TCPDashboard/app.py
Vasily.onl a969defe1f 3.4 -2.0 Indicator Layer System Implementation
Implement modular chart layers and error handling for Crypto Trading Bot Dashboard

- Introduced a comprehensive chart layer system in `components/charts/layers/` to support various technical indicators and subplots.
- Added base layer components including `BaseLayer`, `CandlestickLayer`, and `VolumeLayer` for flexible chart rendering.
- Implemented overlay indicators such as `SMALayer`, `EMALayer`, and `BollingerBandsLayer` with robust error handling.
- Created subplot layers for indicators like `RSILayer` and `MACDLayer`, enhancing visualization capabilities.
- Developed a `MarketDataIntegrator` for seamless data fetching and validation, improving data quality assurance.
- Enhanced error handling utilities in `components/charts/error_handling.py` to manage insufficient data scenarios effectively.
- Updated documentation to reflect the new chart layer architecture and usage guidelines.
- Added unit tests for all chart layer components to ensure functionality and reliability.
2025-06-03 13:56:15 +08:00

358 lines
12 KiB
Python

#!/usr/bin/env python3
"""
Main Dash application for the Crypto Trading Bot Dashboard.
Provides real-time visualization and bot management interface.
"""
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
# Suppress SQLAlchemy logging to reduce verbosity
import logging
logging.getLogger('sqlalchemy').setLevel(logging.WARNING)
logging.getLogger('sqlalchemy.engine').setLevel(logging.WARNING)
logging.getLogger('sqlalchemy.pool').setLevel(logging.WARNING)
logging.getLogger('sqlalchemy.dialects').setLevel(logging.WARNING)
logging.getLogger('sqlalchemy.orm').setLevel(logging.WARNING)
import dash
from dash import dcc, html, Input, Output, callback
import plotly.graph_objects as go
from datetime import datetime, timedelta
import pandas as pd
# Import project modules
from config.settings import app as app_settings, dashboard as dashboard_settings
from utils.logger import get_logger
from database.connection import DatabaseManager
from components.charts import (
create_candlestick_chart, get_market_statistics,
get_supported_symbols, get_supported_timeframes,
create_data_status_indicator, check_data_availability,
create_error_chart
)
# Initialize logger
logger = get_logger("dashboard_app")
# Create the app instance at module level
app = dash.Dash(
__name__,
title="Crypto Trading Bot Dashboard",
update_title="Loading...",
suppress_callback_exceptions=True
)
# Configure app
app.server.secret_key = "crypto-bot-dashboard-secret-key-2024"
logger.info("Initializing Crypto Trading Bot Dashboard")
# Define basic layout
app.layout = html.Div([
# Header
html.Div([
html.H1("🚀 Crypto Trading Bot Dashboard",
style={'margin': '0', 'color': '#2c3e50'}),
html.P("Real-time monitoring and bot management",
style={'margin': '5px 0 0 0', 'color': '#7f8c8d'})
], style={
'padding': '20px',
'background-color': '#ecf0f1',
'border-bottom': '2px solid #bdc3c7'
}),
# Navigation tabs
dcc.Tabs(id="main-tabs", value='market-data', children=[
dcc.Tab(label='📊 Market Data', value='market-data'),
dcc.Tab(label='🤖 Bot Management', value='bot-management'),
dcc.Tab(label='📈 Performance', value='performance'),
dcc.Tab(label='⚙️ System Health', value='system-health'),
], style={'margin': '10px 20px'}),
# Main content area
html.Div(id='tab-content', style={'padding': '20px'}),
# Auto-refresh interval for real-time updates
dcc.Interval(
id='interval-component',
interval=5000, # Update every 5 seconds
n_intervals=0
),
# Store components for data sharing between callbacks
dcc.Store(id='market-data-store'),
dcc.Store(id='bot-status-store'),
])
def get_market_data_layout():
"""Create the market data visualization layout."""
# Get available symbols and timeframes from database
symbols = get_supported_symbols()
timeframes = get_supported_timeframes()
# Create dropdown options
symbol_options = [{'label': symbol, 'value': symbol} for symbol in symbols]
timeframe_options = [
{'label': '1 Minute', 'value': '1m'},
{'label': '5 Minutes', 'value': '5m'},
{'label': '15 Minutes', 'value': '15m'},
{'label': '1 Hour', 'value': '1h'},
{'label': '4 Hours', 'value': '4h'},
{'label': '1 Day', 'value': '1d'},
]
# Filter timeframe options to only show those available in database
available_timeframes = [tf for tf in ['1m', '5m', '15m', '1h', '4h', '1d'] if tf in timeframes]
if not available_timeframes:
available_timeframes = ['1h'] # Default fallback
timeframe_options = [opt for opt in timeframe_options if opt['value'] in available_timeframes]
return html.Div([
html.H2("📊 Real-time Market Data", style={'color': '#2c3e50'}),
# Symbol selector
html.Div([
html.Label("Select Trading Pair:", style={'font-weight': 'bold'}),
dcc.Dropdown(
id='symbol-dropdown',
options=symbol_options,
value=symbols[0] if symbols else 'BTC-USDT',
style={'margin': '10px 0'}
)
], style={'width': '300px', 'margin': '20px 0'}),
# Timeframe selector
html.Div([
html.Label("Timeframe:", style={'font-weight': 'bold'}),
dcc.Dropdown(
id='timeframe-dropdown',
options=timeframe_options,
value=available_timeframes[0] if available_timeframes else '1h',
style={'margin': '10px 0'}
)
], style={'width': '300px', 'margin': '20px 0'}),
# Price chart
dcc.Graph(
id='price-chart',
style={'height': '600px', 'margin': '20px 0'},
config={'displayModeBar': True, 'displaylogo': False}
),
# Market statistics
html.Div(id='market-stats', style={'margin': '20px 0'}),
# Data status indicator
html.Div(id='data-status', style={'margin': '20px 0'})
])
def get_bot_management_layout():
"""Create the bot management layout."""
return html.Div([
html.H2("🤖 Bot Management", style={'color': '#2c3e50'}),
html.P("Bot management interface will be implemented in Phase 4.0"),
# Placeholder for bot list
html.Div([
html.H3("Active Bots"),
html.Div(id='bot-list', children=[
html.P("No bots currently running", style={'color': '#7f8c8d'})
])
], style={'margin': '20px 0'})
])
def get_performance_layout():
"""Create the performance monitoring layout."""
return html.Div([
html.H2("📈 Performance Analytics", style={'color': '#2c3e50'}),
html.P("Performance analytics will be implemented in Phase 6.0"),
# Placeholder for performance metrics
html.Div([
html.H3("Portfolio Performance"),
html.P("Portfolio tracking coming soon", style={'color': '#7f8c8d'})
], style={'margin': '20px 0'})
])
def get_system_health_layout():
"""Create the system health monitoring layout."""
return html.Div([
html.H2("⚙️ System Health", style={'color': '#2c3e50'}),
# Database status
html.Div([
html.H3("Database Status"),
html.Div(id='database-status')
], style={'margin': '20px 0'}),
# Data collection status
html.Div([
html.H3("Data Collection Status"),
html.Div(id='collection-status')
], style={'margin': '20px 0'}),
# Redis status
html.Div([
html.H3("Redis Status"),
html.Div(id='redis-status')
], style={'margin': '20px 0'})
])
# Tab switching callback
@app.callback(
Output('tab-content', 'children'),
Input('main-tabs', 'value')
)
def render_tab_content(active_tab):
"""Render content based on selected tab."""
if active_tab == 'market-data':
return get_market_data_layout()
elif active_tab == 'bot-management':
return get_bot_management_layout()
elif active_tab == 'performance':
return get_performance_layout()
elif active_tab == 'system-health':
return get_system_health_layout()
else:
return html.Div("Tab not found")
# Market data chart callback
@app.callback(
Output('price-chart', 'figure'),
[Input('symbol-dropdown', 'value'),
Input('timeframe-dropdown', 'value'),
Input('interval-component', 'n_intervals')]
)
def update_price_chart(symbol, timeframe, n_intervals):
"""Update the price chart with latest market data."""
try:
# Use the real chart component instead of sample data
fig = create_candlestick_chart(symbol, timeframe)
logger.debug(f"Updated chart for {symbol} ({timeframe}) - interval {n_intervals}")
return fig
except Exception as e:
logger.error(f"Error updating price chart: {e}")
# Return error chart on failure
return create_error_chart(f"Error loading chart: {str(e)}")
# Market statistics callback
@app.callback(
Output('market-stats', 'children'),
[Input('symbol-dropdown', 'value'),
Input('interval-component', 'n_intervals')]
)
def update_market_stats(symbol, n_intervals):
"""Update market statistics."""
try:
# Get real market statistics from database
stats = get_market_statistics(symbol)
return html.Div([
html.H3("Market Statistics"),
html.Div([
html.Div([
html.Strong(f"{key}: "),
html.Span(value, style={'color': '#27ae60' if '+' in str(value) else '#e74c3c' if '-' in str(value) else '#2c3e50'})
], style={'margin': '5px 0'}) for key, value in stats.items()
])
])
except Exception as e:
logger.error(f"Error updating market stats: {e}")
return html.Div("Error loading market statistics")
# System health callbacks
@app.callback(
Output('database-status', 'children'),
Input('interval-component', 'n_intervals')
)
def update_database_status(n_intervals):
"""Update database connection status."""
try:
db_manager = DatabaseManager()
# Test database connection
with db_manager.get_session() as session:
# Simple query to test connection
result = session.execute("SELECT 1").fetchone()
if result:
return html.Div([
html.Span("🟢 Connected", style={'color': '#27ae60', 'font-weight': 'bold'}),
html.P(f"Last checked: {datetime.now().strftime('%H:%M:%S')}",
style={'margin': '5px 0', 'color': '#7f8c8d'})
])
else:
return html.Div([
html.Span("🔴 Connection Error", style={'color': '#e74c3c', 'font-weight': 'bold'})
])
except Exception as e:
logger.error(f"Database status check failed: {e}")
return html.Div([
html.Span("🔴 Connection Failed", style={'color': '#e74c3c', 'font-weight': 'bold'}),
html.P(f"Error: {str(e)}", style={'color': '#7f8c8d', 'font-size': '12px'})
])
@app.callback(
Output('data-status', 'children'),
[Input('symbol-dropdown', 'value'),
Input('timeframe-dropdown', 'value'),
Input('interval-component', 'n_intervals')]
)
def update_data_status(symbol, timeframe, n_intervals):
"""Update data collection status."""
try:
# Check real data availability
status = check_data_availability(symbol, timeframe)
return html.Div([
html.H3("Data Collection Status"),
html.Div([
html.Div(
create_data_status_indicator(symbol, timeframe),
style={'margin': '10px 0'}
),
html.P(f"Checking data for {symbol} {timeframe}",
style={'color': '#7f8c8d', 'margin': '5px 0', 'font-style': 'italic'})
], style={'background-color': '#f8f9fa', 'padding': '15px', 'border-radius': '5px'})
])
except Exception as e:
logger.error(f"Error updating data status: {e}")
return html.Div([
html.H3("Data Collection Status"),
html.Div([
html.Span("🔴 Status Check Failed", style={'color': '#e74c3c', 'font-weight': 'bold'}),
html.P(f"Error: {str(e)}", style={'color': '#7f8c8d', 'margin': '5px 0'})
])
])
def main():
"""Main function to run the dashboard."""
try:
logger.info("Starting Crypto Trading Bot Dashboard")
logger.info(f"Dashboard will be available at: http://{dashboard_settings.host}:{dashboard_settings.port}")
# Run the app
app.run(
host=dashboard_settings.host,
port=dashboard_settings.port,
debug=dashboard_settings.debug
)
except Exception as e:
logger.error(f"Failed to start dashboard: {e}")
sys.exit(1)
if __name__ == "__main__":
main()