialMovingAverageState(period)
|
||||
self.previous_close = None
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, ohlc_data: Dict[str, float]) -> float:
|
||||
"""
|
||||
Update ATR with new OHLC data.
|
||||
|
||||
Args:
|
||||
ohlc_data: Dictionary with 'open', 'high', 'low', 'close' keys
|
||||
|
||||
Returns:
|
||||
Current ATR value
|
||||
|
||||
Raises:
|
||||
ValueError: If OHLC data is invalid
|
||||
TypeError: If ohlc_data is not a dictionary
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(ohlc_data, dict):
|
||||
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
||||
|
||||
self.validate_input(ohlc_data)
|
||||
|
||||
high = float(ohlc_data['high'])
|
||||
low = float(ohlc_data['low'])
|
||||
close = float(ohlc_data['close'])
|
||||
|
||||
# Calculate True Range
|
||||
if self.previous_close is None:
|
||||
# First period - True Range is just High - Low
|
||||
true_range = high - low
|
||||
else:
|
||||
# True Range is the maximum of:
|
||||
# 1. Current High - Current Low
|
||||
# 2. |Current High - Previous Close|
|
||||
# 3. |Current Low - Previous Close|
|
||||
tr1 = high - low
|
||||
tr2 = abs(high - self.previous_close)
|
||||
tr3 = abs(low - self.previous_close)
|
||||
true_range = max(tr1, tr2, tr3)
|
||||
|
||||
# Update EMA with the true range
|
||||
atr_value = self.ema_state.update(true_range)
|
||||
|
||||
# Store current close as previous close for next calculation
|
||||
self.previous_close = close
|
||||
self.values_received += 1
|
||||
|
||||
# Store current ATR value
|
||||
self._current_values = {'atr': atr_value}
|
||||
|
||||
return atr_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if ATR has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if EMA state is warmed up (has enough true range values)
|
||||
"""
|
||||
return self.ema_state.is_warmed_up()
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset ATR state to initial conditions."""
|
||||
self.ema_state.reset()
|
||||
self.previous_close = None
|
||||
self.values_received = 0
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[float]:
|
||||
"""
|
||||
Get current ATR value without updating.
|
||||
|
||||
Returns:
|
||||
Current ATR value, or None if not warmed up
|
||||
"""
|
||||
if not self.is_warmed_up():
|
||||
return None
|
||||
return self.ema_state.get_current_value()
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'previous_close': self.previous_close,
|
||||
'ema_state': self.ema_state.get_state_summary(),
|
||||
'current_atr': self.get_current_value()
|
||||
})
|
||||
return base_summary
|
||||
|
||||
|
||||
class SimpleATRState(OHLCIndicatorState):
|
||||
"""
|
||||
Simple ATR implementation using simple moving average instead of EMA.
|
||||
|
||||
This version uses a simple moving average for smoothing true ranges,
|
||||
which matches some traditional ATR implementations but requires more memory.
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 14):
|
||||
"""
|
||||
Initialize simple ATR state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for ATR calculation (default: 14)
|
||||
"""
|
||||
super().__init__(period)
|
||||
from collections import deque
|
||||
self.true_ranges = deque(maxlen=period)
|
||||
self.tr_sum = 0.0
|
||||
self.previous_close = None
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, ohlc_data: Dict[str, float]) -> float:
|
||||
"""
|
||||
Update simple ATR with new OHLC data.
|
||||
|
||||
Args:
|
||||
ohlc_data: Dictionary with 'open', 'high', 'low', 'close' keys
|
||||
|
||||
Returns:
|
||||
Current ATR value
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(ohlc_data, dict):
|
||||
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
||||
|
||||
self.validate_input(ohlc_data)
|
||||
|
||||
high = float(ohlc_data['high'])
|
||||
low = float(ohlc_data['low'])
|
||||
close = float(ohlc_data['close'])
|
||||
|
||||
# Calculate True Range
|
||||
if self.previous_close is None:
|
||||
true_range = high - low
|
||||
else:
|
||||
tr1 = high - low
|
||||
tr2 = abs(high - self.previous_close)
|
||||
tr3 = abs(low - self.previous_close)
|
||||
true_range = max(tr1, tr2, tr3)
|
||||
|
||||
# Update rolling sum
|
||||
if len(self.true_ranges) == self.period:
|
||||
self.tr_sum -= self.true_ranges[0] # Remove oldest value
|
||||
|
||||
self.true_ranges.append(true_range)
|
||||
self.tr_sum += true_range
|
||||
|
||||
# Calculate ATR as simple moving average
|
||||
atr_value = self.tr_sum / len(self.true_ranges)
|
||||
|
||||
# Store state
|
||||
self.previous_close = close
|
||||
self.values_received += 1
|
||||
self._current_values = {'atr': atr_value}
|
||||
|
||||
return atr_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if simple ATR is warmed up."""
|
||||
return len(self.true_ranges) >= self.period
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset simple ATR state."""
|
||||
self.true_ranges.clear()
|
||||
self.tr_sum = 0.0
|
||||
self.previous_close = None
|
||||
self.values_received = 0
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[float]:
|
||||
"""Get current simple ATR value."""
|
||||
if not self.is_warmed_up():
|
||||
return None
|
||||
return self.tr_sum / len(self.true_ranges)
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'previous_close': self.previous_close,
|
||||
'tr_window_size': len(self.true_ranges),
|
||||
'tr_sum': self.tr_sum,
|
||||
'current_atr': self.get_current_value()
|
||||
})
|
||||
return base_summary
|
||||
197
cycles/IncStrategies/indicators/base.py
Normal file
197
cycles/IncStrategies/indicators/base.py
Normal file
@ -0,0 +1,197 @@
|
||||
"""
|
||||
Base Indicator State Class
|
||||
|
||||
This module contains the abstract base class for all incremental indicator states.
|
||||
All indicator implementations must inherit from IndicatorState and implement
|
||||
the required methods for incremental calculation.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
|
||||
class IndicatorState(ABC):
|
||||
"""
|
||||
Abstract base class for maintaining indicator calculation state.
|
||||
|
||||
This class defines the interface that all incremental indicators must implement.
|
||||
Indicators maintain their internal state and can be updated incrementally with
|
||||
new data points, providing constant memory usage and high performance.
|
||||
|
||||
Attributes:
|
||||
period (int): The period/window size for the indicator
|
||||
values_received (int): Number of values processed so far
|
||||
is_initialized (bool): Whether the indicator has been initialized
|
||||
|
||||
Example:
|
||||
class MyIndicator(IndicatorState):
|
||||
def __init__(self, period: int):
|
||||
super().__init__(period)
|
||||
self._sum = 0.0
|
||||
|
||||
def update(self, new_value: float) -> float:
|
||||
self._sum += new_value
|
||||
self.values_received += 1
|
||||
return self._sum / min(self.values_received, self.period)
|
||||
"""
|
||||
|
||||
def __init__(self, period: int):
|
||||
"""
|
||||
Initialize the indicator state.
|
||||
|
||||
Args:
|
||||
period: The period/window size for the indicator calculation
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not a positive integer
|
||||
"""
|
||||
if not isinstance(period, int) or period <= 0:
|
||||
raise ValueError(f"Period must be a positive integer, got {period}")
|
||||
|
||||
self.period = period
|
||||
self.values_received = 0
|
||||
self.is_initialized = False
|
||||
|
||||
@abstractmethod
|
||||
def update(self, new_value: Union[float, Dict[str, float]]) -> Union[float, Dict[str, float]]:
|
||||
"""
|
||||
Update indicator with new value and return current indicator value.
|
||||
|
||||
This method processes a new data point and updates the internal state
|
||||
of the indicator. It returns the current indicator value after the update.
|
||||
|
||||
Args:
|
||||
new_value: New data point (can be single value or OHLCV dict)
|
||||
|
||||
Returns:
|
||||
Current indicator value after update (single value or dict)
|
||||
|
||||
Raises:
|
||||
ValueError: If new_value is invalid or incompatible
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check whether indicator has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if indicator has received enough data points for reliable calculation
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def reset(self) -> None:
|
||||
"""
|
||||
Reset indicator state to initial conditions.
|
||||
|
||||
This method clears all internal state and resets the indicator
|
||||
as if it was just initialized.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_current_value(self) -> Union[float, Dict[str, float], None]:
|
||||
"""
|
||||
Get the current indicator value without updating.
|
||||
|
||||
Returns:
|
||||
Current indicator value, or None if not warmed up
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_state_summary(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Get summary of current indicator state for debugging.
|
||||
|
||||
Returns:
|
||||
Dictionary containing indicator state information
|
||||
"""
|
||||
return {
|
||||
'indicator_type': self.__class__.__name__,
|
||||
'period': self.period,
|
||||
'values_received': self.values_received,
|
||||
'is_warmed_up': self.is_warmed_up(),
|
||||
'is_initialized': self.is_initialized,
|
||||
'current_value': self.get_current_value()
|
||||
}
|
||||
|
||||
def validate_input(self, value: Union[float, Dict[str, float]]) -> None:
|
||||
"""
|
||||
Validate input value for the indicator.
|
||||
|
||||
Args:
|
||||
value: Input value to validate
|
||||
|
||||
Raises:
|
||||
ValueError: If value is invalid
|
||||
TypeError: If value type is incorrect
|
||||
"""
|
||||
if isinstance(value, (int, float)):
|
||||
if not np.isfinite(value):
|
||||
raise ValueError(f"Input value must be finite, got {value}")
|
||||
elif isinstance(value, dict):
|
||||
required_keys = ['open', 'high', 'low', 'close']
|
||||
for key in required_keys:
|
||||
if key not in value:
|
||||
raise ValueError(f"OHLCV dict missing required key: {key}")
|
||||
if not np.isfinite(value[key]):
|
||||
raise ValueError(f"OHLCV value for {key} must be finite, got {value[key]}")
|
||||
# Validate OHLC relationships
|
||||
if not (value['low'] <= value['open'] <= value['high'] and
|
||||
value['low'] <= value['close'] <= value['high']):
|
||||
raise ValueError(f"Invalid OHLC relationships: {value}")
|
||||
else:
|
||||
raise TypeError(f"Input value must be float or OHLCV dict, got {type(value)}")
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the indicator state."""
|
||||
return (f"{self.__class__.__name__}(period={self.period}, "
|
||||
f"values_received={self.values_received}, "
|
||||
f"warmed_up={self.is_warmed_up()})")
|
||||
|
||||
|
||||
class SimpleIndicatorState(IndicatorState):
|
||||
"""
|
||||
Base class for simple single-value indicators.
|
||||
|
||||
This class provides common functionality for indicators that work with
|
||||
single float values and maintain a simple rolling calculation.
|
||||
"""
|
||||
|
||||
def __init__(self, period: int):
|
||||
"""Initialize simple indicator state."""
|
||||
super().__init__(period)
|
||||
self._current_value = None
|
||||
|
||||
def get_current_value(self) -> Optional[float]:
|
||||
"""Get current indicator value."""
|
||||
return self._current_value if self.is_warmed_up() else None
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if indicator is warmed up."""
|
||||
return self.values_received >= self.period
|
||||
|
||||
|
||||
class OHLCIndicatorState(IndicatorState):
|
||||
"""
|
||||
Base class for OHLC-based indicators.
|
||||
|
||||
This class provides common functionality for indicators that work with
|
||||
OHLC data (Open, High, Low, Close) and may return multiple values.
|
||||
"""
|
||||
|
||||
def __init__(self, period: int):
|
||||
"""Initialize OHLC indicator state."""
|
||||
super().__init__(period)
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[Dict[str, float]]:
|
||||
"""Get current indicator values."""
|
||||
return self._current_values.copy() if self.is_warmed_up() else None
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if indicator is warmed up."""
|
||||
return self.values_received >= self.period
|
||||
325
cycles/IncStrategies/indicators/bollinger_bands.py
Normal file
325
cycles/IncStrategies/indicators/bollinger_bands.py
Normal file
@ -0,0 +1,325 @@
|
||||
"""
|
||||
Bollinger Bands Indicator State
|
||||
|
||||
This module implements incremental Bollinger Bands calculation that maintains constant memory usage
|
||||
and provides identical results to traditional batch calculations. Used by the BBRSStrategy.
|
||||
"""
|
||||
|
||||
from typing import Dict, Union, Optional
|
||||
from collections import deque
|
||||
import math
|
||||
from .base import OHLCIndicatorState
|
||||
from .moving_average import MovingAverageState
|
||||
|
||||
|
||||
class BollingerBandsState(OHLCIndicatorState):
|
||||
"""
|
||||
Incremental Bollinger Bands calculation state.
|
||||
|
||||
Bollinger Bands consist of:
|
||||
- Middle Band: Simple Moving Average of close prices
|
||||
- Upper Band: Middle Band + (Standard Deviation * multiplier)
|
||||
- Lower Band: Middle Band - (Standard Deviation * multiplier)
|
||||
|
||||
This implementation maintains a rolling window for standard deviation calculation
|
||||
while using the MovingAverageState for the middle band.
|
||||
|
||||
Attributes:
|
||||
period (int): Period for moving average and standard deviation
|
||||
std_dev_multiplier (float): Multiplier for standard deviation
|
||||
ma_state (MovingAverageState): Moving average state for middle band
|
||||
close_values (deque): Rolling window of close prices for std dev calculation
|
||||
close_sum_sq (float): Sum of squared close values for variance calculation
|
||||
|
||||
Example:
|
||||
bb = BollingerBandsState(period=20, std_dev_multiplier=2.0)
|
||||
|
||||
# Add price data incrementally
|
||||
result = bb.update(103.5) # Close price
|
||||
upper_band = result['upper_band']
|
||||
middle_band = result['middle_band']
|
||||
lower_band = result['lower_band']
|
||||
bandwidth = result['bandwidth']
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 20, std_dev_multiplier: float = 2.0):
|
||||
"""
|
||||
Initialize Bollinger Bands state.
|
||||
|
||||
Args:
|
||||
period: Period for moving average and standard deviation (default: 20)
|
||||
std_dev_multiplier: Multiplier for standard deviation (default: 2.0)
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not positive or multiplier is not positive
|
||||
"""
|
||||
super().__init__(period)
|
||||
|
||||
if std_dev_multiplier <= 0:
|
||||
raise ValueError(f"Standard deviation multiplier must be positive, got {std_dev_multiplier}")
|
||||
|
||||
self.std_dev_multiplier = std_dev_multiplier
|
||||
self.ma_state = MovingAverageState(period)
|
||||
|
||||
# For incremental standard deviation calculation
|
||||
self.close_values = deque(maxlen=period)
|
||||
self.close_sum_sq = 0.0 # Sum of squared values
|
||||
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, close_price: Union[float, int]) -> Dict[str, float]:
|
||||
"""
|
||||
Update Bollinger Bands with new close price.
|
||||
|
||||
Args:
|
||||
close_price: New closing price
|
||||
|
||||
Returns:
|
||||
Dictionary with 'upper_band', 'middle_band', 'lower_band', 'bandwidth', 'std_dev'
|
||||
|
||||
Raises:
|
||||
ValueError: If close_price is not finite
|
||||
TypeError: If close_price is not numeric
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(close_price, (int, float)):
|
||||
raise TypeError(f"close_price must be numeric, got {type(close_price)}")
|
||||
|
||||
self.validate_input(close_price)
|
||||
|
||||
close_price = float(close_price)
|
||||
|
||||
# Update moving average (middle band)
|
||||
middle_band = self.ma_state.update(close_price)
|
||||
|
||||
# Update rolling window for standard deviation
|
||||
if len(self.close_values) == self.period:
|
||||
# Remove oldest value from sum of squares
|
||||
old_value = self.close_values[0]
|
||||
self.close_sum_sq -= old_value * old_value
|
||||
|
||||
# Add new value
|
||||
self.close_values.append(close_price)
|
||||
self.close_sum_sq += close_price * close_price
|
||||
|
||||
# Calculate standard deviation
|
||||
n = len(self.close_values)
|
||||
if n < 2:
|
||||
# Not enough data for standard deviation
|
||||
std_dev = 0.0
|
||||
else:
|
||||
# Incremental variance calculation: Var = (sum_sq - n*mean^2) / (n-1)
|
||||
mean = middle_band
|
||||
variance = (self.close_sum_sq - n * mean * mean) / (n - 1)
|
||||
std_dev = math.sqrt(max(variance, 0.0)) # Ensure non-negative
|
||||
|
||||
# Calculate bands
|
||||
upper_band = middle_band + (self.std_dev_multiplier * std_dev)
|
||||
lower_band = middle_band - (self.std_dev_multiplier * std_dev)
|
||||
|
||||
# Calculate bandwidth (normalized band width)
|
||||
if middle_band != 0:
|
||||
bandwidth = (upper_band - lower_band) / middle_band
|
||||
else:
|
||||
bandwidth = 0.0
|
||||
|
||||
self.values_received += 1
|
||||
|
||||
# Store current values
|
||||
result = {
|
||||
'upper_band': upper_band,
|
||||
'middle_band': middle_band,
|
||||
'lower_band': lower_band,
|
||||
'bandwidth': bandwidth,
|
||||
'std_dev': std_dev
|
||||
}
|
||||
|
||||
self._current_values = result
|
||||
return result
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if Bollinger Bands has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if we have at least 'period' number of values
|
||||
"""
|
||||
return self.ma_state.is_warmed_up()
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset Bollinger Bands state to initial conditions."""
|
||||
self.ma_state.reset()
|
||||
self.close_values.clear()
|
||||
self.close_sum_sq = 0.0
|
||||
self.values_received = 0
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[Dict[str, float]]:
|
||||
"""
|
||||
Get current Bollinger Bands values without updating.
|
||||
|
||||
Returns:
|
||||
Dictionary with current BB values, or None if not warmed up
|
||||
"""
|
||||
if not self.is_warmed_up():
|
||||
return None
|
||||
return self._current_values.copy() if self._current_values else None
|
||||
|
||||
def get_squeeze_status(self, squeeze_threshold: float = 0.05) -> bool:
|
||||
"""
|
||||
Check if Bollinger Bands are in a squeeze condition.
|
||||
|
||||
Args:
|
||||
squeeze_threshold: Bandwidth threshold for squeeze detection
|
||||
|
||||
Returns:
|
||||
True if bandwidth is below threshold (squeeze condition)
|
||||
"""
|
||||
if not self.is_warmed_up() or not self._current_values:
|
||||
return False
|
||||
|
||||
bandwidth = self._current_values.get('bandwidth', float('inf'))
|
||||
return bandwidth < squeeze_threshold
|
||||
|
||||
def get_position_relative_to_bands(self, current_price: float) -> str:
|
||||
"""
|
||||
Get current price position relative to Bollinger Bands.
|
||||
|
||||
Args:
|
||||
current_price: Current price to evaluate
|
||||
|
||||
Returns:
|
||||
'above_upper', 'between_bands', 'below_lower', or 'unknown'
|
||||
"""
|
||||
if not self.is_warmed_up() or not self._current_values:
|
||||
return 'unknown'
|
||||
|
||||
upper_band = self._current_values['upper_band']
|
||||
lower_band = self._current_values['lower_band']
|
||||
|
||||
if current_price > upper_band:
|
||||
return 'above_upper'
|
||||
elif current_price < lower_band:
|
||||
return 'below_lower'
|
||||
else:
|
||||
return 'between_bands'
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'std_dev_multiplier': self.std_dev_multiplier,
|
||||
'close_values_count': len(self.close_values),
|
||||
'close_sum_sq': self.close_sum_sq,
|
||||
'ma_state': self.ma_state.get_state_summary(),
|
||||
'current_squeeze': self.get_squeeze_status() if self.is_warmed_up() else None
|
||||
})
|
||||
return base_summary
|
||||
|
||||
|
||||
class BollingerBandsOHLCState(OHLCIndicatorState):
|
||||
"""
|
||||
Bollinger Bands implementation that works with OHLC data.
|
||||
|
||||
This version can calculate Bollinger Bands based on different price types
|
||||
(close, typical price, etc.) and provides additional OHLC-based analysis.
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 20, std_dev_multiplier: float = 2.0, price_type: str = 'close'):
|
||||
"""
|
||||
Initialize OHLC Bollinger Bands state.
|
||||
|
||||
Args:
|
||||
period: Period for calculation
|
||||
std_dev_multiplier: Standard deviation multiplier
|
||||
price_type: Price type to use ('close', 'typical', 'median', 'weighted')
|
||||
"""
|
||||
super().__init__(period)
|
||||
|
||||
if price_type not in ['close', 'typical', 'median', 'weighted']:
|
||||
raise ValueError(f"Invalid price_type: {price_type}")
|
||||
|
||||
self.std_dev_multiplier = std_dev_multiplier
|
||||
self.price_type = price_type
|
||||
self.bb_state = BollingerBandsState(period, std_dev_multiplier)
|
||||
self.is_initialized = True
|
||||
|
||||
def _extract_price(self, ohlc_data: Dict[str, float]) -> float:
|
||||
"""Extract price based on price_type setting."""
|
||||
if self.price_type == 'close':
|
||||
return ohlc_data['close']
|
||||
elif self.price_type == 'typical':
|
||||
return (ohlc_data['high'] + ohlc_data['low'] + ohlc_data['close']) / 3.0
|
||||
elif self.price_type == 'median':
|
||||
return (ohlc_data['high'] + ohlc_data['low']) / 2.0
|
||||
elif self.price_type == 'weighted':
|
||||
return (ohlc_data['high'] + ohlc_data['low'] + 2 * ohlc_data['close']) / 4.0
|
||||
else:
|
||||
return ohlc_data['close']
|
||||
|
||||
def update(self, ohlc_data: Dict[str, float]) -> Dict[str, float]:
|
||||
"""
|
||||
Update Bollinger Bands with OHLC data.
|
||||
|
||||
Args:
|
||||
ohlc_data: Dictionary with OHLC data
|
||||
|
||||
Returns:
|
||||
Dictionary with Bollinger Bands values plus OHLC analysis
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(ohlc_data, dict):
|
||||
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
||||
|
||||
self.validate_input(ohlc_data)
|
||||
|
||||
# Extract price based on type
|
||||
price = self._extract_price(ohlc_data)
|
||||
|
||||
# Update underlying BB state
|
||||
bb_result = self.bb_state.update(price)
|
||||
|
||||
# Add OHLC-specific analysis
|
||||
high = ohlc_data['high']
|
||||
low = ohlc_data['low']
|
||||
close = ohlc_data['close']
|
||||
|
||||
# Check if high/low touched bands
|
||||
upper_band = bb_result['upper_band']
|
||||
lower_band = bb_result['lower_band']
|
||||
|
||||
bb_result.update({
|
||||
'high_above_upper': high > upper_band,
|
||||
'low_below_lower': low < lower_band,
|
||||
'close_position': self.bb_state.get_position_relative_to_bands(close),
|
||||
'price_type': self.price_type,
|
||||
'extracted_price': price
|
||||
})
|
||||
|
||||
self.values_received += 1
|
||||
self._current_values = bb_result
|
||||
|
||||
return bb_result
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if OHLC Bollinger Bands is warmed up."""
|
||||
return self.bb_state.is_warmed_up()
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset OHLC Bollinger Bands state."""
|
||||
self.bb_state.reset()
|
||||
self.values_received = 0
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[Dict[str, float]]:
|
||||
"""Get current OHLC Bollinger Bands values."""
|
||||
return self.bb_state.get_current_value()
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'price_type': self.price_type,
|
||||
'bb_state': self.bb_state.get_state_summary()
|
||||
})
|
||||
return base_summary
|
||||
228
cycles/IncStrategies/indicators/moving_average.py
Normal file
228
cycles/IncStrategies/indicators/moving_average.py
Normal file
@ -0,0 +1,228 @@
|
||||
"""
|
||||
Moving Average Indicator State
|
||||
|
||||
This module implements incremental moving average calculation that maintains
|
||||
constant memory usage and provides identical results to traditional batch calculations.
|
||||
"""
|
||||
|
||||
from collections import deque
|
||||
from typing import Union
|
||||
from .base import SimpleIndicatorState
|
||||
|
||||
|
||||
class MovingAverageState(SimpleIndicatorState):
|
||||
"""
|
||||
Incremental moving average calculation state.
|
||||
|
||||
This class maintains the state for calculating a simple moving average
|
||||
incrementally. It uses a rolling window approach with constant memory usage.
|
||||
|
||||
Attributes:
|
||||
period (int): The moving average period
|
||||
values (deque): Rolling window of values (max length = period)
|
||||
sum (float): Current sum of values in the window
|
||||
|
||||
Example:
|
||||
ma = MovingAverageState(period=20)
|
||||
|
||||
# Add values incrementally
|
||||
ma_value = ma.update(100.0) # Returns current MA value
|
||||
ma_value = ma.update(105.0) # Updates and returns new MA value
|
||||
|
||||
# Check if warmed up (has enough values)
|
||||
if ma.is_warmed_up():
|
||||
current_ma = ma.get_current_value()
|
||||
"""
|
||||
|
||||
def __init__(self, period: int):
|
||||
"""
|
||||
Initialize moving average state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for the moving average
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not a positive integer
|
||||
"""
|
||||
super().__init__(period)
|
||||
self.values = deque(maxlen=period)
|
||||
self.sum = 0.0
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, new_value: Union[float, int]) -> float:
|
||||
"""
|
||||
Update moving average with new value.
|
||||
|
||||
Args:
|
||||
new_value: New price/value to add to the moving average
|
||||
|
||||
Returns:
|
||||
Current moving average value
|
||||
|
||||
Raises:
|
||||
ValueError: If new_value is not finite
|
||||
TypeError: If new_value is not numeric
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(new_value, (int, float)):
|
||||
raise TypeError(f"new_value must be numeric, got {type(new_value)}")
|
||||
|
||||
self.validate_input(new_value)
|
||||
|
||||
# If deque is at max capacity, subtract the value being removed
|
||||
if len(self.values) == self.period:
|
||||
self.sum -= self.values[0] # Will be automatically removed by deque
|
||||
|
||||
# Add new value
|
||||
self.values.append(float(new_value))
|
||||
self.sum += float(new_value)
|
||||
self.values_received += 1
|
||||
|
||||
# Calculate current moving average
|
||||
current_count = len(self.values)
|
||||
self._current_value = self.sum / current_count
|
||||
|
||||
return self._current_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if moving average has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if we have at least 'period' number of values
|
||||
"""
|
||||
return len(self.values) >= self.period
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset moving average state to initial conditions."""
|
||||
self.values.clear()
|
||||
self.sum = 0.0
|
||||
self.values_received = 0
|
||||
self._current_value = None
|
||||
|
||||
def get_current_value(self) -> Union[float, None]:
|
||||
"""
|
||||
Get current moving average value without updating.
|
||||
|
||||
Returns:
|
||||
Current moving average value, or None if not enough data
|
||||
"""
|
||||
if len(self.values) == 0:
|
||||
return None
|
||||
return self.sum / len(self.values)
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'window_size': len(self.values),
|
||||
'sum': self.sum,
|
||||
'values_in_window': list(self.values) if len(self.values) <= 10 else f"[{len(self.values)} values]"
|
||||
})
|
||||
return base_summary
|
||||
|
||||
|
||||
class ExponentialMovingAverageState(SimpleIndicatorState):
|
||||
"""
|
||||
Incremental exponential moving average calculation state.
|
||||
|
||||
This class maintains the state for calculating an exponential moving average (EMA)
|
||||
incrementally. EMA gives more weight to recent values and requires minimal memory.
|
||||
|
||||
Attributes:
|
||||
period (int): The EMA period (used to calculate smoothing factor)
|
||||
alpha (float): Smoothing factor (2 / (period + 1))
|
||||
ema_value (float): Current EMA value
|
||||
|
||||
Example:
|
||||
ema = ExponentialMovingAverageState(period=20)
|
||||
|
||||
# Add values incrementally
|
||||
ema_value = ema.update(100.0) # Returns current EMA value
|
||||
ema_value = ema.update(105.0) # Updates and returns new EMA value
|
||||
"""
|
||||
|
||||
def __init__(self, period: int):
|
||||
"""
|
||||
Initialize exponential moving average state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for the EMA (used to calculate alpha)
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not a positive integer
|
||||
"""
|
||||
super().__init__(period)
|
||||
self.alpha = 2.0 / (period + 1) # Smoothing factor
|
||||
self.ema_value = None
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, new_value: Union[float, int]) -> float:
|
||||
"""
|
||||
Update exponential moving average with new value.
|
||||
|
||||
Args:
|
||||
new_value: New price/value to add to the EMA
|
||||
|
||||
Returns:
|
||||
Current EMA value
|
||||
|
||||
Raises:
|
||||
ValueError: If new_value is not finite
|
||||
TypeError: If new_value is not numeric
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(new_value, (int, float)):
|
||||
raise TypeError(f"new_value must be numeric, got {type(new_value)}")
|
||||
|
||||
self.validate_input(new_value)
|
||||
|
||||
new_value = float(new_value)
|
||||
|
||||
if self.ema_value is None:
|
||||
# First value - initialize EMA
|
||||
self.ema_value = new_value
|
||||
else:
|
||||
# EMA formula: EMA = alpha * new_value + (1 - alpha) * previous_EMA
|
||||
self.ema_value = self.alpha * new_value + (1 - self.alpha) * self.ema_value
|
||||
|
||||
self.values_received += 1
|
||||
self._current_value = self.ema_value
|
||||
|
||||
return self.ema_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if EMA has enough data for reliable values.
|
||||
|
||||
For EMA, we consider it warmed up after receiving 'period' number of values,
|
||||
though it starts producing values immediately.
|
||||
|
||||
Returns:
|
||||
True if we have at least 'period' number of values
|
||||
"""
|
||||
return self.values_received >= self.period
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset EMA state to initial conditions."""
|
||||
self.ema_value = None
|
||||
self.values_received = 0
|
||||
self._current_value = None
|
||||
|
||||
def get_current_value(self) -> Union[float, None]:
|
||||
"""
|
||||
Get current EMA value without updating.
|
||||
|
||||
Returns:
|
||||
Current EMA value, or None if no data received
|
||||
"""
|
||||
return self.ema_value
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'alpha': self.alpha,
|
||||
'ema_value': self.ema_value
|
||||
})
|
||||
return base_summary
|
||||
276
cycles/IncStrategies/indicators/rsi.py
Normal file
276
cycles/IncStrategies/indicators/rsi.py
Normal file
@ -0,0 +1,276 @@
|
||||
"""
|
||||
RSI (Relative Strength Index) Indicator State
|
||||
|
||||
This module implements incremental RSI calculation that maintains constant memory usage
|
||||
and provides identical results to traditional batch calculations.
|
||||
"""
|
||||
|
||||
from typing import Union, Optional
|
||||
from .base import SimpleIndicatorState
|
||||
from .moving_average import ExponentialMovingAverageState
|
||||
|
||||
|
||||
class RSIState(SimpleIndicatorState):
|
||||
"""
|
||||
Incremental RSI calculation state.
|
||||
|
||||
RSI measures the speed and magnitude of price changes to evaluate overbought
|
||||
or oversold conditions. It oscillates between 0 and 100.
|
||||
|
||||
RSI = 100 - (100 / (1 + RS))
|
||||
where RS = Average Gain / Average Loss over the specified period
|
||||
|
||||
This implementation uses exponential moving averages for gain and loss smoothing,
|
||||
which is more responsive and memory-efficient than simple moving averages.
|
||||
|
||||
Attributes:
|
||||
period (int): The RSI period (typically 14)
|
||||
gain_ema (ExponentialMovingAverageState): EMA state for gains
|
||||
loss_ema (ExponentialMovingAverageState): EMA state for losses
|
||||
previous_close (float): Previous period's close price
|
||||
|
||||
Example:
|
||||
rsi = RSIState(period=14)
|
||||
|
||||
# Add price data incrementally
|
||||
rsi_value = rsi.update(100.0) # Returns current RSI value
|
||||
rsi_value = rsi.update(105.0) # Updates and returns new RSI value
|
||||
|
||||
# Check if warmed up
|
||||
if rsi.is_warmed_up():
|
||||
current_rsi = rsi.get_current_value()
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 14):
|
||||
"""
|
||||
Initialize RSI state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for RSI calculation (default: 14)
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not a positive integer
|
||||
"""
|
||||
super().__init__(period)
|
||||
self.gain_ema = ExponentialMovingAverageState(period)
|
||||
self.loss_ema = ExponentialMovingAverageState(period)
|
||||
self.previous_close = None
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, new_close: Union[float, int]) -> float:
|
||||
"""
|
||||
Update RSI with new close price.
|
||||
|
||||
Args:
|
||||
new_close: New closing price
|
||||
|
||||
Returns:
|
||||
Current RSI value (0-100)
|
||||
|
||||
Raises:
|
||||
ValueError: If new_close is not finite
|
||||
TypeError: If new_close is not numeric
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(new_close, (int, float)):
|
||||
raise TypeError(f"new_close must be numeric, got {type(new_close)}")
|
||||
|
||||
self.validate_input(new_close)
|
||||
|
||||
new_close = float(new_close)
|
||||
|
||||
if self.previous_close is None:
|
||||
# First value - no gain/loss to calculate
|
||||
self.previous_close = new_close
|
||||
self.values_received += 1
|
||||
# Return neutral RSI for first value
|
||||
self._current_value = 50.0
|
||||
return self._current_value
|
||||
|
||||
# Calculate price change
|
||||
price_change = new_close - self.previous_close
|
||||
|
||||
# Separate gains and losses
|
||||
gain = max(price_change, 0.0)
|
||||
loss = max(-price_change, 0.0)
|
||||
|
||||
# Update EMAs for gains and losses
|
||||
avg_gain = self.gain_ema.update(gain)
|
||||
avg_loss = self.loss_ema.update(loss)
|
||||
|
||||
# Calculate RSI
|
||||
if avg_loss == 0.0:
|
||||
# Avoid division by zero - all gains, no losses
|
||||
rsi_value = 100.0
|
||||
else:
|
||||
rs = avg_gain / avg_loss
|
||||
rsi_value = 100.0 - (100.0 / (1.0 + rs))
|
||||
|
||||
# Store state
|
||||
self.previous_close = new_close
|
||||
self.values_received += 1
|
||||
self._current_value = rsi_value
|
||||
|
||||
return rsi_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if RSI has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if both gain and loss EMAs are warmed up
|
||||
"""
|
||||
return self.gain_ema.is_warmed_up() and self.loss_ema.is_warmed_up()
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset RSI state to initial conditions."""
|
||||
self.gain_ema.reset()
|
||||
self.loss_ema.reset()
|
||||
self.previous_close = None
|
||||
self.values_received = 0
|
||||
self._current_value = None
|
||||
|
||||
def get_current_value(self) -> Optional[float]:
|
||||
"""
|
||||
Get current RSI value without updating.
|
||||
|
||||
Returns:
|
||||
Current RSI value (0-100), or None if not enough data
|
||||
"""
|
||||
if self.values_received == 0:
|
||||
return None
|
||||
elif self.values_received == 1:
|
||||
return 50.0 # Neutral RSI for first value
|
||||
elif not self.is_warmed_up():
|
||||
return self._current_value # Return current calculation even if not fully warmed up
|
||||
else:
|
||||
return self._current_value
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'previous_close': self.previous_close,
|
||||
'gain_ema': self.gain_ema.get_state_summary(),
|
||||
'loss_ema': self.loss_ema.get_state_summary(),
|
||||
'current_rsi': self.get_current_value()
|
||||
})
|
||||
return base_summary
|
||||
|
||||
|
||||
class SimpleRSIState(SimpleIndicatorState):
|
||||
"""
|
||||
Simple RSI implementation using simple moving averages instead of EMAs.
|
||||
|
||||
This version uses simple moving averages for gain and loss smoothing,
|
||||
which matches traditional RSI implementations but requires more memory.
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 14):
|
||||
"""
|
||||
Initialize simple RSI state.
|
||||
|
||||
Args:
|
||||
period: Number of periods for RSI calculation (default: 14)
|
||||
"""
|
||||
super().__init__(period)
|
||||
from collections import deque
|
||||
self.gains = deque(maxlen=period)
|
||||
self.losses = deque(maxlen=period)
|
||||
self.gain_sum = 0.0
|
||||
self.loss_sum = 0.0
|
||||
self.previous_close = None
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, new_close: Union[float, int]) -> float:
|
||||
"""
|
||||
Update simple RSI with new close price.
|
||||
|
||||
Args:
|
||||
new_close: New closing price
|
||||
|
||||
Returns:
|
||||
Current RSI value (0-100)
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(new_close, (int, float)):
|
||||
raise TypeError(f"new_close must be numeric, got {type(new_close)}")
|
||||
|
||||
self.validate_input(new_close)
|
||||
|
||||
new_close = float(new_close)
|
||||
|
||||
if self.previous_close is None:
|
||||
# First value
|
||||
self.previous_close = new_close
|
||||
self.values_received += 1
|
||||
self._current_value = 50.0
|
||||
return self._current_value
|
||||
|
||||
# Calculate price change
|
||||
price_change = new_close - self.previous_close
|
||||
gain = max(price_change, 0.0)
|
||||
loss = max(-price_change, 0.0)
|
||||
|
||||
# Update rolling sums
|
||||
if len(self.gains) == self.period:
|
||||
self.gain_sum -= self.gains[0]
|
||||
self.loss_sum -= self.losses[0]
|
||||
|
||||
self.gains.append(gain)
|
||||
self.losses.append(loss)
|
||||
self.gain_sum += gain
|
||||
self.loss_sum += loss
|
||||
|
||||
# Calculate RSI
|
||||
if len(self.gains) == 0:
|
||||
rsi_value = 50.0
|
||||
else:
|
||||
avg_gain = self.gain_sum / len(self.gains)
|
||||
avg_loss = self.loss_sum / len(self.losses)
|
||||
|
||||
if avg_loss == 0.0:
|
||||
rsi_value = 100.0
|
||||
else:
|
||||
rs = avg_gain / avg_loss
|
||||
rsi_value = 100.0 - (100.0 / (1.0 + rs))
|
||||
|
||||
# Store state
|
||||
self.previous_close = new_close
|
||||
self.values_received += 1
|
||||
self._current_value = rsi_value
|
||||
|
||||
return rsi_value
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if simple RSI is warmed up."""
|
||||
return len(self.gains) >= self.period
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset simple RSI state."""
|
||||
self.gains.clear()
|
||||
self.losses.clear()
|
||||
self.gain_sum = 0.0
|
||||
self.loss_sum = 0.0
|
||||
self.previous_close = None
|
||||
self.values_received = 0
|
||||
self._current_value = None
|
||||
|
||||
def get_current_value(self) -> Optional[float]:
|
||||
"""Get current simple RSI value."""
|
||||
if self.values_received == 0:
|
||||
return None
|
||||
return self._current_value
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'previous_close': self.previous_close,
|
||||
'gains_window_size': len(self.gains),
|
||||
'losses_window_size': len(self.losses),
|
||||
'gain_sum': self.gain_sum,
|
||||
'loss_sum': self.loss_sum,
|
||||
'current_rsi': self.get_current_value()
|
||||
})
|
||||
return base_summary
|
||||
332
cycles/IncStrategies/indicators/supertrend.py
Normal file
332
cycles/IncStrategies/indicators/supertrend.py
Normal file
@ -0,0 +1,332 @@
|
||||
"""
|
||||
Supertrend Indicator State
|
||||
|
||||
This module implements incremental Supertrend calculation that maintains constant memory usage
|
||||
and provides identical results to traditional batch calculations. Supertrend is used by
|
||||
the DefaultStrategy for trend detection.
|
||||
"""
|
||||
|
||||
from typing import Dict, Union, Optional
|
||||
from .base import OHLCIndicatorState
|
||||
from .atr import ATRState
|
||||
|
||||
|
||||
class SupertrendState(OHLCIndicatorState):
|
||||
"""
|
||||
Incremental Supertrend calculation state.
|
||||
|
||||
Supertrend is a trend-following indicator that uses Average True Range (ATR)
|
||||
to calculate dynamic support and resistance levels. It provides clear trend
|
||||
direction signals: +1 for uptrend, -1 for downtrend.
|
||||
|
||||
The calculation involves:
|
||||
1. Calculate ATR for the given period
|
||||
2. Calculate basic upper and lower bands using ATR and multiplier
|
||||
3. Calculate final upper and lower bands with trend logic
|
||||
4. Determine trend direction based on price vs bands
|
||||
|
||||
Attributes:
|
||||
period (int): ATR period for Supertrend calculation
|
||||
multiplier (float): Multiplier for ATR in band calculation
|
||||
atr_state (ATRState): ATR calculation state
|
||||
previous_close (float): Previous period's close price
|
||||
previous_trend (int): Previous trend direction (+1 or -1)
|
||||
final_upper_band (float): Current final upper band
|
||||
final_lower_band (float): Current final lower band
|
||||
|
||||
Example:
|
||||
supertrend = SupertrendState(period=10, multiplier=3.0)
|
||||
|
||||
# Add OHLC data incrementally
|
||||
ohlc = {'open': 100, 'high': 105, 'low': 98, 'close': 103}
|
||||
result = supertrend.update(ohlc)
|
||||
trend = result['trend'] # +1 or -1
|
||||
supertrend_value = result['supertrend'] # Supertrend line value
|
||||
"""
|
||||
|
||||
def __init__(self, period: int = 10, multiplier: float = 3.0):
|
||||
"""
|
||||
Initialize Supertrend state.
|
||||
|
||||
Args:
|
||||
period: ATR period for Supertrend calculation (default: 10)
|
||||
multiplier: Multiplier for ATR in band calculation (default: 3.0)
|
||||
|
||||
Raises:
|
||||
ValueError: If period is not positive or multiplier is not positive
|
||||
"""
|
||||
super().__init__(period)
|
||||
|
||||
if multiplier <= 0:
|
||||
raise ValueError(f"Multiplier must be positive, got {multiplier}")
|
||||
|
||||
self.multiplier = multiplier
|
||||
self.atr_state = ATRState(period)
|
||||
|
||||
# State variables
|
||||
self.previous_close = None
|
||||
self.previous_trend = 1 # Start with uptrend assumption
|
||||
self.final_upper_band = None
|
||||
self.final_lower_band = None
|
||||
|
||||
# Current values
|
||||
self.current_trend = 1
|
||||
self.current_supertrend = None
|
||||
|
||||
self.is_initialized = True
|
||||
|
||||
def update(self, ohlc_data: Dict[str, float]) -> Dict[str, float]:
|
||||
"""
|
||||
Update Supertrend with new OHLC data.
|
||||
|
||||
Args:
|
||||
ohlc_data: Dictionary with 'open', 'high', 'low', 'close' keys
|
||||
|
||||
Returns:
|
||||
Dictionary with 'trend', 'supertrend', 'upper_band', 'lower_band' keys
|
||||
|
||||
Raises:
|
||||
ValueError: If OHLC data is invalid
|
||||
TypeError: If ohlc_data is not a dictionary
|
||||
"""
|
||||
# Validate input
|
||||
if not isinstance(ohlc_data, dict):
|
||||
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
||||
|
||||
self.validate_input(ohlc_data)
|
||||
|
||||
high = float(ohlc_data['high'])
|
||||
low = float(ohlc_data['low'])
|
||||
close = float(ohlc_data['close'])
|
||||
|
||||
# Update ATR
|
||||
atr_value = self.atr_state.update(ohlc_data)
|
||||
|
||||
# Calculate HL2 (typical price)
|
||||
hl2 = (high + low) / 2.0
|
||||
|
||||
# Calculate basic upper and lower bands
|
||||
basic_upper_band = hl2 + (self.multiplier * atr_value)
|
||||
basic_lower_band = hl2 - (self.multiplier * atr_value)
|
||||
|
||||
# Calculate final upper band
|
||||
if self.final_upper_band is None or basic_upper_band < self.final_upper_band or self.previous_close > self.final_upper_band:
|
||||
final_upper_band = basic_upper_band
|
||||
else:
|
||||
final_upper_band = self.final_upper_band
|
||||
|
||||
# Calculate final lower band
|
||||
if self.final_lower_band is None or basic_lower_band > self.final_lower_band or self.previous_close < self.final_lower_band:
|
||||
final_lower_band = basic_lower_band
|
||||
else:
|
||||
final_lower_band = self.final_lower_band
|
||||
|
||||
# Determine trend
|
||||
if self.previous_close is None:
|
||||
# First calculation
|
||||
trend = 1 if close > final_lower_band else -1
|
||||
else:
|
||||
# Trend logic
|
||||
if self.previous_trend == 1 and close <= final_lower_band:
|
||||
trend = -1
|
||||
elif self.previous_trend == -1 and close >= final_upper_band:
|
||||
trend = 1
|
||||
else:
|
||||
trend = self.previous_trend
|
||||
|
||||
# Calculate Supertrend value
|
||||
if trend == 1:
|
||||
supertrend_value = final_lower_band
|
||||
else:
|
||||
supertrend_value = final_upper_band
|
||||
|
||||
# Store current state
|
||||
self.previous_close = close
|
||||
self.previous_trend = trend
|
||||
self.final_upper_band = final_upper_band
|
||||
self.final_lower_band = final_lower_band
|
||||
self.current_trend = trend
|
||||
self.current_supertrend = supertrend_value
|
||||
self.values_received += 1
|
||||
|
||||
# Prepare result
|
||||
result = {
|
||||
'trend': trend,
|
||||
'supertrend': supertrend_value,
|
||||
'upper_band': final_upper_band,
|
||||
'lower_band': final_lower_band,
|
||||
'atr': atr_value
|
||||
}
|
||||
|
||||
self._current_values = result
|
||||
return result
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""
|
||||
Check if Supertrend has enough data for reliable values.
|
||||
|
||||
Returns:
|
||||
True if ATR state is warmed up
|
||||
"""
|
||||
return self.atr_state.is_warmed_up()
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset Supertrend state to initial conditions."""
|
||||
self.atr_state.reset()
|
||||
self.previous_close = None
|
||||
self.previous_trend = 1
|
||||
self.final_upper_band = None
|
||||
self.final_lower_band = None
|
||||
self.current_trend = 1
|
||||
self.current_supertrend = None
|
||||
self.values_received = 0
|
||||
self._current_values = {}
|
||||
|
||||
def get_current_value(self) -> Optional[Dict[str, float]]:
|
||||
"""
|
||||
Get current Supertrend values without updating.
|
||||
|
||||
Returns:
|
||||
Dictionary with current Supertrend values, or None if not warmed up
|
||||
"""
|
||||
if not self.is_warmed_up():
|
||||
return None
|
||||
return self._current_values.copy() if self._current_values else None
|
||||
|
||||
def get_current_trend(self) -> int:
|
||||
"""
|
||||
Get current trend direction.
|
||||
|
||||
Returns:
|
||||
Current trend: +1 for uptrend, -1 for downtrend
|
||||
"""
|
||||
return self.current_trend
|
||||
|
||||
def get_current_supertrend_value(self) -> Optional[float]:
|
||||
"""
|
||||
Get current Supertrend line value.
|
||||
|
||||
Returns:
|
||||
Current Supertrend value, or None if not available
|
||||
"""
|
||||
return self.current_supertrend
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for debugging."""
|
||||
base_summary = super().get_state_summary()
|
||||
base_summary.update({
|
||||
'multiplier': self.multiplier,
|
||||
'previous_close': self.previous_close,
|
||||
'previous_trend': self.previous_trend,
|
||||
'current_trend': self.current_trend,
|
||||
'current_supertrend': self.current_supertrend,
|
||||
'final_upper_band': self.final_upper_band,
|
||||
'final_lower_band': self.final_lower_band,
|
||||
'atr_state': self.atr_state.get_state_summary()
|
||||
})
|
||||
return base_summary
|
||||
|
||||
|
||||
class SupertrendCollection:
|
||||
"""
|
||||
Collection of multiple Supertrend indicators with different parameters.
|
||||
|
||||
This class manages multiple Supertrend indicators and provides meta-trend
|
||||
calculation based on agreement between different Supertrend configurations.
|
||||
Used by the DefaultStrategy for robust trend detection.
|
||||
|
||||
Example:
|
||||
# Create collection with three Supertrend indicators
|
||||
collection = SupertrendCollection([
|
||||
(10, 3.0), # period=10, multiplier=3.0
|
||||
(11, 2.0), # period=11, multiplier=2.0
|
||||
(12, 1.0) # period=12, multiplier=1.0
|
||||
])
|
||||
|
||||
# Update all indicators
|
||||
results = collection.update(ohlc_data)
|
||||
meta_trend = results['meta_trend'] # 1, -1, or 0 (neutral)
|
||||
"""
|
||||
|
||||
def __init__(self, supertrend_configs: list):
|
||||
"""
|
||||
Initialize Supertrend collection.
|
||||
|
||||
Args:
|
||||
supertrend_configs: List of (period, multiplier) tuples
|
||||
"""
|
||||
self.supertrends = []
|
||||
for period, multiplier in supertrend_configs:
|
||||
self.supertrends.append(SupertrendState(period, multiplier))
|
||||
|
||||
self.values_received = 0
|
||||
|
||||
def update(self, ohlc_data: Dict[str, float]) -> Dict[str, Union[int, list]]:
|
||||
"""
|
||||
Update all Supertrend indicators and calculate meta-trend.
|
||||
|
||||
Args:
|
||||
ohlc_data: OHLC data dictionary
|
||||
|
||||
Returns:
|
||||
Dictionary with individual trends and meta-trend
|
||||
"""
|
||||
trends = []
|
||||
results = []
|
||||
|
||||
# Update each Supertrend
|
||||
for supertrend in self.supertrends:
|
||||
result = supertrend.update(ohlc_data)
|
||||
trends.append(result['trend'])
|
||||
results.append(result)
|
||||
|
||||
# Calculate meta-trend: all must agree for directional signal
|
||||
if all(trend == trends[0] for trend in trends):
|
||||
meta_trend = trends[0] # All agree
|
||||
else:
|
||||
meta_trend = 0 # Neutral when trends don't agree
|
||||
|
||||
self.values_received += 1
|
||||
|
||||
return {
|
||||
'trends': trends,
|
||||
'meta_trend': meta_trend,
|
||||
'results': results
|
||||
}
|
||||
|
||||
def is_warmed_up(self) -> bool:
|
||||
"""Check if all Supertrend indicators are warmed up."""
|
||||
return all(st.is_warmed_up() for st in self.supertrends)
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset all Supertrend indicators."""
|
||||
for supertrend in self.supertrends:
|
||||
supertrend.reset()
|
||||
self.values_received = 0
|
||||
|
||||
def get_current_meta_trend(self) -> int:
|
||||
"""
|
||||
Get current meta-trend without updating.
|
||||
|
||||
Returns:
|
||||
Current meta-trend: +1, -1, or 0
|
||||
"""
|
||||
if not self.is_warmed_up():
|
||||
return 0
|
||||
|
||||
trends = [st.get_current_trend() for st in self.supertrends]
|
||||
|
||||
if all(trend == trends[0] for trend in trends):
|
||||
return trends[0]
|
||||
else:
|
||||
return 0
|
||||
|
||||
def get_state_summary(self) -> dict:
|
||||
"""Get detailed state summary for all Supertrends."""
|
||||
return {
|
||||
'num_supertrends': len(self.supertrends),
|
||||
'values_received': self.values_received,
|
||||
'is_warmed_up': self.is_warmed_up(),
|
||||
'current_meta_trend': self.get_current_meta_trend(),
|
||||
'supertrends': [st.get_state_summary() for st in self.supertrends]
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user