loo on features

This commit is contained in:
Simon Moisy 2025-05-30 20:06:28 +08:00
parent 082a2835b6
commit a877f14e65
3 changed files with 1025 additions and 1025 deletions

362
.gitignore vendored
View File

@ -1,181 +1,181 @@
# ---> Python
/data/*.db
/credentials/*.json
*.csv
*.png
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
/data/*.npy
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# UV
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
#uv.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
.pdm.toml
.pdm-python
.pdm-build/
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
An introduction to trading cycles.pdf
An introduction to trading cycles.txt
README.md
.vscode/launch.json
data/btcusd_1-day_data.csv
data/btcusd_1-min_data.csv
# ---> Python
/data/*.db
/credentials/*.json
*.csv
*.png
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
/data/*.npy
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# UV
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
#uv.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
.pdm.toml
.pdm-python
.pdm-build/
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
An introduction to trading cycles.pdf
An introduction to trading cycles.txt
README.md
.vscode/launch.json
data/btcusd_1-day_data.csv
data/btcusd_1-min_data.csv

View File

@ -1,39 +1,39 @@
import xgboost as xgb
import numpy as np
class CustomXGBoostGPU:
def __init__(self, X_train, X_test, y_train, y_test):
self.X_train = X_train.astype(np.float32)
self.X_test = X_test.astype(np.float32)
self.y_train = y_train.astype(np.float32)
self.y_test = y_test.astype(np.float32)
self.model = None
self.params = None # Will be set during training
def train(self, **xgb_params):
params = {
'tree_method': 'hist',
'device': 'cuda',
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'verbosity': 1,
}
params.update(xgb_params)
self.params = params # Store params for later access
dtrain = xgb.DMatrix(self.X_train, label=self.y_train)
dtest = xgb.DMatrix(self.X_test, label=self.y_test)
evals = [(dtrain, 'train'), (dtest, 'eval')]
self.model = xgb.train(params, dtrain, num_boost_round=100, evals=evals, early_stopping_rounds=10)
return self.model
def predict(self, X):
if self.model is None:
raise ValueError('Model not trained yet.')
dmatrix = xgb.DMatrix(X.astype(np.float32))
return self.model.predict(dmatrix)
def save_model(self, file_path):
"""Save the trained XGBoost model to the specified file path."""
if self.model is None:
raise ValueError('Model not trained yet.')
self.model.save_model(file_path)
import xgboost as xgb
import numpy as np
class CustomXGBoostGPU:
def __init__(self, X_train, X_test, y_train, y_test):
self.X_train = X_train.astype(np.float32)
self.X_test = X_test.astype(np.float32)
self.y_train = y_train.astype(np.float32)
self.y_test = y_test.astype(np.float32)
self.model = None
self.params = None # Will be set during training
def train(self, **xgb_params):
params = {
'tree_method': 'hist',
'device': 'cuda',
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'verbosity': 1,
}
params.update(xgb_params)
self.params = params # Store params for later access
dtrain = xgb.DMatrix(self.X_train, label=self.y_train)
dtest = xgb.DMatrix(self.X_test, label=self.y_test)
evals = [(dtrain, 'train'), (dtest, 'eval')]
self.model = xgb.train(params, dtrain, num_boost_round=100, evals=evals, early_stopping_rounds=10)
return self.model
def predict(self, X):
if self.model is None:
raise ValueError('Model not trained yet.')
dmatrix = xgb.DMatrix(X.astype(np.float32))
return self.model.predict(dmatrix)
def save_model(self, file_path):
"""Save the trained XGBoost model to the specified file path."""
if self.model is None:
raise ValueError('Model not trained yet.')
self.model.save_model(file_path)

File diff suppressed because it is too large Load Diff