import pandas as pd from trend_detector_macd import TrendDetectorMACD from trend_detector_simple import TrendDetectorSimple from cycle_detector import CycleDetector # Load data from CSV file instead of database data = pd.read_csv('data/btcusd_1-day_data.csv') # Convert datetime column to datetime type start_date = pd.to_datetime('2024-04-06') stop_date = pd.to_datetime('2025-05-06') daily_data = data[(pd.to_datetime(data['datetime']) >= start_date) & (pd.to_datetime(data['datetime']) < stop_date)] print(f"Number of data points: {len(daily_data)}") trend_detector = TrendDetectorSimple(daily_data, verbose=True) trends, analysis_results = trend_detector.detect_trends() trend_detector.plot_trends(trends, analysis_results, "supertrend")