article analyzer with finbert working

This commit is contained in:
Simon Moisy 2025-03-19 15:28:30 +08:00
parent 7c5602543d
commit e1465539d2
7 changed files with 1975 additions and 55 deletions

3
.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,3 @@
# Default ignored files
/shelf/
/workspace.xml

View File

@ -1,7 +1,8 @@
from enum import Enum
from transformers import pipeline
import ollama
from pydantic import BaseModel
import markdownify
class Category(str, Enum):
REGULATORY_NEWS = "Regulatory News"
@ -23,6 +24,7 @@ class ArticleClassification(BaseModel):
class ArticleAnalyzer:
def __init__(self):
self.classifier = pipeline("text-classification", model="ProsusAI/finbert")
self.base_prompt = """
Classify the following article into one of these categories:
- Regulatory News
@ -35,9 +37,28 @@ class ArticleAnalyzer:
Also, assign a sentiment (Positive, Neutral or Negative)
"""
print(f"This JSON model is going to be used for structured ouput classification : {ArticleClassification.model_json_schema()}")
print(f"This JSON model is going to be used for structured output classification : {ArticleClassification.model_json_schema()}")
def classify_article(self, article_text):
@staticmethod
def convert_to_markdown(html_content: str) -> str:
"""
Convert HTML content to Markdown format.
Args:
html_content: Cleaned HTML content
Returns:
Markdown content
"""
return markdownify.markdownify(
html_content,
strip=["script", "style", "img", "svg"],
strip_tags=True,
heading_style="atx",
code_block=True
)
def classify_article_llm(self, article_text):
prompt = f"""{self.base_prompt}
ARTICLE: {article_text}
@ -49,4 +70,9 @@ class ArticleAnalyzer:
response = ollama.chat(model="llama3.2",
messages=[{"role": "user", "content": prompt}],
format=ArticleClassification.model_json_schema())
return response['message']['content']
return response['message']['content']
def classify_article_finbert(self, article_html):
article_md = self.convert_to_markdown(article_html)
result = self.classifier(article_md)
return result

View File

@ -56,67 +56,25 @@ class BitcoinTrendAnalysis:
smooth_prices = pd.Series(prices).rolling(window=smoothing_window).mean()
fig, ax = plt.subplots(figsize=(14, 7))
plt.subplots_adjust(bottom=0.25) # Space for widgets
ax2 = ax.twinx() # Secondary axis for prominence
plt.subplots_adjust(bottom=0.25)
# Initial peaks and prominences
peaks, valleys, prominences = self.adaptive_find_peaks(smooth_prices, window=window, factor=prominence_factor,
distance=distance)
# Plot main price curve
price_line, = ax.plot(self.df.index, smooth_prices, label='Bitcoin Smooth Price')
ax.plot(self.df.index, smooth_prices, label='Bitcoin Smooth Price')
ax.scatter(self.df.index[peaks], smooth_prices[peaks], color='green', s=100, marker='^', label='Local Maxima')
ax.scatter(self.df.index[valleys], smooth_prices[valleys], color='red', s=100, marker='v', label='Local Minima')
# Scatter plots for peaks/valleys
peaks_plot = ax.scatter(self.df.index[peaks], smooth_prices[peaks], color='green', s=100, marker='^',
label='Local Maxima')
valleys_plot = ax.scatter(self.df.index[valleys], smooth_prices[valleys], color='red', s=100, marker='v',
label='Local Minima')
# Prominence line on secondary y-axis
prominence_line, = ax2.plot(self.df.index, prominences, color="purple", linestyle="dashed", alpha=0.7,
label="Prominence")
ax2.set_ylabel("Prominence")
for peak, valley in zip(peaks, valleys):
ax.plot([self.df.index[peak], self.df.index[valley]], [smooth_prices[peak], smooth_prices[valley]],
color='orange', lw=1)
ax.set_title(f'Bitcoin Price Trends Analysis\nfactor={prominence_factor}')
ax.set_xlabel('Date')
ax.set_ylabel('Price')
ax.legend()
ax2.legend(loc="upper right")
ax.grid(True)
# Slider setup
ax_slider = plt.axes([0.2, 0.05, 0.65, 0.03]) # Positioning of slider
slider = Slider(ax_slider, 'Prom Factor', 0.1, 2.0, valinit=prominence_factor, valstep=0.05)
# Update function for slider
def update_plot(factor):
# Recalculate peaks and prominences
peaks, valleys, prominences = self.adaptive_find_peaks(smooth_prices.to_numpy(), window=window,
factor=factor, distance=distance)
print(len(peaks))
# Update scatter points for peaks
peaks_plot.set_offsets(np.column_stack([
(self.df.index[peaks] - np.datetime64('1970-01-01')) / np.timedelta64(1, 's'),
smooth_prices[peaks]
]))
# Update scatter points for valleys
valleys_plot.set_offsets(np.column_stack([
(self.df.index[valleys] - np.datetime64('1970-01-01')) / np.timedelta64(1, 's'),
smooth_prices[valleys]
]))
# Update prominence line
prominence_line.set_ydata(prominences)
# Update the title to reflect the current prominence factor
ax.set_title(f'Bitcoin Price Trends Analysis\nfactor={factor}')
# Redraw the figure
fig.canvas.draw_idle()
slider.on_changed(update_plot) # Update plot when slider changes
plt.show()
def analyze_trends_linear_regression(self):

View File

@ -20,5 +20,5 @@ if __name__ == "__main__":
print(f"Parsed {len(html_files)} html files")
for file, content in html_files.items():
result = analyzer.classify_article(content)
result = analyzer.classify_article_finbert(content)
print(f"article [{file}] - analyzed as [{result}]\n")

View File

@ -3,4 +3,4 @@ from bitcoin_trend_analysis import BitcoinTrendAnalysis
if __name__ == "__main__":
ma = BitcoinTrendAnalysis(db_path='bitcoin_historical_data.db')
ma.load_data()
ma.analyze_trends_peaks(distance=1)
ma.analyze_trends_peaks(distance=1, prominence_factor=0.1)

1903
poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

30
pyproject.toml Normal file
View File

@ -0,0 +1,30 @@
[project]
name = "cryptomarketparser"
version = "0.1.0"
description = ""
authors = [
{name = "Simon Moisy",email = "simon.moisy@tutanota.com"}
]
readme = "README.md"
requires-python = ">=3.10,<4.0"
dependencies = [
"numpy (>=2.2.3,<3.0.0)",
"pandas (>=2.2.3,<3.0.0)",
"sqlalchemy (>=2.0.39,<3.0.0)",
"scipy (>=1.15.2,<2.0.0)",
"matplotlib (>=3.10.1,<4.0.0)",
"scikit-learn (>=1.6.1,<2.0.0)",
"ollama (>=0.4.7,<0.5.0)",
"transformers (>=4.49.0,<5.0.0)",
"markdownify (>=1.1.0,<2.0.0)"
]
[build-system]
requires = ["poetry-core>=2.0.0,<3.0.0"]
build-backend = "poetry.core.masonry.api"
[[tool.poetry.source]]
name = "pytorch"
url = "https://download.pytorch.org/whl/cu121"
priority = "explicit"