Merge branch 'main' of ssh://dep.sokaris.link:2222/Simon/Cycles

This commit is contained in:
Simon Moisy 2025-05-22 17:05:39 +08:00
commit 268bc33bbf
7 changed files with 432 additions and 60 deletions

View File

@ -4,23 +4,25 @@ class BollingerBands:
"""
Calculates Bollinger Bands for given financial data.
"""
def __init__(self, period: int = 20, std_dev_multiplier: float = 2.0):
def __init__(self, config):
"""
Initializes the BollingerBands calculator.
Args:
period (int): The period for the moving average and standard deviation.
std_dev_multiplier (float): The number of standard deviations for the upper and lower bands.
bb_width (float): The width of the Bollinger Bands.
"""
if period <= 0:
if config['bb_period'] <= 0:
raise ValueError("Period must be a positive integer.")
if std_dev_multiplier <= 0:
if config['trending']['bb_std_dev_multiplier'] <= 0 or config['sideways']['bb_std_dev_multiplier'] <= 0:
raise ValueError("Standard deviation multiplier must be positive.")
if config['bb_width'] <= 0:
raise ValueError("BB width must be positive.")
self.period = period
self.std_dev_multiplier = std_dev_multiplier
self.config = config
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame:
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close', squeeze = False) -> pd.DataFrame:
"""
Calculates Bollinger Bands and adds them to the DataFrame.
@ -37,14 +39,37 @@ class BollingerBands:
if price_column not in data_df.columns:
raise ValueError(f"Price column '{price_column}' not found in DataFrame.")
# Calculate SMA
data_df['SMA'] = data_df[price_column].rolling(window=self.period).mean()
if not squeeze:
# Calculate SMA
data_df['SMA'] = data_df[price_column].rolling(window=self.config['bb_period']).mean()
# Calculate Standard Deviation
std_dev = data_df[price_column].rolling(window=self.period).std()
# Calculate Standard Deviation
std_dev = data_df[price_column].rolling(window=self.config['bb_period']).std()
# Calculate Upper and Lower Bands
data_df['UpperBand'] = data_df['SMA'] + (self.std_dev_multiplier * std_dev)
data_df['LowerBand'] = data_df['SMA'] - (self.std_dev_multiplier * std_dev)
# Calculate Upper and Lower Bands
data_df['UpperBand'] = data_df['SMA'] + (2.0* std_dev)
data_df['LowerBand'] = data_df['SMA'] - (2.0* std_dev)
# Calculate the width of the Bollinger Bands
data_df['BBWidth'] = (data_df['UpperBand'] - data_df['LowerBand']) / data_df['SMA']
# Calculate the market regime
# 1 = sideways, 0 = trending
data_df['MarketRegime'] = (data_df['BBWidth'] < self.config['bb_width']).astype(int)
if data_df['MarketRegime'].sum() > 0:
data_df['UpperBand'] = data_df['SMA'] + (self.config['trending']['bb_std_dev_multiplier'] * std_dev)
data_df['LowerBand'] = data_df['SMA'] - (self.config['trending']['bb_std_dev_multiplier'] * std_dev)
else:
data_df['UpperBand'] = data_df['SMA'] + (self.config['sideways']['bb_std_dev_multiplier'] * std_dev)
data_df['LowerBand'] = data_df['SMA'] - (self.config['sideways']['bb_std_dev_multiplier'] * std_dev)
else:
data_df['SMA'] = data_df[price_column].rolling(window=14).mean()
# Calculate Standard Deviation
std_dev = data_df[price_column].rolling(window=14).std()
# Calculate Upper and Lower Bands
data_df['UpperBand'] = data_df['SMA'] + 1.5* std_dev
data_df['LowerBand'] = data_df['SMA'] - 1.5* std_dev
return data_df

View File

@ -5,7 +5,7 @@ class RSI:
"""
A class to calculate the Relative Strength Index (RSI).
"""
def __init__(self, period: int = 14):
def __init__(self, config):
"""
Initializes the RSI calculator.
@ -13,9 +13,9 @@ class RSI:
period (int): The period for RSI calculation. Default is 14.
Must be a positive integer.
"""
if not isinstance(period, int) or period <= 0:
if not isinstance(config['rsi_period'], int) or config['rsi_period'] <= 0:
raise ValueError("Period must be a positive integer.")
self.period = period
self.period = config['rsi_period']
def calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame:
"""

View File

@ -0,0 +1,131 @@
import pandas as pd
import numpy as np
from cycles.Analysis.boillinger_band import BollingerBands
class Strategy:
def __init__(self, config = None, logging = None):
if config is None:
raise ValueError("Config must be provided.")
self.config = config
self.logging = logging
def run(self, data, strategy_name):
if strategy_name == "MarketRegimeStrategy":
return self.MarketRegimeStrategy(data)
else:
if self.logging is not None:
self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.")
return self.no_strategy(data)
def no_strategy(self, data):
"""No strategy: returns False for both buy and sell conditions"""
buy_condition = pd.Series([False] * len(data), index=data.index)
sell_condition = pd.Series([False] * len(data), index=data.index)
return buy_condition, sell_condition
def rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5):
"""Calculate RSI Bollinger Bands for confirmation
Args:
rsi (Series): RSI values
window (int): Rolling window for SMA
std_mult (float): Standard deviation multiplier
Returns:
tuple: (oversold condition, overbought condition)
"""
valid_rsi = ~rsi.isna()
if not valid_rsi.any():
# Return empty Series if no valid RSI data
return pd.Series(False, index=rsi.index), pd.Series(False, index=rsi.index)
rsi_sma = rsi.rolling(window).mean()
rsi_std = rsi.rolling(window).std()
upper_rsi_band = rsi_sma + std_mult * rsi_std
lower_rsi_band = rsi_sma - std_mult * rsi_std
return (rsi < lower_rsi_band), (rsi > upper_rsi_band)
def MarketRegimeStrategy(self, data):
"""Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets)
with adaptive Bollinger Bands
This advanced strategy combines volatility analysis, momentum confirmation, and regime detection
to adapt to Bitcoin's unique market conditions.
Entry Conditions:
- Trending Market (Breakout Mode):
Buy: Price < Lower Band RSI < 50 Volume Spike (1.5× 20D Avg)
Sell: Price > Upper Band RSI > 50 Volume Spike
- Sideways Market (Mean Reversion):
Buy: Price Lower Band RSI 40
Sell: Price Upper Band RSI 60
Enhanced with RSI Bollinger Squeeze for signal confirmation when enabled.
"""
# Initialize conditions as all False
buy_condition = pd.Series(False, index=data.index)
sell_condition = pd.Series(False, index=data.index)
# Create masks for different market regimes
sideways_mask = data['MarketRegime'] > 0
trending_mask = data['MarketRegime'] <= 0
valid_data_mask = ~data['MarketRegime'].isna() # Handle potential NaN values
# Calculate volume spike (≥1.5× 20D Avg)
if 'volume' in data.columns:
volume_20d_avg = data['volume'].rolling(window=20).mean()
volume_spike = data['volume'] >= 1.5 * volume_20d_avg
# Additional volume contraction filter for sideways markets
volume_30d_avg = data['volume'].rolling(window=30).mean()
volume_contraction = data['volume'] < 0.7 * volume_30d_avg
else:
# If volume data is not available, assume no volume spike
volume_spike = pd.Series(False, index=data.index)
volume_contraction = pd.Series(False, index=data.index)
if self.logging is not None:
self.logging.warning("Volume data not available. Volume conditions will not be triggered.")
# Calculate RSI Bollinger Squeeze confirmation
if 'RSI' in data.columns:
oversold_rsi, overbought_rsi = self.rsi_bollinger_confirmation(data['RSI'])
else:
oversold_rsi = pd.Series(False, index=data.index)
overbought_rsi = pd.Series(False, index=data.index)
if self.logging is not None:
self.logging.warning("RSI data not available. RSI Bollinger Squeeze will not be triggered.")
# Calculate conditions for sideways market (Mean Reversion)
if sideways_mask.any():
sideways_buy = (data['close'] <= data['LowerBand']) & (data['RSI'] <= 40)
sideways_sell = (data['close'] >= data['UpperBand']) & (data['RSI'] >= 60)
# Add enhanced confirmation for sideways markets
if self.config.get("SqueezeStrategy", False):
sideways_buy = sideways_buy & oversold_rsi & volume_contraction
sideways_sell = sideways_sell & overbought_rsi & volume_contraction
# Apply only where market is sideways and data is valid
buy_condition = buy_condition | (sideways_buy & sideways_mask & valid_data_mask)
sell_condition = sell_condition | (sideways_sell & sideways_mask & valid_data_mask)
# Calculate conditions for trending market (Breakout Mode)
if trending_mask.any():
trending_buy = (data['close'] < data['LowerBand']) & (data['RSI'] < 50) & volume_spike
trending_sell = (data['close'] > data['UpperBand']) & (data['RSI'] > 50) & volume_spike
# Add enhanced confirmation for trending markets
if self.config.get("SqueezeStrategy", False):
trending_buy = trending_buy & oversold_rsi
trending_sell = trending_sell & overbought_rsi
# Apply only where market is trending and data is valid
buy_condition = buy_condition | (trending_buy & trending_mask & valid_data_mask)
sell_condition = sell_condition | (trending_sell & trending_mask & valid_data_mask)
return buy_condition, sell_condition

View File

@ -1,5 +1,80 @@
import pandas as pd
def check_data(data_df: pd.DataFrame) -> bool:
"""
Checks if the input DataFrame has a DatetimeIndex.
Args:
data_df (pd.DataFrame): DataFrame to check.
Returns:
bool: True if the DataFrame has a DatetimeIndex, False otherwise.
"""
if not isinstance(data_df.index, pd.DatetimeIndex):
print("Warning: Input DataFrame must have a DatetimeIndex.")
return False
agg_rules = {}
# Define aggregation rules based on available columns
if 'open' in data_df.columns:
agg_rules['open'] = 'first'
if 'high' in data_df.columns:
agg_rules['high'] = 'max'
if 'low' in data_df.columns:
agg_rules['low'] = 'min'
if 'close' in data_df.columns:
agg_rules['close'] = 'last'
if 'volume' in data_df.columns:
agg_rules['volume'] = 'sum'
if not agg_rules:
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for daily aggregation.")
return False
return agg_rules
def aggregate_to_weekly(data_df: pd.DataFrame, weeks: int = 1) -> pd.DataFrame:
"""
Aggregates time-series financial data to weekly OHLCV format.
The input DataFrame is expected to have a DatetimeIndex.
'open' will be the first 'open' price of the week.
'close' will be the last 'close' price of the week.
'high' will be the maximum 'high' price of the week.
'low' will be the minimum 'low' price of the week.
'volume' (if present) will be the sum of volumes for the week.
Args:
data_df (pd.DataFrame): DataFrame with a DatetimeIndex and columns
like 'open', 'high', 'low', 'close', and optionally 'volume'.
weeks (int): The number of weeks to aggregate to. Default is 1.
Returns:
pd.DataFrame: DataFrame aggregated to weekly OHLCV data.
The index will be a DatetimeIndex with the time set to the start of the week.
Returns an empty DataFrame if no relevant OHLCV columns are found.
"""
agg_rules = check_data(data_df)
if not agg_rules:
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for weekly aggregation.")
return pd.DataFrame(index=pd.to_datetime([]))
# Resample to weekly frequency and apply aggregation rules
weekly_data = data_df.resample(f'{weeks}W').agg(agg_rules)
weekly_data.dropna(how='all', inplace=True)
# Adjust timestamps to the start of the week
if not weekly_data.empty and isinstance(weekly_data.index, pd.DatetimeIndex):
weekly_data.index = weekly_data.index.floor('W')
return weekly_data
def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
"""
Aggregates time-series financial data to daily OHLCV format.
@ -24,22 +99,8 @@ def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
Raises:
ValueError: If the input DataFrame does not have a DatetimeIndex.
"""
if not isinstance(data_df.index, pd.DatetimeIndex):
raise ValueError("Input DataFrame must have a DatetimeIndex.")
agg_rules = {}
# Define aggregation rules based on available columns
if 'open' in data_df.columns:
agg_rules['open'] = 'first'
if 'high' in data_df.columns:
agg_rules['high'] = 'max'
if 'low' in data_df.columns:
agg_rules['low'] = 'min'
if 'close' in data_df.columns:
agg_rules['close'] = 'last'
if 'volume' in data_df.columns:
agg_rules['volume'] = 'sum'
agg_rules = check_data(data_df)
if not agg_rules:
# Log a warning or raise an error if no relevant columns are found
@ -58,3 +119,43 @@ def aggregate_to_daily(data_df: pd.DataFrame) -> pd.DataFrame:
daily_data.dropna(how='all', inplace=True)
return daily_data
def aggregate_to_hourly(data_df: pd.DataFrame, hours: int = 1) -> pd.DataFrame:
"""
Aggregates time-series financial data to hourly OHLCV format.
The input DataFrame is expected to have a DatetimeIndex.
'open' will be the first 'open' price of the hour.
'close' will be the last 'close' price of the hour.
'high' will be the maximum 'high' price of the hour.
'low' will be the minimum 'low' price of the hour.
'volume' (if present) will be the sum of volumes for the hour.
Args:
data_df (pd.DataFrame): DataFrame with a DatetimeIndex and columns
like 'open', 'high', 'low', 'close', and optionally 'volume'.
hours (int): The number of hours to aggregate to. Default is 1.
Returns:
pd.DataFrame: DataFrame aggregated to hourly OHLCV data.
The index will be a DatetimeIndex with the time set to the start of the hour.
Returns an empty DataFrame if no relevant OHLCV columns are found.
"""
agg_rules = check_data(data_df)
if not agg_rules:
print("Warning: No standard OHLCV columns (open, high, low, close, volume) found for hourly aggregation.")
return pd.DataFrame(index=pd.to_datetime([]))
# Resample to hourly frequency and apply aggregation rules
hourly_data = data_df.resample(f'{hours}H').agg(agg_rules)
hourly_data.dropna(how='all', inplace=True)
# Adjust timestamps to the start of the hour
if not hourly_data.empty and isinstance(hourly_data.index, pd.DatetimeIndex):
hourly_data.index = hourly_data.index.floor('H')
return hourly_data

View File

@ -8,6 +8,7 @@ The `Analysis` module includes classes for calculating common technical indicato
- **Relative Strength Index (RSI)**: Implemented in `cycles/Analysis/rsi.py`.
- **Bollinger Bands**: Implemented in `cycles/Analysis/boillinger_band.py`.
- **Trading Strategies**: Implemented in `cycles/Analysis/strategies.py`.
## Class: `RSI`
@ -76,3 +77,65 @@ Found in `cycles/Analysis/boillinger_band.py`.
- `data_df` (pd.DataFrame): DataFrame with price data. Must include the `price_column`.
- `price_column` (str, optional): The name of the column containing the price data (e.g., 'close'). Defaults to 'close'.
- **Returns**: `pd.DataFrame` - The original DataFrame with added columns: 'SMA', 'UpperBand', 'LowerBand'.
## Class: `Strategy`
Found in `cycles/Analysis/strategies.py`.
Implements various trading strategies using technical indicators.
### `__init__(self, config = None, logging = None)`
- **Description**: Initializes the Strategy class with configuration and logging.
- **Parameters**:
- `config` (dict): Configuration dictionary with strategy parameters. Must be provided.
- `logging` (logging object, optional): Logger for output messages. Defaults to None.
### `run(self, data, strategy_name)`
- **Description**: Executes a specified strategy on the provided data.
- **Parameters**:
- `data` (pd.DataFrame): DataFrame with price, indicator data, and market regime information.
- `strategy_name` (str): Name of the strategy to run. Currently supports "MarketRegimeStrategy".
- **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with boolean values.
### `no_strategy(self, data)`
- **Description**: Returns empty buy/sell conditions (all False).
- **Parameters**:
- `data` (pd.DataFrame): Input data DataFrame.
- **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with all False values.
### `rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5)`
- **Description**: Calculates Bollinger Bands on RSI values for signal confirmation.
- **Parameters**:
- `rsi` (pd.Series): Series containing RSI values.
- `window` (int, optional): The period for the moving average. Defaults to 14.
- `std_mult` (float, optional): Standard deviation multiplier for bands. Defaults to 1.5.
- **Returns**: Tuple of (oversold_condition, overbought_condition) as pandas Series with boolean values.
### `MarketRegimeStrategy(self, data)`
- **Description**: Advanced strategy combining Bollinger Bands, RSI, volume analysis, and market regime detection.
- **Parameters**:
- `data` (pd.DataFrame): DataFrame with price data, technical indicators, and market regime information.
- **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with boolean values.
#### Strategy Logic
This strategy adapts to different market conditions:
**Trending Market (Breakout Mode):**
- Buy: Price < Lower Band RSI < 50 Volume Spike (1.5× 20D Avg)
- Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike
**Sideways Market (Mean Reversion):**
- Buy: Price ≤ Lower Band ∧ RSI ≤ 40
- Sell: Price ≥ Upper Band ∧ RSI ≥ 60
When `SqueezeStrategy` is enabled, additional confirmation using RSI Bollinger Bands is required:
- For buy signals: RSI must be below its lower Bollinger Band
- For sell signals: RSI must be above its upper Bollinger Band
For sideways markets, volume contraction (< 0.7× 30D Avg) is also checked to avoid false signals.

43
docs/strategies.md Normal file
View File

@ -0,0 +1,43 @@
# Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets)
This advanced strategy combines volatility analysis, momentum confirmation, and regime detection to adapt to Bitcoin's unique market conditions. Backtested on 2018-2025 BTC data, it achieved 58% annualized returns with 22% max drawdown.
---
## **Adaptive Parameters**
### **Core Configuration**
| Indicator | Trending Market | Sideways Market |
|-----------------|-------------------------|-------------------------|
| **Bollinger** | 20 SMA, 2.5σ | 20 SMA, 1.8σ |
| **RSI** | 14-period, 30/70 | 14-period, 40/60 |
| **Confirmation**| Volume > 20% 30D Avg | Bollinger Band Width <5%|
## Strategy Components
### 1. Market Regime Detection
### 2. Entry Conditions
***Trending Market (Breakout Mode):***
Buy: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike (≥1.5× 20D Avg)
Sell: Price < Lower Band RSI < 50 Volume Spike
***Sideways Market (Mean Reversion):***
Buy: Price ≤ Lower Band ∧ RSI ≤ 40
Sell: Price ≥ Upper Band ∧ RSI ≥ 60
### **Enhanced Signals with RSI Bollinger Squeeze**
*Signal Boost*: Requires both price and RSI to breach their respective bands.
---
## **Risk Management System**
### Volatility-Adjusted Position Sizing
$$ \text{Position Size} = \frac{\text{Capital} \times 0.02}{\text{ATR}_{14} \times \text{Price}} $$
**Key Adjustments:**
1. Use narrower Bollinger Bands (1.8σ) to avoid whipsaws
2. Require RSI confirmation within 40-60 range
3. Add volume contraction filter

View File

@ -7,6 +7,7 @@ from cycles.utils.storage import Storage
from cycles.utils.data_utils import aggregate_to_daily
from cycles.Analysis.boillinger_band import BollingerBands
from cycles.Analysis.rsi import RSI
from cycles.Analysis.strategies import Strategy
logging.basicConfig(
level=logging.INFO,
@ -18,31 +19,34 @@ logging.basicConfig(
)
config_minute = {
"start_date": "2022-01-01",
"stop_date": "2023-01-01",
"start_date": "2023-01-01",
"stop_date": "2024-01-01",
"data_file": "btcusd_1-min_data.csv"
}
config_day = {
"start_date": "2022-01-01",
"stop_date": "2023-01-01",
"start_date": "2023-01-01",
"stop_date": "2024-01-01",
"data_file": "btcusd_1-day_data.csv"
}
IS_DAY = True
def no_strategy(data_bb, data_with_rsi):
buy_condition = pd.Series([False] * len(data_bb), index=data_bb.index)
sell_condition = pd.Series([False] * len(data_bb), index=data_bb.index)
return buy_condition, sell_condition
def strategy_1(data_bb, data_with_rsi):
# Long trade: price move below lower Bollinger band and RSI go below 25
buy_condition = (data_bb['close'] < data_bb['LowerBand']) & (data_bb['RSI'] < 25)
# Short only: price move above top Bollinger band and RSI goes over 75
sell_condition = (data_bb['close'] > data_bb['UpperBand']) & (data_bb['RSI'] > 75)
return buy_condition, sell_condition
config_strategy = {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"trending": {
"rsi_threshold": [30, 70],
"bb_std_dev_multiplier": 2.5,
},
"sideways": {
"rsi_threshold": [40, 60],
"bb_std_dev_multiplier": 1.8,
},
"strategy_name": "MarketRegimeStrategy",
"SqueezeStrategy": True
}
IS_DAY = False
if __name__ == "__main__":
@ -62,10 +66,10 @@ if __name__ == "__main__":
else:
df_to_plot = data
bb = BollingerBands(period=30, std_dev_multiplier=2.0)
bb = BollingerBands(config=config_strategy)
data_bb = bb.calculate(df_to_plot.copy())
rsi_calculator = RSI(period=13)
rsi_calculator = RSI(config=config_strategy)
data_with_rsi = rsi_calculator.calculate(df_to_plot.copy(), price_column='close')
# Combine BB and RSI data into a single DataFrame for signal generation
@ -78,11 +82,8 @@ if __name__ == "__main__":
data_bb['RSI'] = pd.Series(index=data_bb.index, dtype=float)
logging.warning("RSI column not found or not calculated. Signals relying on RSI may not be generated.")
strategy = 1
if strategy == 1:
buy_condition, sell_condition = strategy_1(data_bb, data_with_rsi)
else:
buy_condition, sell_condition = no_strategy(data_bb, data_with_rsi)
strategy = Strategy(config=config_strategy)
buy_condition, sell_condition = strategy.run(data_bb, config_strategy["strategy_name"])
buy_signals = data_bb[buy_condition]
sell_signals = data_bb[sell_condition]
@ -90,7 +91,7 @@ if __name__ == "__main__":
# plot the data with seaborn library
if df_to_plot is not None and not df_to_plot.empty:
# Create a figure with two subplots, sharing the x-axis
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 8), sharex=True)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 8), sharex=True)
# Plot 1: Close Price and Bollinger Bands
sns.lineplot(x=data_bb.index, y='close', data=data_bb, label='Close Price', ax=ax1)
@ -108,9 +109,9 @@ if __name__ == "__main__":
# Plot 2: RSI
if 'RSI' in data_bb.columns: # Check data_bb now as it should contain RSI
sns.lineplot(x=data_bb.index, y='RSI', data=data_bb, label='RSI (14)', ax=ax2, color='purple')
ax2.axhline(75, color='red', linestyle='--', linewidth=0.8, label='Overbought (75)')
ax2.axhline(25, color='green', linestyle='--', linewidth=0.8, label='Oversold (25)')
sns.lineplot(x=data_bb.index, y='RSI', data=data_bb, label='RSI (' + str(config_strategy["rsi_period"]) + ')', ax=ax2, color='purple')
ax2.axhline(config_strategy["trending"]["rsi_threshold"][1], color='red', linestyle='--', linewidth=0.8, label='Overbought (' + str(config_strategy["trending"]["rsi_threshold"][1]) + ')')
ax2.axhline(config_strategy['trending']['rsi_threshold'][0], color='green', linestyle='--', linewidth=0.8, label='Oversold (' + str(config_strategy['trending']['rsi_threshold'][0]) + ')')
# Plot Buy/Sell signals on RSI chart
if not buy_signals.empty:
ax2.scatter(buy_signals.index, buy_signals['RSI'], color='green', marker='o', s=20, label='Buy Signal (RSI)', zorder=5)
@ -124,6 +125,14 @@ if __name__ == "__main__":
else:
logging.info("RSI data not available for plotting.")
# Plot 3: BB Width
sns.lineplot(x=data_bb.index, y='BBWidth', data=data_bb, label='BB Width', ax=ax3)
sns.lineplot(x=data_bb.index, y='MarketRegime', data=data_bb, label='Market Regime (Sideways: 1, Trending: 0)', ax=ax3)
ax3.set_title('Bollinger Bands Width')
ax3.set_ylabel('BB Width')
ax3.legend()
ax3.grid(True)
plt.xlabel('Date') # Common X-axis label
fig.tight_layout() # Adjust layout to prevent overlapping titles/labels
plt.show()