Refactor backtesting logic and introduce new components

- Replaced TrendDetectorSimple with a new Backtest class for improved backtesting functionality.
- Integrated argparse for configuration file input, allowing dynamic parameter setting.
- Added MarketFees and Supertrends classes to handle fee calculations and trend detection, respectively.
- Removed deprecated main_debug.py and trend_detector_simple.py files to streamline the codebase.
- Enhanced process_timeframe_data to utilize the new Backtest class for executing trades and calculating results.
- Updated Storage class to support writing backtest results with metadata.
This commit is contained in:
Simon Moisy 2025-05-21 17:03:34 +08:00
parent 14905017c8
commit 806697116d
9 changed files with 650 additions and 1134 deletions

222
cycles/backtest.py Normal file
View File

@ -0,0 +1,222 @@
import pandas as pd
import numpy as np
from cycles.supertrend import Supertrends
from cycles.market_fees import MarketFees
class Backtest:
@staticmethod
def run(min1_df, df, initial_usd, stop_loss_pct, debug=False):
"""
Backtest a simple strategy using the meta supertrend (all three supertrends agree).
Buys when meta supertrend is positive, sells when negative, applies a percentage stop loss.
Parameters:
- min1_df: pandas DataFrame, 1-minute timeframe data for more accurate stop loss checking (optional)
- initial_usd: float, starting USD amount
- stop_loss_pct: float, stop loss as a fraction (e.g. 0.05 for 5%)
- debug: bool, whether to print debug info
"""
_df = df.copy().reset_index(drop=True)
_df['timestamp'] = pd.to_datetime(_df['timestamp'])
supertrends = Supertrends(_df, verbose=False)
supertrend_results_list = supertrends.calculate_supertrend_indicators()
trends = [st['results']['trend'] for st in supertrend_results_list]
trends_arr = np.stack(trends, axis=1)
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
trends_arr[:,0], 0)
position = 0 # 0 = no position, 1 = long
entry_price = 0
usd = initial_usd
coin = 0
trade_log = []
max_balance = initial_usd
drawdowns = []
trades = []
entry_time = None
current_trade_min1_start_idx = None
min1_df['timestamp'] = pd.to_datetime(min1_df.index)
for i in range(1, len(_df)):
price_open = _df['open'].iloc[i]
price_close = _df['close'].iloc[i]
date = _df['timestamp'].iloc[i]
prev_mt = meta_trend[i-1]
curr_mt = meta_trend[i]
# Check stop loss if in position
if position == 1:
stop_loss_result = Backtest.check_stop_loss(
min1_df,
entry_time,
date,
entry_price,
stop_loss_pct,
coin,
usd,
debug,
current_trade_min1_start_idx
)
if stop_loss_result is not None:
trade_log_entry, current_trade_min1_start_idx, position, coin, entry_price = stop_loss_result
trade_log.append(trade_log_entry)
continue
# Update the start index for next check
current_trade_min1_start_idx = Backtest.get_current_min1_end_idx(min1_df, date)
# Entry: only if not in position and signal changes to 1
if position == 0 and prev_mt != 1 and curr_mt == 1:
entry_result = Backtest.handle_entry(usd, price_open, date)
coin, entry_price, entry_time, usd, position, trade_log_entry = entry_result
trade_log.append(trade_log_entry)
# Exit: only if in position and signal changes from 1 to -1
elif position == 1 and prev_mt == 1 and curr_mt == -1:
exit_result = Backtest.handle_exit(coin, price_open, entry_price, entry_time, date)
usd, coin, position, entry_price, trade_log_entry = exit_result
trade_log.append(trade_log_entry)
# Track drawdown
balance = usd if position == 0 else coin * price_close
if balance > max_balance:
max_balance = balance
drawdown = (max_balance - balance) / max_balance
drawdowns.append(drawdown)
# If still in position at end, sell at last close
if position == 1:
exit_result = Backtest.handle_exit(coin, _df['close'].iloc[-1], entry_price, entry_time, _df['timestamp'].iloc[-1])
usd, coin, position, entry_price, trade_log_entry = exit_result
trade_log.append(trade_log_entry)
# Calculate statistics
final_balance = usd
n_trades = len(trade_log)
wins = [1 for t in trade_log if t['exit'] is not None and t['exit'] > t['entry']]
win_rate = len(wins) / n_trades if n_trades > 0 else 0
max_drawdown = max(drawdowns) if drawdowns else 0
avg_trade = np.mean([t['exit']/t['entry']-1 for t in trade_log if t['exit'] is not None]) if trade_log else 0
trades = []
total_fees_usd = 0.0
for trade in trade_log:
if trade['exit'] is not None:
profit_pct = (trade['exit'] - trade['entry']) / trade['entry']
else:
profit_pct = 0.0
trades.append({
'entry_time': trade['entry_time'],
'exit_time': trade['exit_time'],
'entry': trade['entry'],
'exit': trade['exit'],
'profit_pct': profit_pct,
'type': trade.get('type', 'SELL'),
'fee_usd': trade.get('fee_usd')
})
fee_usd = trade.get('fee_usd')
total_fees_usd += fee_usd
results = {
"initial_usd": initial_usd,
"final_usd": final_balance,
"n_trades": n_trades,
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"trade_log": trade_log,
"trades": trades,
"total_fees_usd": total_fees_usd,
}
if n_trades > 0:
results["first_trade"] = {
"entry_time": trade_log[0]['entry_time'],
"entry": trade_log[0]['entry']
}
results["last_trade"] = {
"exit_time": trade_log[-1]['exit_time'],
"exit": trade_log[-1]['exit']
}
return results
@staticmethod
def check_stop_loss(min1_df, entry_time, date, entry_price, stop_loss_pct, coin, usd, debug, current_trade_min1_start_idx):
stop_price = entry_price * (1 - stop_loss_pct)
if current_trade_min1_start_idx is None:
current_trade_min1_start_idx = min1_df.index[min1_df.index >= entry_time][0]
current_min1_end_idx = min1_df.index[min1_df.index <= date][-1]
# Check all 1-minute candles in between for stop loss
min1_slice = min1_df.loc[current_trade_min1_start_idx:current_min1_end_idx]
if (min1_slice['low'] <= stop_price).any():
# Stop loss triggered, find the exact candle
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
# More realistic fill: if open < stop, fill at open, else at stop
if stop_candle['open'] < stop_price:
sell_price = stop_candle['open']
else:
sell_price = stop_price
if debug:
print(f"STOP LOSS triggered: entry={entry_price}, stop={stop_price}, sell_price={sell_price}, entry_time={entry_time}, stop_time={stop_candle.name}")
btc_to_sell = coin
usd_gross = btc_to_sell * sell_price
exit_fee = MarketFees.calculate_okx_taker_maker_fee(usd_gross, is_maker=False)
trade_log_entry = {
'type': 'STOP',
'entry': entry_price,
'exit': sell_price,
'entry_time': entry_time,
'exit_time': stop_candle.name,
'fee_usd': exit_fee
}
# After stop loss, reset position and entry
return trade_log_entry, None, 0, 0, 0
return None
@staticmethod
def handle_entry(usd, price_open, date):
entry_fee = MarketFees.calculate_okx_taker_maker_fee(usd, is_maker=False)
usd_after_fee = usd - entry_fee
coin = usd_after_fee / price_open
entry_price = price_open
entry_time = date
usd = 0
position = 1
trade_log_entry = {
'type': 'BUY',
'entry': entry_price,
'exit': None,
'entry_time': entry_time,
'exit_time': None,
'fee_usd': entry_fee
}
return coin, entry_price, entry_time, usd, position, trade_log_entry
@staticmethod
def handle_exit(coin, price_open, entry_price, entry_time, date):
btc_to_sell = coin
usd_gross = btc_to_sell * price_open
exit_fee = MarketFees.calculate_okx_taker_maker_fee(usd_gross, is_maker=False)
usd = usd_gross - exit_fee
trade_log_entry = {
'type': 'SELL',
'entry': entry_price,
'exit': price_open,
'entry_time': entry_time,
'exit_time': date,
'fee_usd': exit_fee
}
coin = 0
position = 0
entry_price = 0
return usd, coin, position, entry_price, trade_log_entry
@staticmethod
def get_current_min1_end_idx(min1_df, date):
# Implement the logic to find the end index of the current 1-minute candle
# This is a placeholder and should be replaced with the actual implementation
return min1_df.index[min1_df.index <= date][-1]

View File

@ -1,197 +0,0 @@
import pandas as pd
import numpy as np
from trend_detector_simple import TrendDetectorSimple
import os
import datetime
import csv
def load_data(file_path, start_date, stop_date):
"""Load and filter data by date range."""
data = pd.read_csv(file_path)
data['Timestamp'] = pd.to_datetime(data['Timestamp'], unit='s')
data = data[(data['Timestamp'] >= start_date) & (data['Timestamp'] <= stop_date)]
data.columns = data.columns.str.lower()
return data.set_index('timestamp')
def process_month_timeframe(min1_df, month_df, stop_loss_pcts, rule_name, initial_usd):
"""Process a single month for a given timeframe with all stop loss values."""
month_df = month_df.copy().reset_index(drop=True)
trend_detector = TrendDetectorSimple(month_df, verbose=False)
analysis_results = trend_detector.detect_trends()
signal_df = analysis_results.get('signal_df')
results_rows = []
trade_rows = []
for stop_loss_pct in stop_loss_pcts:
results = trend_detector.backtest_meta_supertrend(
min1_df,
initial_usd=initial_usd,
stop_loss_pct=stop_loss_pct
)
trades = results.get('trades', [])
n_trades = results["n_trades"]
n_winning_trades = sum(1 for trade in trades if trade['profit_pct'] > 0)
total_profit = sum(trade['profit_pct'] for trade in trades)
total_loss = sum(-trade['profit_pct'] for trade in trades if trade['profit_pct'] < 0)
win_rate = n_winning_trades / n_trades if n_trades > 0 else 0
avg_trade = total_profit / n_trades if n_trades > 0 else 0
profit_ratio = total_profit / total_loss if total_loss > 0 else float('inf')
# Max drawdown
cumulative_profit = 0
max_drawdown = 0
peak = 0
for trade in trades:
cumulative_profit += trade['profit_pct']
if cumulative_profit > peak:
peak = cumulative_profit
drawdown = peak - cumulative_profit
if drawdown > max_drawdown:
max_drawdown = drawdown
# Final USD
final_usd = initial_usd
for trade in trades:
final_usd *= (1 + trade['profit_pct'])
row = {
"timeframe": rule_name,
"month": str(month_df['timestamp'].iloc[0].to_period('M')),
"stop_loss_pct": stop_loss_pct,
"n_trades": n_trades,
"n_stop_loss": sum(1 for trade in trades if 'type' in trade and trade['type'] == 'STOP'),
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"profit_ratio": profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
}
results_rows.append(row)
for trade in trades:
trade_rows.append({
"timeframe": rule_name,
"month": str(month_df['timestamp'].iloc[0].to_period('M')),
"stop_loss_pct": stop_loss_pct,
"entry_time": trade.get("entry_time"),
"exit_time": trade.get("exit_time"),
"entry_price": trade.get("entry_price"),
"exit_price": trade.get("exit_price"),
"profit_pct": trade.get("profit_pct"),
"type": trade.get("type", ""),
})
return results_rows, trade_rows
def process_timeframe(rule, data_1min, stop_loss_pcts, initial_usd):
"""Process an entire timeframe sequentially."""
if rule == "1T":
df = data_1min.copy()
else:
df = data_1min.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
df = df.reset_index()
df['month'] = df['timestamp'].dt.to_period('M')
results_rows = []
all_trade_rows = []
for month, month_df in df.groupby('month'):
if len(month_df) < 10:
continue
month_results, month_trades = process_month_timeframe(data_1min, month_df, stop_loss_pcts, rule, initial_usd)
results_rows.extend(month_results)
all_trade_rows.extend(month_trades)
return results_rows, all_trade_rows
def aggregate_results(all_rows, initial_usd):
"""Aggregate results per stop_loss_pct and per rule (timeframe)."""
from collections import defaultdict
grouped = defaultdict(list)
for row in all_rows:
key = (row['timeframe'], row['stop_loss_pct'])
grouped[key].append(row)
summary_rows = []
for (rule, stop_loss_pct), rows in grouped.items():
n_months = len(rows)
total_trades = sum(r['n_trades'] for r in rows)
total_stop_loss = sum(r['n_stop_loss'] for r in rows)
avg_win_rate = np.mean([r['win_rate'] for r in rows])
avg_max_drawdown = np.mean([r['max_drawdown'] for r in rows])
avg_avg_trade = np.mean([r['avg_trade'] for r in rows])
avg_profit_ratio = np.mean([r['profit_ratio'] for r in rows])
final_usd = np.mean([r.get('final_usd', initial_usd) for r in rows])
summary_rows.append({
"timeframe": rule,
"stop_loss_pct": stop_loss_pct,
"n_trades": total_trades,
"n_stop_loss": total_stop_loss,
"win_rate": avg_win_rate,
"max_drawdown": avg_max_drawdown,
"avg_trade": avg_avg_trade,
"profit_ratio": avg_profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
})
return summary_rows
def write_results(filename, fieldnames, rows):
"""Write results to a CSV file."""
with open(filename, 'w', newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for row in rows:
writer.writerow(row)
if __name__ == "__main__":
# Config
start_date = '2020-01-01'
stop_date = '2025-05-15'
initial_usd = 10000
results_dir = "results"
os.makedirs(results_dir, exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
timeframes = ["6h", "1D"]
stop_loss_pcts = [0.01, 0.02, 0.03, 0.05, 0.07, 0.10]
data_1min = load_data('./data/btcusd_1-min_data.csv', start_date, stop_date)
print(f"1min rows: {len(data_1min)}")
filename = os.path.join(
results_dir,
f"{timestamp}_backtest_results_{start_date}_{stop_date}_multi_timeframe_stoploss.csv"
)
fieldnames = ["timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate", "max_drawdown", "avg_trade", "profit_ratio", "initial_usd", "final_usd"]
all_results = []
all_trades = []
for name in timeframes:
print(f"Processing timeframe: {name}")
results, trades = process_timeframe(name, data_1min, stop_loss_pcts, initial_usd)
all_results.extend(results)
all_trades.extend(trades)
summary_rows = aggregate_results(all_results, initial_usd)
# write_results(filename, fieldnames, summary_rows)
trades_filename = os.path.join(
results_dir,
f"{timestamp}_backtest_trades.csv"
)
trades_fieldnames = [
"timeframe", "month", "stop_loss_pct", "entry_time", "exit_time",
"entry_price", "exit_price", "profit_pct", "type"
]
# write_results(trades_filename, trades_fieldnames, all_trades)

7
cycles/market_fees.py Normal file
View File

@ -0,0 +1,7 @@
import pandas as pd
class MarketFees:
@staticmethod
def calculate_okx_taker_maker_fee(amount, is_maker=True):
fee_rate = 0.0008 if is_maker else 0.0010
return amount * fee_rate

336
cycles/supertrend.py Normal file
View File

@ -0,0 +1,336 @@
import pandas as pd
import numpy as np
import logging
from scipy.signal import find_peaks
from matplotlib.patches import Rectangle
from scipy import stats
import concurrent.futures
from functools import partial
from functools import lru_cache
import matplotlib.pyplot as plt
# Color configuration
# Plot colors
DARK_BG_COLOR = '#181C27'
LEGEND_BG_COLOR = '#333333'
TITLE_COLOR = 'white'
AXIS_LABEL_COLOR = 'white'
# Candlestick colors
CANDLE_UP_COLOR = '#089981' # Green
CANDLE_DOWN_COLOR = '#F23645' # Red
# Marker colors
MIN_COLOR = 'red'
MAX_COLOR = 'green'
# Line style colors
MIN_LINE_STYLE = 'g--' # Green dashed
MAX_LINE_STYLE = 'r--' # Red dashed
SMA7_LINE_STYLE = 'y-' # Yellow solid
SMA15_LINE_STYLE = 'm-' # Magenta solid
# SuperTrend colors
ST_COLOR_UP = 'g-'
ST_COLOR_DOWN = 'r-'
# Cache the calculation results by function parameters
@lru_cache(maxsize=32)
def cached_supertrend_calculation(period, multiplier, data_tuple):
# Convert tuple back to numpy arrays
high = np.array(data_tuple[0])
low = np.array(data_tuple[1])
close = np.array(data_tuple[2])
# Calculate TR and ATR using vectorized operations
tr = np.zeros_like(close)
tr[0] = high[0] - low[0]
hc_range = np.abs(high[1:] - close[:-1])
lc_range = np.abs(low[1:] - close[:-1])
hl_range = high[1:] - low[1:]
tr[1:] = np.maximum.reduce([hl_range, hc_range, lc_range])
# Use numpy's exponential moving average
atr = np.zeros_like(tr)
atr[0] = tr[0]
multiplier_ema = 2.0 / (period + 1)
for i in range(1, len(tr)):
atr[i] = (tr[i] * multiplier_ema) + (atr[i-1] * (1 - multiplier_ema))
# Calculate bands
upper_band = np.zeros_like(close)
lower_band = np.zeros_like(close)
for i in range(len(close)):
hl_avg = (high[i] + low[i]) / 2
upper_band[i] = hl_avg + (multiplier * atr[i])
lower_band[i] = hl_avg - (multiplier * atr[i])
final_upper = np.zeros_like(close)
final_lower = np.zeros_like(close)
supertrend = np.zeros_like(close)
trend = np.zeros_like(close)
final_upper[0] = upper_band[0]
final_lower[0] = lower_band[0]
if close[0] <= upper_band[0]:
supertrend[0] = upper_band[0]
trend[0] = -1
else:
supertrend[0] = lower_band[0]
trend[0] = 1
for i in range(1, len(close)):
if (upper_band[i] < final_upper[i-1]) or (close[i-1] > final_upper[i-1]):
final_upper[i] = upper_band[i]
else:
final_upper[i] = final_upper[i-1]
if (lower_band[i] > final_lower[i-1]) or (close[i-1] < final_lower[i-1]):
final_lower[i] = lower_band[i]
else:
final_lower[i] = final_lower[i-1]
if supertrend[i-1] == final_upper[i-1] and close[i] <= final_upper[i]:
supertrend[i] = final_upper[i]
trend[i] = -1
elif supertrend[i-1] == final_upper[i-1] and close[i] > final_upper[i]:
supertrend[i] = final_lower[i]
trend[i] = 1
elif supertrend[i-1] == final_lower[i-1] and close[i] >= final_lower[i]:
supertrend[i] = final_lower[i]
trend[i] = 1
elif supertrend[i-1] == final_lower[i-1] and close[i] < final_lower[i]:
supertrend[i] = final_upper[i]
trend[i] = -1
return {
'supertrend': supertrend,
'trend': trend,
'upper_band': final_upper,
'lower_band': final_lower
}
def calculate_supertrend_external(data, period, multiplier):
# Convert DataFrame columns to hashable tuples
high_tuple = tuple(data['high'])
low_tuple = tuple(data['low'])
close_tuple = tuple(data['close'])
# Call the cached function
return cached_supertrend_calculation(period, multiplier, (high_tuple, low_tuple, close_tuple))
class Supertrends:
def __init__(self, data, verbose=False, display=False):
"""
Initialize the TrendDetectorSimple class.
Parameters:
- data: pandas DataFrame containing price data
- verbose: boolean, whether to display detailed logging information
- display: boolean, whether to enable display/plotting features
"""
self.data = data
self.verbose = verbose
self.display = display
# Only define display-related variables if display is True
if self.display:
# Plot style configuration
self.plot_style = 'dark_background'
self.bg_color = DARK_BG_COLOR
self.plot_size = (12, 8)
# Candlestick configuration
self.candle_width = 0.6
self.candle_up_color = CANDLE_UP_COLOR
self.candle_down_color = CANDLE_DOWN_COLOR
self.candle_alpha = 0.8
self.wick_width = 1
# Marker configuration
self.min_marker = '^'
self.min_color = MIN_COLOR
self.min_size = 100
self.max_marker = 'v'
self.max_color = MAX_COLOR
self.max_size = 100
self.marker_zorder = 100
# Line configuration
self.line_width = 1
self.min_line_style = MIN_LINE_STYLE
self.max_line_style = MAX_LINE_STYLE
self.sma7_line_style = SMA7_LINE_STYLE
self.sma15_line_style = SMA15_LINE_STYLE
# Text configuration
self.title_size = 14
self.title_color = TITLE_COLOR
self.axis_label_size = 12
self.axis_label_color = AXIS_LABEL_COLOR
# Legend configuration
self.legend_loc = 'best'
self.legend_bg_color = LEGEND_BG_COLOR
# Configure logging
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
format='%(asctime)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger('TrendDetectorSimple')
# Convert data to pandas DataFrame if it's not already
if not isinstance(self.data, pd.DataFrame):
if isinstance(self.data, list):
self.data = pd.DataFrame({'close': self.data})
else:
raise ValueError("Data must be a pandas DataFrame or a list")
def calculate_tr(self):
"""
Calculate True Range (TR) for the price data.
True Range is the greatest of:
1. Current high - current low
2. |Current high - previous close|
3. |Current low - previous close|
Returns:
- Numpy array of TR values
"""
df = self.data.copy()
high = df['high'].values
low = df['low'].values
close = df['close'].values
tr = np.zeros_like(close)
tr[0] = high[0] - low[0] # First TR is just the first day's range
for i in range(1, len(close)):
# Current high - current low
hl_range = high[i] - low[i]
# |Current high - previous close|
hc_range = abs(high[i] - close[i-1])
# |Current low - previous close|
lc_range = abs(low[i] - close[i-1])
# TR is the maximum of these three values
tr[i] = max(hl_range, hc_range, lc_range)
return tr
def calculate_atr(self, period=14):
"""
Calculate Average True Range (ATR) for the price data.
ATR is the exponential moving average of the True Range over a specified period.
Parameters:
- period: int, the period for the ATR calculation (default: 14)
Returns:
- Numpy array of ATR values
"""
tr = self.calculate_tr()
atr = np.zeros_like(tr)
# First ATR value is just the first TR
atr[0] = tr[0]
# Calculate exponential moving average (EMA) of TR
multiplier = 2.0 / (period + 1)
for i in range(1, len(tr)):
atr[i] = (tr[i] * multiplier) + (atr[i-1] * (1 - multiplier))
return atr
def detect_trends(self):
"""
Detect trends by identifying local minima and maxima in the price data
using scipy.signal.find_peaks.
Parameters:
- prominence: float, required prominence of peaks (relative to the price range)
- width: int, required width of peaks in data points
Returns:
- DataFrame with columns for timestamps, prices, and trend indicators
- Dictionary containing analysis results including linear regression, SMAs, and SuperTrend indicators
"""
df = self.data
# close_prices = df['close'].values
# max_peaks, _ = find_peaks(close_prices)
# min_peaks, _ = find_peaks(-close_prices)
# df['is_min'] = False
# df['is_max'] = False
# for peak in max_peaks:
# df.at[peak, 'is_max'] = True
# for peak in min_peaks:
# df.at[peak, 'is_min'] = True
# result = df[['timestamp', 'close', 'is_min', 'is_max']].copy()
# Perform linear regression on min_peaks and max_peaks
# min_prices = df['close'].iloc[min_peaks].values
# max_prices = df['close'].iloc[max_peaks].values
# Linear regression for min peaks if we have at least 2 points
# min_slope, min_intercept, min_r_value, _, _ = stats.linregress(min_peaks, min_prices)
# Linear regression for max peaks if we have at least 2 points
# max_slope, max_intercept, max_r_value, _, _ = stats.linregress(max_peaks, max_prices)
# Calculate Simple Moving Averages (SMA) for 7 and 15 periods
# sma_7 = pd.Series(close_prices).rolling(window=7, min_periods=1).mean().values
# sma_15 = pd.Series(close_prices).rolling(window=15, min_periods=1).mean().values
analysis_results = {}
# analysis_results['linear_regression'] = {
# 'min': {
# 'slope': min_slope,
# 'intercept': min_intercept,
# 'r_squared': min_r_value ** 2
# },
# 'max': {
# 'slope': max_slope,
# 'intercept': max_intercept,
# 'r_squared': max_r_value ** 2
# }
# }
# analysis_results['sma'] = {
# '7': sma_7,
# '15': sma_15
# }
# Calculate SuperTrend indicators
supertrend_results_list = self._calculate_supertrend_indicators()
analysis_results['supertrend'] = supertrend_results_list
return analysis_results
def calculate_supertrend_indicators(self):
"""
Calculate SuperTrend indicators with different parameter sets in parallel.
Returns:
- list, the SuperTrend results
"""
supertrend_params = [
{"period": 12, "multiplier": 3.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
{"period": 10, "multiplier": 1.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
{"period": 11, "multiplier": 2.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN}
]
data = self.data.copy()
# For just 3 calculations, direct calculation might be faster than process pool
results = []
for p in supertrend_params:
result = calculate_supertrend_external(data, p["period"], p["multiplier"])
results.append(result)
supertrend_results_list = []
for params, result in zip(supertrend_params, results):
supertrend_results_list.append({
"results": result,
"params": params
})
return supertrend_results_list

View File

@ -1,25 +0,0 @@
import pandas as pd
class Taxes:
def __init__(self, tax_rate=0.20):
"""
tax_rate: flat tax rate on positive profits (e.g., 0.20 for 20%)
"""
self.tax_rate = tax_rate
def add_taxes_to_results_csv(self, input_csv, output_csv=None, profit_col='final_usd'):
"""
Reads a backtest results CSV, adds tax columns, and writes to a new CSV.
- input_csv: path to the input CSV file
- output_csv: path to the output CSV file (if None, overwrite input)
- profit_col: column name for profit (default: 'final_usd')
"""
df = pd.read_csv(input_csv, delimiter=None)
# Compute tax only on positive profits
df['tax_paid'] = df[profit_col].apply(lambda x: self.tax_rate * x if x > 0 else 0)
df['net_profit_after_tax'] = df[profit_col] - df['tax_paid']
df['cumulative_tax_paid'] = df['tax_paid'].cumsum()
if not output_csv:
output_csv = input_csv
df.to_csv(output_csv, index=False)
return output_csv

View File

@ -1,848 +0,0 @@
import pandas as pd
import numpy as np
import logging
from scipy.signal import find_peaks
from matplotlib.patches import Rectangle
from scipy import stats
import concurrent.futures
from functools import partial
from functools import lru_cache
import matplotlib.pyplot as plt
# Color configuration
# Plot colors
DARK_BG_COLOR = '#181C27'
LEGEND_BG_COLOR = '#333333'
TITLE_COLOR = 'white'
AXIS_LABEL_COLOR = 'white'
# Candlestick colors
CANDLE_UP_COLOR = '#089981' # Green
CANDLE_DOWN_COLOR = '#F23645' # Red
# Marker colors
MIN_COLOR = 'red'
MAX_COLOR = 'green'
# Line style colors
MIN_LINE_STYLE = 'g--' # Green dashed
MAX_LINE_STYLE = 'r--' # Red dashed
SMA7_LINE_STYLE = 'y-' # Yellow solid
SMA15_LINE_STYLE = 'm-' # Magenta solid
# SuperTrend colors
ST_COLOR_UP = 'g-'
ST_COLOR_DOWN = 'r-'
# Cache the calculation results by function parameters
@lru_cache(maxsize=32)
def cached_supertrend_calculation(period, multiplier, data_tuple):
# Convert tuple back to numpy arrays
high = np.array(data_tuple[0])
low = np.array(data_tuple[1])
close = np.array(data_tuple[2])
# Calculate TR and ATR using vectorized operations
tr = np.zeros_like(close)
tr[0] = high[0] - low[0]
hc_range = np.abs(high[1:] - close[:-1])
lc_range = np.abs(low[1:] - close[:-1])
hl_range = high[1:] - low[1:]
tr[1:] = np.maximum.reduce([hl_range, hc_range, lc_range])
# Use numpy's exponential moving average
atr = np.zeros_like(tr)
atr[0] = tr[0]
multiplier_ema = 2.0 / (period + 1)
for i in range(1, len(tr)):
atr[i] = (tr[i] * multiplier_ema) + (atr[i-1] * (1 - multiplier_ema))
# Calculate bands
upper_band = np.zeros_like(close)
lower_band = np.zeros_like(close)
for i in range(len(close)):
hl_avg = (high[i] + low[i]) / 2
upper_band[i] = hl_avg + (multiplier * atr[i])
lower_band[i] = hl_avg - (multiplier * atr[i])
final_upper = np.zeros_like(close)
final_lower = np.zeros_like(close)
supertrend = np.zeros_like(close)
trend = np.zeros_like(close)
final_upper[0] = upper_band[0]
final_lower[0] = lower_band[0]
if close[0] <= upper_band[0]:
supertrend[0] = upper_band[0]
trend[0] = -1
else:
supertrend[0] = lower_band[0]
trend[0] = 1
for i in range(1, len(close)):
if (upper_band[i] < final_upper[i-1]) or (close[i-1] > final_upper[i-1]):
final_upper[i] = upper_band[i]
else:
final_upper[i] = final_upper[i-1]
if (lower_band[i] > final_lower[i-1]) or (close[i-1] < final_lower[i-1]):
final_lower[i] = lower_band[i]
else:
final_lower[i] = final_lower[i-1]
if supertrend[i-1] == final_upper[i-1] and close[i] <= final_upper[i]:
supertrend[i] = final_upper[i]
trend[i] = -1
elif supertrend[i-1] == final_upper[i-1] and close[i] > final_upper[i]:
supertrend[i] = final_lower[i]
trend[i] = 1
elif supertrend[i-1] == final_lower[i-1] and close[i] >= final_lower[i]:
supertrend[i] = final_lower[i]
trend[i] = 1
elif supertrend[i-1] == final_lower[i-1] and close[i] < final_lower[i]:
supertrend[i] = final_upper[i]
trend[i] = -1
return {
'supertrend': supertrend,
'trend': trend,
'upper_band': final_upper,
'lower_band': final_lower
}
def calculate_supertrend_external(data, period, multiplier):
# Convert DataFrame columns to hashable tuples
high_tuple = tuple(data['high'])
low_tuple = tuple(data['low'])
close_tuple = tuple(data['close'])
# Call the cached function
return cached_supertrend_calculation(period, multiplier, (high_tuple, low_tuple, close_tuple))
def calculate_okx_fee(amount, is_maker=True):
fee_rate = 0.0008 if is_maker else 0.0010
return amount * fee_rate
class TrendDetectorSimple:
def __init__(self, data, verbose=False, display=False):
"""
Initialize the TrendDetectorSimple class.
Parameters:
- data: pandas DataFrame containing price data
- verbose: boolean, whether to display detailed logging information
- display: boolean, whether to enable display/plotting features
"""
self.data = data
self.verbose = verbose
self.display = display
# Only define display-related variables if display is True
if self.display:
# Plot style configuration
self.plot_style = 'dark_background'
self.bg_color = DARK_BG_COLOR
self.plot_size = (12, 8)
# Candlestick configuration
self.candle_width = 0.6
self.candle_up_color = CANDLE_UP_COLOR
self.candle_down_color = CANDLE_DOWN_COLOR
self.candle_alpha = 0.8
self.wick_width = 1
# Marker configuration
self.min_marker = '^'
self.min_color = MIN_COLOR
self.min_size = 100
self.max_marker = 'v'
self.max_color = MAX_COLOR
self.max_size = 100
self.marker_zorder = 100
# Line configuration
self.line_width = 1
self.min_line_style = MIN_LINE_STYLE
self.max_line_style = MAX_LINE_STYLE
self.sma7_line_style = SMA7_LINE_STYLE
self.sma15_line_style = SMA15_LINE_STYLE
# Text configuration
self.title_size = 14
self.title_color = TITLE_COLOR
self.axis_label_size = 12
self.axis_label_color = AXIS_LABEL_COLOR
# Legend configuration
self.legend_loc = 'best'
self.legend_bg_color = LEGEND_BG_COLOR
# Configure logging
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
format='%(asctime)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger('TrendDetectorSimple')
# Convert data to pandas DataFrame if it's not already
if not isinstance(self.data, pd.DataFrame):
if isinstance(self.data, list):
self.data = pd.DataFrame({'close': self.data})
else:
raise ValueError("Data must be a pandas DataFrame or a list")
def calculate_tr(self):
"""
Calculate True Range (TR) for the price data.
True Range is the greatest of:
1. Current high - current low
2. |Current high - previous close|
3. |Current low - previous close|
Returns:
- Numpy array of TR values
"""
df = self.data.copy()
high = df['high'].values
low = df['low'].values
close = df['close'].values
tr = np.zeros_like(close)
tr[0] = high[0] - low[0] # First TR is just the first day's range
for i in range(1, len(close)):
# Current high - current low
hl_range = high[i] - low[i]
# |Current high - previous close|
hc_range = abs(high[i] - close[i-1])
# |Current low - previous close|
lc_range = abs(low[i] - close[i-1])
# TR is the maximum of these three values
tr[i] = max(hl_range, hc_range, lc_range)
return tr
def calculate_atr(self, period=14):
"""
Calculate Average True Range (ATR) for the price data.
ATR is the exponential moving average of the True Range over a specified period.
Parameters:
- period: int, the period for the ATR calculation (default: 14)
Returns:
- Numpy array of ATR values
"""
tr = self.calculate_tr()
atr = np.zeros_like(tr)
# First ATR value is just the first TR
atr[0] = tr[0]
# Calculate exponential moving average (EMA) of TR
multiplier = 2.0 / (period + 1)
for i in range(1, len(tr)):
atr[i] = (tr[i] * multiplier) + (atr[i-1] * (1 - multiplier))
return atr
def detect_trends(self):
"""
Detect trends by identifying local minima and maxima in the price data
using scipy.signal.find_peaks.
Parameters:
- prominence: float, required prominence of peaks (relative to the price range)
- width: int, required width of peaks in data points
Returns:
- DataFrame with columns for timestamps, prices, and trend indicators
- Dictionary containing analysis results including linear regression, SMAs, and SuperTrend indicators
"""
df = self.data
# close_prices = df['close'].values
# max_peaks, _ = find_peaks(close_prices)
# min_peaks, _ = find_peaks(-close_prices)
# df['is_min'] = False
# df['is_max'] = False
# for peak in max_peaks:
# df.at[peak, 'is_max'] = True
# for peak in min_peaks:
# df.at[peak, 'is_min'] = True
# result = df[['timestamp', 'close', 'is_min', 'is_max']].copy()
# Perform linear regression on min_peaks and max_peaks
# min_prices = df['close'].iloc[min_peaks].values
# max_prices = df['close'].iloc[max_peaks].values
# Linear regression for min peaks if we have at least 2 points
# min_slope, min_intercept, min_r_value, _, _ = stats.linregress(min_peaks, min_prices)
# Linear regression for max peaks if we have at least 2 points
# max_slope, max_intercept, max_r_value, _, _ = stats.linregress(max_peaks, max_prices)
# Calculate Simple Moving Averages (SMA) for 7 and 15 periods
# sma_7 = pd.Series(close_prices).rolling(window=7, min_periods=1).mean().values
# sma_15 = pd.Series(close_prices).rolling(window=15, min_periods=1).mean().values
analysis_results = {}
# analysis_results['linear_regression'] = {
# 'min': {
# 'slope': min_slope,
# 'intercept': min_intercept,
# 'r_squared': min_r_value ** 2
# },
# 'max': {
# 'slope': max_slope,
# 'intercept': max_intercept,
# 'r_squared': max_r_value ** 2
# }
# }
# analysis_results['sma'] = {
# '7': sma_7,
# '15': sma_15
# }
# Calculate SuperTrend indicators
supertrend_results_list = self._calculate_supertrend_indicators()
analysis_results['supertrend'] = supertrend_results_list
return analysis_results
def _calculate_supertrend_indicators(self):
"""
Calculate SuperTrend indicators with different parameter sets in parallel.
Returns:
- list, the SuperTrend results
"""
supertrend_params = [
{"period": 12, "multiplier": 3.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
{"period": 10, "multiplier": 1.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
{"period": 11, "multiplier": 2.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN}
]
data = self.data.copy()
# For just 3 calculations, direct calculation might be faster than process pool
results = []
for p in supertrend_params:
result = calculate_supertrend_external(data, p["period"], p["multiplier"])
results.append(result)
supertrend_results_list = []
for params, result in zip(supertrend_params, results):
supertrend_results_list.append({
"results": result,
"params": params
})
return supertrend_results_list
def plot_trends(self, trend_data, analysis_results, view="both"):
"""
Plot the price data with detected trends using a candlestick chart.
Also plots SuperTrend indicators with three different parameter sets.
Parameters:
- trend_data: DataFrame, the output from detect_trends()
- analysis_results: Dictionary containing analysis results from detect_trends()
- view: str, one of 'both', 'trend', 'supertrend'; determines which plot(s) to display
Returns:
- None (displays the plot)
"""
if not self.display:
return # Do nothing if display is False
plt.style.use(self.plot_style)
if view == "both":
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(self.plot_size[0]*2, self.plot_size[1]))
else:
fig, ax = plt.subplots(figsize=self.plot_size)
ax1 = ax2 = None
if view == "trend":
ax1 = ax
elif view == "supertrend":
ax2 = ax
fig.patch.set_facecolor(self.bg_color)
if ax1: ax1.set_facecolor(self.bg_color)
if ax2: ax2.set_facecolor(self.bg_color)
df = self.data.copy()
if ax1:
self._plot_trend_analysis(ax1, df, trend_data, analysis_results)
if ax2:
self._plot_supertrend_analysis(ax2, df, analysis_results['supertrend'])
plt.tight_layout()
plt.show()
def _plot_candlesticks(self, ax, df):
"""
Plot candlesticks on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
"""
from matplotlib.patches import Rectangle
for i in range(len(df)):
# Get OHLC values for this candle
open_val = df['open'].iloc[i]
close_val = df['close'].iloc[i]
high_val = df['high'].iloc[i]
low_val = df['low'].iloc[i]
# Determine candle color
color = self.candle_up_color if close_val >= open_val else self.candle_down_color
# Plot candle body
body_height = abs(close_val - open_val)
bottom = min(open_val, close_val)
rect = Rectangle((i - self.candle_width/2, bottom), self.candle_width, body_height,
color=color, alpha=self.candle_alpha)
ax.add_patch(rect)
# Plot candle wicks
ax.plot([i, i], [low_val, high_val], color=color, linewidth=self.wick_width)
def _plot_trend_analysis(self, ax, df, trend_data, analysis_results):
"""
Plot trend analysis on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- trend_data: pandas.DataFrame, the trend data
- analysis_results: dict, the analysis results
"""
# Draw candlesticks
self._plot_candlesticks(ax, df)
# Plot minima and maxima points
self._plot_min_max_points(ax, df, trend_data)
# Plot trend lines and moving averages
if analysis_results:
self._plot_trend_lines(ax, df, analysis_results)
# Configure the subplot
self._configure_subplot(ax, 'Price Chart with Trend Analysis', len(df))
def _plot_min_max_points(self, ax, df, trend_data):
"""
Plot minimum and maximum points on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- trend_data: pandas.DataFrame, the trend data
"""
min_indices = trend_data.index[trend_data['is_min'] == True].tolist()
if min_indices:
min_y = [df['close'].iloc[i] for i in min_indices]
ax.scatter(min_indices, min_y, color=self.min_color, s=self.min_size,
marker=self.min_marker, label='Local Minima', zorder=self.marker_zorder)
max_indices = trend_data.index[trend_data['is_max'] == True].tolist()
if max_indices:
max_y = [df['close'].iloc[i] for i in max_indices]
ax.scatter(max_indices, max_y, color=self.max_color, s=self.max_size,
marker=self.max_marker, label='Local Maxima', zorder=self.marker_zorder)
def _plot_trend_lines(self, ax, df, analysis_results):
"""
Plot trend lines on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- analysis_results: dict, the analysis results
"""
x_vals = np.arange(len(df))
# Minima regression line (support)
min_slope = analysis_results['linear_regression']['min']['slope']
min_intercept = analysis_results['linear_regression']['min']['intercept']
min_line = min_slope * x_vals + min_intercept
ax.plot(x_vals, min_line, self.min_line_style, linewidth=self.line_width,
label='Minima Regression')
# Maxima regression line (resistance)
max_slope = analysis_results['linear_regression']['max']['slope']
max_intercept = analysis_results['linear_regression']['max']['intercept']
max_line = max_slope * x_vals + max_intercept
ax.plot(x_vals, max_line, self.max_line_style, linewidth=self.line_width,
label='Maxima Regression')
# SMA-7 line
sma_7 = analysis_results['sma']['7']
ax.plot(x_vals, sma_7, self.sma7_line_style, linewidth=self.line_width,
label='SMA-7')
# SMA-15 line
sma_15 = analysis_results['sma']['15']
valid_idx_15 = ~np.isnan(sma_15)
ax.plot(x_vals[valid_idx_15], sma_15[valid_idx_15], self.sma15_line_style,
linewidth=self.line_width, label='SMA-15')
def _configure_subplot(self, ax, title, data_length):
"""
Configure the subplot with title, labels, limits, and legend.
Parameters:
- ax: matplotlib.axes.Axes, the axis to configure
- title: str, the title of the subplot
- data_length: int, the length of the data
"""
# Set title and labels
ax.set_title(title, fontsize=self.title_size, color=self.title_color)
ax.set_xlabel('Date', fontsize=self.axis_label_size, color=self.axis_label_color)
ax.set_ylabel('Price', fontsize=self.axis_label_size, color=self.axis_label_color)
# Set appropriate x-axis limits
ax.set_xlim(-0.5, data_length - 0.5)
# Add a legend
ax.legend(loc=self.legend_loc, facecolor=self.legend_bg_color)
def _plot_supertrend_analysis(self, ax, df, supertrend_results_list=None):
"""
Plot SuperTrend analysis on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- supertrend_results_list: list, the SuperTrend results (optional)
"""
self._plot_candlesticks(ax, df)
self._plot_supertrend_lines(ax, df, supertrend_results_list, style='Both')
self._configure_subplot(ax, 'Multiple SuperTrend Indicators', len(df))
def _plot_supertrend_lines(self, ax, df, supertrend_results_list, style="Horizontal"):
"""
Plot SuperTrend lines on the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- supertrend_results_list: list, the SuperTrend results
"""
x_vals = np.arange(len(df))
if style == 'Horizontal' or style == 'Both':
if len(supertrend_results_list) != 3:
raise ValueError("Expected exactly 3 SuperTrend results for meta calculation")
trends = [st["results"]["trend"] for st in supertrend_results_list]
band_height = 0.02 * (df["high"].max() - df["low"].min())
y_base = df["low"].min() - band_height * 1.5
prev_color = None
for i in range(1, len(x_vals)):
t_vals = [t[i] for t in trends]
up_count = t_vals.count(1)
down_count = t_vals.count(-1)
if down_count == 3:
color = "red"
elif down_count == 2 and up_count == 1:
color = "orange"
elif down_count == 1 and up_count == 2:
color = "yellow"
elif up_count == 3:
color = "green"
else:
continue # skip if unknown or inconsistent values
ax.add_patch(Rectangle(
(x_vals[i-1], y_base),
1,
band_height,
color=color,
linewidth=0,
alpha=0.6
))
# Draw a vertical line at the change of color
if prev_color and prev_color != color:
ax.axvline(x_vals[i-1], color="grey", alpha=0.3, linewidth=1)
prev_color = color
ax.set_ylim(bottom=y_base - band_height * 0.5)
if style == 'Curves' or style == 'Both':
for st in supertrend_results_list:
params = st["params"]
results = st["results"]
supertrend = results["supertrend"]
trend = results["trend"]
# Plot SuperTrend line with color based on trend
for i in range(1, len(x_vals)):
if trend[i] == 1: # Uptrend
ax.plot(x_vals[i-1:i+1], supertrend[i-1:i+1], params["color_up"], linewidth=self.line_width)
else: # Downtrend
ax.plot(x_vals[i-1:i+1], supertrend[i-1:i+1], params["color_down"], linewidth=self.line_width)
self._plot_metasupertrend_lines(ax, df, supertrend_results_list)
self._add_supertrend_legend(ax, supertrend_results_list)
def _plot_metasupertrend_lines(self, ax, df, supertrend_results_list):
"""
Plot a Meta SuperTrend line where all individual SuperTrends agree on trend.
Parameters:
- ax: matplotlib.axes.Axes, the axis to plot on
- df: pandas.DataFrame, the data to plot
- supertrend_results_list: list, each item contains SuperTrend 'results' and 'params'
"""
x_vals = np.arange(len(df))
if len(supertrend_results_list) != 3:
raise ValueError("Expected exactly 3 SuperTrend results for meta calculation")
trends = [st["results"]["trend"] for st in supertrend_results_list]
supertrends = [st["results"]["supertrend"] for st in supertrend_results_list]
params = supertrend_results_list[0]["params"] # Use first config for styling
trends_arr = np.stack(trends, axis=1)
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]), trends_arr[:,0], 0)
for i in range(1, len(x_vals)):
t1, t2, t3 = trends[0][i], trends[1][i], trends[2][i]
if t1 == t2 == t3:
meta_trend = t1
# Average the 3 supertrend values
st_avg_prev = np.mean([s[i-1] for s in supertrends])
st_avg_curr = np.mean([s[i] for s in supertrends])
color = params["color_up"] if meta_trend == 1 else params["color_down"]
ax.plot(x_vals[i-1:i+1], [st_avg_prev, st_avg_curr], color, linewidth=self.line_width)
def _add_supertrend_legend(self, ax, supertrend_results_list):
"""
Add SuperTrend legend entries to the given axis.
Parameters:
- ax: matplotlib.axes.Axes, the axis to add legend entries to
- supertrend_results_list: list, the SuperTrend results
"""
for st in supertrend_results_list:
params = st["params"]
period = params["period"]
multiplier = params["multiplier"]
color_up = params["color_up"]
color_down = params["color_down"]
ax.plot([], [], color_up, linewidth=self.line_width,
label=f'ST (P:{period}, M:{multiplier}) Up')
ax.plot([], [], color_down, linewidth=self.line_width,
label=f'ST (P:{period}, M:{multiplier}) Down')
def backtest_meta_supertrend(self, min1_df, initial_usd=10000, stop_loss_pct=0.05, debug=False):
"""
Backtest a simple strategy using the meta supertrend (all three supertrends agree).
Buys when meta supertrend is positive, sells when negative, applies a percentage stop loss.
Parameters:
- min1_df: pandas DataFrame, 1-minute timeframe data for more accurate stop loss checking (optional)
- initial_usd: float, starting USD amount
- stop_loss_pct: float, stop loss as a fraction (e.g. 0.05 for 5%)
- debug: bool, whether to print debug info
"""
df = self.data.copy().reset_index(drop=True)
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Get meta supertrend (all three agree)
supertrend_results_list = self._calculate_supertrend_indicators()
trends = [st['results']['trend'] for st in supertrend_results_list]
trends_arr = np.stack(trends, axis=1)
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
trends_arr[:,0], 0)
position = 0 # 0 = no position, 1 = long
entry_price = 0
usd = initial_usd
coin = 0
trade_log = []
max_balance = initial_usd
drawdowns = []
trades = []
entry_time = None
current_trade_min1_start_idx = None
min1_df['timestamp'] = pd.to_datetime(min1_df.index)
for i in range(1, len(df)):
if i % 100 == 0 and debug:
self.logger.debug(f"Progress: {i}/{len(df)} rows processed.")
price_open = df['open'].iloc[i]
price_high = df['high'].iloc[i]
price_low = df['low'].iloc[i]
price_close = df['close'].iloc[i]
date = df['timestamp'].iloc[i]
prev_mt = meta_trend[i-1]
curr_mt = meta_trend[i]
# Check stop loss if in position
if position == 1:
stop_price = entry_price * (1 - stop_loss_pct)
if current_trade_min1_start_idx is None:
# First check after entry, find the entry point in 1-min data
current_trade_min1_start_idx = min1_df.index[min1_df.index >= entry_time][0]
# Get the end index for current check
current_min1_end_idx = min1_df.index[min1_df.index <= date][-1]
# Check all 1-minute candles in between for stop loss
min1_slice = min1_df.loc[current_trade_min1_start_idx:current_min1_end_idx]
if (min1_slice['low'] <= stop_price).any():
# Stop loss triggered, find the exact candle
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
# More realistic fill: if open < stop, fill at open, else at stop
if stop_candle['open'] < stop_price:
sell_price = stop_candle['open']
else:
sell_price = stop_price
if debug:
print(f"STOP LOSS triggered: entry={entry_price}, stop={stop_price}, sell_price={sell_price}, entry_time={entry_time}, stop_time={stop_candle.name}")
btc_to_sell = coin
usd_gross = btc_to_sell * sell_price
exit_fee = calculate_okx_fee(usd_gross, is_maker=False) # taker fee
usd = usd_gross - exit_fee
trade_log.append({
'type': 'STOP',
'entry': entry_price,
'exit': sell_price,
'entry_time': entry_time,
'exit_time': stop_candle.name,
'fee_usd': exit_fee
})
coin = 0
position = 0
entry_price = 0
current_trade_min1_start_idx = None
continue
# Update the start index for next check
current_trade_min1_start_idx = current_min1_end_idx
# Entry: only if not in position and signal changes to 1
if position == 0 and prev_mt != 1 and curr_mt == 1:
# Buy at open, fee is charged in USD
entry_fee = calculate_okx_fee(usd, is_maker=False)
usd_after_fee = usd - entry_fee
coin = usd_after_fee / price_open
entry_price = price_open
entry_time = date
usd = 0
position = 1
current_trade_min1_start_idx = None # Will be set on first stop loss check
trade_log.append({
'type': 'BUY',
'entry': entry_price,
'exit': None,
'entry_time': entry_time,
'exit_time': None,
'fee_usd': entry_fee
})
# Exit: only if in position and signal changes from 1 to -1
elif position == 1 and prev_mt == 1 and curr_mt == -1:
# Sell at open, fee is charged in USD
btc_to_sell = coin
usd_gross = btc_to_sell * price_open
exit_fee = calculate_okx_fee(usd_gross, is_maker=False)
usd = usd_gross - exit_fee
trade_log.append({
'type': 'SELL',
'entry': entry_price,
'exit': price_open,
'entry_time': entry_time,
'exit_time': date,
'fee_usd': exit_fee
})
coin = 0
position = 0
entry_price = 0
current_trade_min1_start_idx = None
# Track drawdown
balance = usd if position == 0 else coin * price_close
if balance > max_balance:
max_balance = balance
drawdown = (max_balance - balance) / max_balance
drawdowns.append(drawdown)
# If still in position at end, sell at last close
if position == 1:
btc_to_sell = coin
usd_gross = btc_to_sell * df['close'].iloc[-1]
exit_fee = calculate_okx_fee(usd_gross, is_maker=False)
usd = usd_gross - exit_fee
trade_log.append({
'type': 'EOD',
'entry': entry_price,
'exit': df['close'].iloc[-1],
'entry_time': entry_time,
'exit_time': df['timestamp'].iloc[-1],
'fee_usd': exit_fee
})
coin = 0
position = 0
entry_price = 0
# Calculate statistics
final_balance = usd
n_trades = len(trade_log)
wins = [1 for t in trade_log if t['exit'] is not None and t['exit'] > t['entry']]
win_rate = len(wins) / n_trades if n_trades > 0 else 0
max_drawdown = max(drawdowns) if drawdowns else 0
avg_trade = np.mean([t['exit']/t['entry']-1 for t in trade_log if t['exit'] is not None]) if trade_log else 0
trades = []
total_fees_usd = 0.0
for trade in trade_log:
if trade['exit'] is not None:
profit_pct = (trade['exit'] - trade['entry']) / trade['entry']
else:
profit_pct = 0.0
trades.append({
'entry_time': trade['entry_time'],
'exit_time': trade['exit_time'],
'entry': trade['entry'],
'exit': trade['exit'],
'profit_pct': profit_pct,
'type': trade.get('type', 'SELL'),
'fee_usd': trade.get('fee_usd')
})
fee_usd = trade.get('fee_usd')
total_fees_usd += fee_usd
results = {
"initial_usd": initial_usd,
"final_usd": final_balance,
"n_trades": n_trades,
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"trade_log": trade_log,
"trades": trades,
"total_fees_usd": total_fees_usd,
}
if n_trades > 0:
results["first_trade"] = {
"entry_time": trade_log[0]['entry_time'],
"entry": trade_log[0]['entry']
}
results["last_trade"] = {
"exit_time": trade_log[-1]['exit_time'],
"exit": trade_log[-1]['exit']
}
return results

View File

@ -1,23 +0,0 @@
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from taxes import Taxes
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python apply_taxes_to_file.py <input_csv> [profit_col]")
sys.exit(1)
input_csv = sys.argv[1]
profit_col = sys.argv[2] if len(sys.argv) > 2 else 'final_usd'
if not os.path.isfile(input_csv):
print(f"File not found: {input_csv}")
sys.exit(1)
base, ext = os.path.splitext(input_csv)
output_csv = f"{base}_taxed.csv"
taxes = Taxes() # Default 20% tax rate
taxes.add_taxes_to_results_csv(input_csv, output_csv, profit_col=profit_col)
print(f"Taxed file saved as: {output_csv}")

View File

@ -169,15 +169,19 @@ class Storage:
filtered_row = {k: v for k, v in row.items() if k in fieldnames}
writer.writerow(filtered_row)
def write_results_combined(self, filename, fieldnames, rows):
def write_backtest_results(self, filename, fieldnames, rows, metadata_lines=None):
"""Write a combined results to a CSV file
Args:
filename: filename to write to
fieldnames: list of fieldnames
rows: list of rows
metadata_lines: optional list of strings to write as header comments
"""
fname = os.path.join(self.results_dir, filename)
with open(fname, "w", newline="") as csvfile:
if metadata_lines:
for line in metadata_lines:
csvfile.write(f"{line}\n")
writer = csv.DictWriter(csvfile, fieldnames=fieldnames, delimiter='\t')
writer.writeheader()
for row in rows:

120
main.py
View File

@ -4,15 +4,14 @@ import logging
import concurrent.futures
import os
import datetime
import queue
import argparse
import json
import ast
from cycles.trend_detector_simple import TrendDetectorSimple
from cycles.taxes import Taxes
from cycles.utils.storage import Storage
from cycles.utils.gsheets import GSheetBatchPusher
from cycles.utils.system import SystemUtils
from cycles.backtest import Backtest
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
@ -22,19 +21,17 @@ logging.basicConfig(
]
)
# Global queue for batching Google Sheets updates
results_queue = queue.Queue()
def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd, debug=False):
"""Process the entire timeframe with all stop loss values (no monthly split)"""
df = df.copy().reset_index(drop=True)
trend_detector = TrendDetectorSimple(df, verbose=False)
results_rows = []
trade_rows = []
for stop_loss_pct in stop_loss_pcts:
results = trend_detector.backtest_meta_supertrend(
results = Backtest.run(
min1_df,
df,
initial_usd=initial_usd,
stop_loss_pct=stop_loss_pct,
debug=debug
@ -100,9 +97,10 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
print("Large loss trade:", trade)
return results_rows, trade_rows
def process_timeframe(timeframe_info, debug=False):
def process(timeframe_info, debug=False):
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
if rule == "1T":
df = data_1min.copy()
else:
@ -114,7 +112,6 @@ def process_timeframe(timeframe_info, debug=False):
'volume': 'sum'
}).dropna()
df = df.reset_index()
# Only process one stop loss
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
return results_rows, all_trade_rows
@ -166,32 +163,69 @@ def get_nearest_price(df, target_date):
return nearest_time, price
if __name__ == "__main__":
# Configuration
# start_date = '2022-01-01'
# stop_date = '2023-01-01'
start_date = '2024-05-15'
stop_date = '2025-05-15'
debug = True
initial_usd = 10000
parser = argparse.ArgumentParser(description="Run backtest with config file.")
parser.add_argument("config", type=str, nargs="?", help="Path to config JSON file.")
args = parser.parse_args()
debug = False
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
# Default values (from config.json)
default_config = {
"start_date": "2024-05-15",
"stop_date": datetime.datetime.today().strftime('%Y-%m-%d'),
"initial_usd": 10000,
"timeframes": ["1D"],
"stop_loss_pcts": [0.01, 0.02, 0.03],
}
if args.config:
with open(args.config, 'r') as f:
config = json.load(f)
else:
print("No config file provided. Please enter the following values (press Enter to use default):")
start_date = input(f"Start date [{default_config['start_date']}]: ") or default_config['start_date']
stop_date = input(f"Stop date [{default_config['stop_date']}]: ") or default_config['stop_date']
initial_usd_str = input(f"Initial USD [{default_config['initial_usd']}]: ") or str(default_config['initial_usd'])
initial_usd = float(initial_usd_str)
timeframes_str = input(f"Timeframes (comma separated) [{', '.join(default_config['timeframes'])}]: ") or ','.join(default_config['timeframes'])
timeframes = [tf.strip() for tf in timeframes_str.split(',') if tf.strip()]
stop_loss_pcts_str = input(f"Stop loss pcts (comma separated) [{', '.join(str(x) for x in default_config['stop_loss_pcts'])}]: ") or ','.join(str(x) for x in default_config['stop_loss_pcts'])
stop_loss_pcts = [float(x.strip()) for x in stop_loss_pcts_str.split(',') if x.strip()]
config = {
'start_date': start_date,
'stop_date': stop_date,
'initial_usd': initial_usd,
'timeframes': timeframes,
'stop_loss_pcts': stop_loss_pcts,
}
# Use config values
start_date = config['start_date']
stop_date = config['stop_date']
initial_usd = config['initial_usd']
timeframes = config['timeframes']
stop_loss_pcts = config['stop_loss_pcts']
timestamp = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M")
storage = Storage(logging=logging)
system_utils = SystemUtils(logging=logging)
timeframes = ["1D"]
stop_loss_pcts = [0.01, 0.02, 0.03]
# Load data once
data_1min = storage.load_data('btcusd_1-min_data.csv', start_date, stop_date)
nearest_start_time, start_price = get_nearest_price(data_1min, start_date)
nearest_stop_time, stop_price = get_nearest_price(data_1min, stop_date)
logging.info(f"Price at start_date ({start_date}) [nearest timestamp: {nearest_start_time}]: {start_price}")
logging.info(f"Price at stop_date ({stop_date}) [nearest timestamp: {nearest_stop_time}]: {stop_price}")
metadata_lines = [
f"Start date\t{start_date}\tPrice\t{start_price}",
f"Stop date\t{stop_date}\tPrice\t{stop_price}",
f"Initial USD\t{initial_usd}"
]
tasks = [
(name, data_1min, stop_loss_pct, initial_usd)
@ -201,29 +235,35 @@ if __name__ == "__main__":
workers = system_utils.get_optimal_workers()
# Process tasks with optimized concurrency
with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor:
futures = {executor.submit(process_timeframe, task, debug): task for task in tasks}
if debug:
all_results_rows = []
all_trade_rows = []
for future in concurrent.futures.as_completed(futures):
results, trades = future.result()
for task in tasks:
results, trades = process(task, debug)
if results or trades:
all_results_rows.extend(results)
all_trade_rows.extend(trades)
else:
with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor:
futures = {executor.submit(process, task, debug): task for task in tasks}
all_results_rows = []
all_trade_rows = []
# Write all results to a single CSV file
combined_filename = os.path.join(f"{timestamp}_backtest_combined.csv")
combined_fieldnames = [
for future in concurrent.futures.as_completed(futures):
results, trades = future.result()
if results or trades:
all_results_rows.extend(results)
all_trade_rows.extend(trades)
backtest_filename = os.path.join(f"{timestamp}_backtest.csv")
backtest_fieldnames = [
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
"max_drawdown", "avg_trade", "profit_ratio", "final_usd", "total_fees_usd"
]
storage.write_results_combined(combined_filename, combined_fieldnames, all_results_rows)
storage.write_backtest_results(backtest_filename, backtest_fieldnames, all_results_rows, metadata_lines)
# Now, group all_trade_rows by (timeframe, stop_loss_pct)
trades_fieldnames = [
"entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type", "fee_usd"
]
trades_fieldnames = ["entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type", "fee_usd"]
storage.write_trades(all_trade_rows, trades_fieldnames)