Enhance strategy output standardization and improve plotting logic

- Introduced a new method to standardize output column names across different strategies, ensuring consistency in data handling and plotting.
- Updated plotting logic in test_bbrsi.py to utilize standardized column names, improving clarity and maintainability.
- Enhanced error handling for missing data in plots and adjusted visual elements for better representation of trading signals.
- Improved the overall structure of strategy implementations to support additional indicators and metadata for better analysis.
This commit is contained in:
Ajasra 2025-05-22 18:16:23 +08:00
parent 3a9dec543c
commit 00873d593f
2 changed files with 107 additions and 39 deletions

View File

@ -16,14 +16,66 @@ class Strategy:
def run(self, data, strategy_name):
if strategy_name == "MarketRegimeStrategy":
return self.MarketRegimeStrategy(data)
result = self.MarketRegimeStrategy(data)
return self.standardize_output(result, strategy_name)
elif strategy_name == "CryptoTradingStrategy":
return self.CryptoTradingStrategy(data)
result = self.CryptoTradingStrategy(data)
return self.standardize_output(result, strategy_name)
else:
if self.logging is not None:
self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.")
return self.no_strategy(data)
def standardize_output(self, data, strategy_name):
"""
Standardize column names across different strategies to ensure consistent plotting and analysis
Args:
data (DataFrame): Strategy output DataFrame
strategy_name (str): Name of the strategy that generated this data
Returns:
DataFrame: Data with standardized column names
"""
if data.empty:
return data
# Create a copy to avoid modifying the original
standardized = data.copy()
# Standardize column names based on strategy
if strategy_name == "MarketRegimeStrategy":
# MarketRegimeStrategy already has standard column names for most fields
# Just ensure all standard columns exist
pass
elif strategy_name == "CryptoTradingStrategy":
# Map strategy-specific column names to standard names
column_mapping = {
'UpperBand_15m': 'UpperBand',
'LowerBand_15m': 'LowerBand',
'SMA_15m': 'SMA',
'RSI_15m': 'RSI',
'VolumeMA_15m': 'VolumeMA',
# Keep StopLoss and TakeProfit as they are
}
# Add standard columns from mapped columns
for old_col, new_col in column_mapping.items():
if old_col in standardized.columns and new_col not in standardized.columns:
standardized[new_col] = standardized[old_col]
# Add additional strategy-specific data as metadata columns
if 'UpperBand_1h' in standardized.columns:
standardized['UpperBand_1h_meta'] = standardized['UpperBand_1h']
if 'LowerBand_1h' in standardized.columns:
standardized['LowerBand_1h_meta'] = standardized['LowerBand_1h']
# Ensure all strategies have BBWidth if possible
if 'BBWidth' not in standardized.columns and 'UpperBand' in standardized.columns and 'LowerBand' in standardized.columns:
standardized['BBWidth'] = (standardized['UpperBand'] - standardized['LowerBand']) / standardized['SMA'] if 'SMA' in standardized.columns else np.nan
return standardized
def no_strategy(self, data):
"""No strategy: returns False for both buy and sell conditions"""
buy_condition = pd.Series([False] * len(data), index=data.index)
@ -74,6 +126,7 @@ class Strategy:
DataFrame: A unified DataFrame containing original data, BB, RSI, and signals.
"""
# data = aggregate_to_hourly(data, 4)
data = aggregate_to_daily(data)
# Calculate Bollinger Bands

View File

@ -33,7 +33,7 @@ config_strategy = {
"rsi_threshold": [40, 60],
"bb_std_dev_multiplier": 1.8,
},
"strategy_name": "MarketRegimeStrategy",
"strategy_name": "MarketRegimeStrategy", # CryptoTradingStrategy
"SqueezeStrategy": True
}
@ -65,18 +65,19 @@ if __name__ == "__main__":
# Plot 1: Close Price and Strategy-Specific Bands/Levels
sns.lineplot(x=processed_data.index, y='close', data=processed_data, label='Close Price', ax=ax1)
if strategy_name == "MarketRegimeStrategy":
if 'UpperBand' in processed_data.columns and 'LowerBand' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='UpperBand', data=processed_data, label='Upper Band (BB)', ax=ax1)
sns.lineplot(x=processed_data.index, y='LowerBand', data=processed_data, label='Lower Band (BB)', ax=ax1)
else:
logging.warning("MarketRegimeStrategy: UpperBand or LowerBand not found for plotting.")
elif strategy_name == "CryptoTradingStrategy":
if 'UpperBand_15m' in processed_data.columns and 'LowerBand_15m' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='UpperBand_15m', data=processed_data, label='Upper Band (15m)', ax=ax1)
sns.lineplot(x=processed_data.index, y='LowerBand_15m', data=processed_data, label='Lower Band (15m)', ax=ax1)
else:
logging.warning("CryptoTradingStrategy: UpperBand_15m or LowerBand_15m not found for plotting.")
# Use standardized column names for bands
if 'UpperBand' in processed_data.columns and 'LowerBand' in processed_data.columns:
# Instead of lines, shade the area between upper and lower bands
ax1.fill_between(processed_data.index,
processed_data['LowerBand'],
processed_data['UpperBand'],
alpha=0.1, color='blue', label='Bollinger Bands')
else:
logging.warning(f"{strategy_name}: UpperBand or LowerBand not found for plotting.")
# Add strategy-specific extra indicators if available
if strategy_name == "CryptoTradingStrategy":
if 'StopLoss' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='StopLoss', data=processed_data, label='Stop Loss', ax=ax1, linestyle='--', color='orange')
if 'TakeProfit' in processed_data.columns:
@ -84,54 +85,68 @@ if __name__ == "__main__":
# Plot Buy/Sell signals on Price chart
if not buy_signals.empty:
ax1.scatter(buy_signals.index, buy_signals['close'], color='green', marker='o', s=10, label='Buy Signal', zorder=5)
ax1.scatter(buy_signals.index, buy_signals['close'], color='green', marker='o', s=20, label='Buy Signal', zorder=5)
if not sell_signals.empty:
ax1.scatter(sell_signals.index, sell_signals['close'], color='red', marker='o', s=10, label='Sell Signal', zorder=5)
ax1.scatter(sell_signals.index, sell_signals['close'], color='red', marker='o', s=20, label='Sell Signal', zorder=5)
ax1.set_title(f'Price and Signals ({strategy_name})')
ax1.set_ylabel('Price')
ax1.legend()
ax1.grid(True)
# Plot 2: RSI and Strategy-Specific Thresholds
rsi_col_name = 'RSI' if strategy_name == "MarketRegimeStrategy" else 'RSI_15m'
if rsi_col_name in processed_data.columns:
sns.lineplot(x=processed_data.index, y=rsi_col_name, data=processed_data, label=f'{rsi_col_name} (' + str(config_strategy.get("rsi_period", 14)) + ')', ax=ax2, color='purple')
if 'RSI' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='RSI', data=processed_data, label=f'RSI (' + str(config_strategy.get("rsi_period", 14)) + ')', ax=ax2, color='purple')
if strategy_name == "MarketRegimeStrategy":
# Assuming trending thresholds are what we want to show generally
ax2.axhline(config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[1], color='red', linestyle='--', linewidth=0.8, label=f'Overbought (' + str(config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[1]) + ')')
ax2.axhline(config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[0], color='green', linestyle='--', linewidth=0.8, label=f'Oversold (' + str(config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[0]) + ')')
# Get threshold values
upper_threshold = config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[1]
lower_threshold = config_strategy.get("trending", {}).get("rsi_threshold", [30,70])[0]
# Shade overbought area (upper)
ax2.fill_between(processed_data.index, upper_threshold, 100,
alpha=0.1, color='red', label=f'Overbought (>{upper_threshold})')
# Shade oversold area (lower)
ax2.fill_between(processed_data.index, 0, lower_threshold,
alpha=0.1, color='green', label=f'Oversold (<{lower_threshold})')
elif strategy_name == "CryptoTradingStrategy":
ax2.axhline(65, color='red', linestyle='--', linewidth=0.8, label='Overbought (65)') # As per Crypto strategy logic
ax2.axhline(35, color='green', linestyle='--', linewidth=0.8, label='Oversold (35)') # As per Crypto strategy logic
# Shade overbought area (upper)
ax2.fill_between(processed_data.index, 65, 100,
alpha=0.1, color='red', label='Overbought (>65)')
# Shade oversold area (lower)
ax2.fill_between(processed_data.index, 0, 35,
alpha=0.1, color='green', label='Oversold (<35)')
# Plot Buy/Sell signals on RSI chart
if not buy_signals.empty and rsi_col_name in buy_signals.columns:
ax2.scatter(buy_signals.index, buy_signals[rsi_col_name], color='green', marker='o', s=20, label=f'Buy Signal ({rsi_col_name})', zorder=5)
if not sell_signals.empty and rsi_col_name in sell_signals.columns:
ax2.scatter(sell_signals.index, sell_signals[rsi_col_name], color='red', marker='o', s=20, label=f'Sell Signal ({rsi_col_name})', zorder=5)
ax2.set_title(f'Relative Strength Index ({rsi_col_name}) with Signals')
ax2.set_ylabel(f'{rsi_col_name} Value')
if not buy_signals.empty and 'RSI' in buy_signals.columns:
ax2.scatter(buy_signals.index, buy_signals['RSI'], color='green', marker='o', s=20, label='Buy Signal (RSI)', zorder=5)
if not sell_signals.empty and 'RSI' in sell_signals.columns:
ax2.scatter(sell_signals.index, sell_signals['RSI'], color='red', marker='o', s=20, label='Sell Signal (RSI)', zorder=5)
ax2.set_title('Relative Strength Index (RSI) with Signals')
ax2.set_ylabel('RSI Value')
ax2.set_ylim(0, 100)
ax2.legend()
ax2.grid(True)
else:
logging.info(f"{rsi_col_name} data not available for plotting.")
logging.info("RSI data not available for plotting.")
# Plot 3: Strategy-Specific Indicators
ax3.clear() # Clear previous plot content if any
if 'BBWidth' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='BBWidth', data=processed_data, label='BB Width', ax=ax3)
if strategy_name == "MarketRegimeStrategy":
if 'BBWidth' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='BBWidth', data=processed_data, label='BB Width', ax=ax3)
if 'MarketRegime' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='MarketRegime', data=processed_data, label='Market Regime (Sideways: 1, Trending: 0)', ax=ax3)
ax3.set_title('Bollinger Bands Width & Market Regime')
ax3.set_ylabel('Value')
elif strategy_name == "CryptoTradingStrategy":
if 'VolumeMA_15m' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='VolumeMA_15m', data=processed_data, label='Volume MA (15m)', ax=ax3)
if 'volume' in processed_data.columns: # Plot original volume for comparison
sns.lineplot(x=processed_data.index, y='volume', data=processed_data, label='Volume (15m)', ax=ax3, alpha=0.5)
ax3.set_title('Volume Analysis (15m)')
if 'VolumeMA' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='VolumeMA', data=processed_data, label='Volume MA', ax=ax3)
if 'volume' in processed_data.columns:
sns.lineplot(x=processed_data.index, y='volume', data=processed_data, label='Volume', ax=ax3, alpha=0.5)
ax3.set_title('Volume Analysis')
ax3.set_ylabel('Volume')
ax3.legend()