2025-06-12 13:27:30 +08:00

2977 lines
110 KiB
Python

"""
Trading Signal Chart Layers
This module implements signal overlay layers for displaying buy/sell/hold signals
generated by trading strategies on charts. Integrates with the database signal model.
"""
import pandas as pd
import plotly.graph_objects as go
from typing import Dict, Any, Optional, List, Union, Tuple
from dataclasses import dataclass
from decimal import Decimal
from datetime import datetime
from ..error_handling import (
ChartErrorHandler, ChartError, ErrorSeverity,
DataValidationError, create_error_annotation, get_error_message
)
from .base import BaseLayer, LayerConfig
from utils.logger import get_logger
# Initialize logger
logger = get_logger()
@dataclass
class SignalLayerConfig(LayerConfig):
"""Extended configuration for signal layers"""
signal_types: List[str] = None # ['buy', 'sell', 'hold'] or subset
confidence_threshold: float = 0.0 # Minimum confidence to display (0.0-1.0)
show_confidence: bool = True # Show confidence in marker hover text
marker_size: int = 12 # Size of signal markers
show_price_labels: bool = True # Show price labels on signals
bot_id: Optional[int] = None # Filter signals by specific bot
def __post_init__(self):
super().__post_init__()
if self.signal_types is None:
self.signal_types = ['buy', 'sell'] # Default to buy/sell only
@dataclass
class TradeLayerConfig(LayerConfig):
"""Extended configuration for trade visualization layers"""
show_pnl: bool = True # Show profit/loss information
show_trade_lines: bool = True # Draw lines connecting entry/exit points
show_quantity: bool = True # Show trade quantity in hover
show_fees: bool = True # Show fees in hover
min_pnl_display: Optional[float] = None # Minimum P&L to display trade
bot_id: Optional[int] = None # Filter trades by specific bot
trade_marker_size: int = 14 # Size of trade markers (slightly larger than signals)
def __post_init__(self):
super().__post_init__()
class BaseSignalLayer(BaseLayer):
"""
Base class for all signal layers with database integration.
"""
def __init__(self, config: SignalLayerConfig):
"""
Initialize base signal layer.
Args:
config: Signal layer configuration
"""
super().__init__(config)
self.signal_data = None
# Signal styling defaults
self.signal_colors = {
'buy': '#4caf50', # Green
'sell': '#f44336', # Red
'hold': '#ff9800' # Orange
}
self.signal_symbols = {
'buy': 'triangle-up',
'sell': 'triangle-down',
'hold': 'circle'
}
def validate_signal_data(self, signals: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool:
"""
Validate signal data structure and requirements.
Args:
signals: Signal data from database or API
Returns:
True if data is valid for signal rendering
"""
try:
# Clear previous errors
self.error_handler.clear_errors()
# Convert to DataFrame if needed
if isinstance(signals, list):
if not signals:
# Empty signals are valid (no signals to show)
return True
df = pd.DataFrame(signals)
else:
df = signals.copy()
# Check required columns for signals
required_columns = ['timestamp', 'signal_type', 'price', 'confidence']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
error = ChartError(
code='MISSING_SIGNAL_COLUMNS',
message=f'Missing signal columns: {missing_columns}',
severity=ErrorSeverity.ERROR,
context={
'missing_columns': missing_columns,
'available_columns': list(df.columns),
'layer_type': 'signal'
},
recovery_suggestion=f'Ensure signal data contains: {required_columns}'
)
self.error_handler.errors.append(error)
return False
# Validate signal types
valid_signal_types = {'buy', 'sell', 'hold'}
invalid_signals = df[~df['signal_type'].isin(valid_signal_types)]
if not invalid_signals.empty:
error = ChartError(
code='INVALID_SIGNAL_TYPES',
message=f'Invalid signal types found: {set(invalid_signals["signal_type"].unique())}',
severity=ErrorSeverity.WARNING,
context={
'invalid_types': list(invalid_signals['signal_type'].unique()),
'valid_types': list(valid_signal_types)
},
recovery_suggestion='Signal types must be: buy, sell, or hold'
)
self.error_handler.warnings.append(error)
# Validate confidence range
invalid_confidence = df[(df['confidence'] < 0) | (df['confidence'] > 1)]
if not invalid_confidence.empty:
error = ChartError(
code='INVALID_CONFIDENCE_RANGE',
message=f'Confidence values must be between 0.0 and 1.0',
severity=ErrorSeverity.WARNING,
context={
'invalid_count': len(invalid_confidence),
'min_found': float(df['confidence'].min()),
'max_found': float(df['confidence'].max())
},
recovery_suggestion='Confidence values will be clamped to 0.0-1.0 range'
)
self.error_handler.warnings.append(error)
return True
except Exception as e:
self.logger.error(f"Chart Signals: Error validating signal data: {e}")
error = ChartError(
code='SIGNAL_VALIDATION_ERROR',
message=f'Signal validation failed: {str(e)}',
severity=ErrorSeverity.ERROR,
context={'exception': str(e), 'layer_type': 'signal'}
)
self.error_handler.errors.append(error)
return False
def filter_signals_by_config(self, signals: pd.DataFrame) -> pd.DataFrame:
"""
Filter signals based on layer configuration.
Args:
signals: Raw signal data
Returns:
Filtered signal data
"""
try:
if signals.empty:
return signals
filtered = signals.copy()
# Filter by signal types
if self.config.signal_types:
filtered = filtered[filtered['signal_type'].isin(self.config.signal_types)]
# Filter by confidence threshold
if self.config.confidence_threshold > 0:
filtered = filtered[filtered['confidence'] >= self.config.confidence_threshold]
# Filter by bot_id if specified
if self.config.bot_id is not None:
if 'bot_id' in filtered.columns:
filtered = filtered[filtered['bot_id'] == self.config.bot_id]
else:
self.logger.warning(f"bot_id filter requested but no bot_id column in signal data")
# Clamp confidence values to valid range
filtered['confidence'] = filtered['confidence'].clip(0.0, 1.0)
self.logger.info(f"Chart Signals: Filtered signals: {len(signals)} -> {len(filtered)} signals")
return filtered
except Exception as e:
self.logger.error(f"Chart Signals: Error filtering signals: {e}")
return pd.DataFrame() # Return empty DataFrame on error
def create_signal_traces(self, signals: pd.DataFrame) -> List[go.Scatter]:
"""
Create Plotly traces for signal markers.
Args:
signals: Filtered signal data
Returns:
List of Plotly traces for each signal type
"""
traces = []
try:
if signals.empty:
return traces
# Group signals by type
for signal_type in signals['signal_type'].unique():
signal_group = signals[signals['signal_type'] == signal_type]
if signal_group.empty:
continue
# Prepare hover text
hover_text = []
for _, signal in signal_group.iterrows():
hover_parts = [
f"Signal: {signal['signal_type'].upper()}",
f"Price: ${signal['price']:.4f}",
f"Time: {signal['timestamp']}"
]
if self.config.show_confidence:
confidence_pct = signal['confidence'] * 100
hover_parts.append(f"Confidence: {confidence_pct:.1f}%")
if 'bot_id' in signal_group.columns:
hover_parts.append(f"Bot ID: {signal['bot_id']}")
hover_text.append("<br>".join(hover_parts))
# Create trace for this signal type
trace = go.Scatter(
x=signal_group['timestamp'],
y=signal_group['price'],
mode='markers',
marker=dict(
symbol=self.signal_symbols.get(signal_type, 'circle'),
size=self.config.marker_size,
color=self.signal_colors.get(signal_type, '#666666'),
line=dict(width=1, color='white'),
opacity=0.8
),
name=f"{signal_type.upper()} Signals",
text=hover_text,
hoverinfo='text',
showlegend=True,
legendgroup=f"signals_{signal_type}"
)
traces.append(trace)
# Add price labels if enabled
if self.config.show_price_labels:
price_trace = go.Scatter(
x=signal_group['timestamp'],
y=signal_group['price'],
mode='text',
text=[f"${price:.2f}" for price in signal_group['price']],
textposition='top center' if signal_type == 'buy' else 'bottom center',
textfont=dict(
size=8,
color=self.signal_colors.get(signal_type, '#666666')
),
showlegend=False,
hoverinfo='skip'
)
traces.append(price_trace)
return traces
except Exception as e:
self.logger.error(f"Chart Signals: Error creating signal traces: {e}")
# Return error trace
error_trace = self.create_error_trace(f"Error displaying signals: {str(e)}")
return [error_trace]
def is_enabled(self) -> bool:
"""Check if the signal layer is enabled."""
return self.config.enabled
def is_overlay(self) -> bool:
"""Signal layers are always overlays on the main chart."""
return True
def get_subplot_row(self) -> Optional[int]:
"""Signal layers appear on main chart (no subplot)."""
return None
class BaseTradeLayer(BaseLayer):
"""
Base class for trade visualization layers with database integration.
"""
def __init__(self, config: TradeLayerConfig):
"""
Initialize base trade layer.
Args:
config: Trade layer configuration
"""
super().__init__(config)
self.trade_data = None
# Trade styling defaults
self.trade_colors = {
'buy': '#2e7d32', # Darker green for trades
'sell': '#c62828', # Darker red for trades
'profit': '#4caf50', # Green for profitable trades
'loss': '#f44336' # Red for losing trades
}
self.trade_symbols = {
'buy': 'triangle-up',
'sell': 'triangle-down'
}
def validate_trade_data(self, trades: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool:
"""
Validate trade data structure and requirements.
Args:
trades: Trade data from database
Returns:
True if data is valid for trade rendering
"""
try:
# Clear previous errors
self.error_handler.clear_errors()
# Convert to DataFrame if needed
if isinstance(trades, list):
if not trades:
# Empty trades are valid (no trades to show)
return True
df = pd.DataFrame(trades)
else:
df = trades.copy()
# Check required columns for trades
required_columns = ['timestamp', 'side', 'price', 'quantity']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
error = ChartError(
code='MISSING_TRADE_COLUMNS',
message=f'Missing trade columns: {missing_columns}',
severity=ErrorSeverity.ERROR,
context={
'missing_columns': missing_columns,
'available_columns': list(df.columns),
'layer_type': 'trade'
},
recovery_suggestion=f'Ensure trade data contains: {required_columns}'
)
self.error_handler.errors.append(error)
return False
# Validate trade sides
valid_sides = {'buy', 'sell'}
invalid_trades = df[~df['side'].isin(valid_sides)]
if not invalid_trades.empty:
error = ChartError(
code='INVALID_TRADE_SIDES',
message=f'Invalid trade sides found: {set(invalid_trades["side"].unique())}',
severity=ErrorSeverity.WARNING,
context={
'invalid_sides': list(invalid_trades['side'].unique()),
'valid_sides': list(valid_sides)
},
recovery_suggestion='Trade sides must be: buy or sell'
)
self.error_handler.warnings.append(error)
# Validate positive prices and quantities
invalid_prices = df[df['price'] <= 0]
invalid_quantities = df[df['quantity'] <= 0]
if not invalid_prices.empty:
error = ChartError(
code='INVALID_TRADE_PRICES',
message=f'Invalid trade prices found (must be > 0)',
severity=ErrorSeverity.WARNING,
context={'invalid_count': len(invalid_prices)},
recovery_suggestion='Trade prices must be positive values'
)
self.error_handler.warnings.append(error)
if not invalid_quantities.empty:
error = ChartError(
code='INVALID_TRADE_QUANTITIES',
message=f'Invalid trade quantities found (must be > 0)',
severity=ErrorSeverity.WARNING,
context={'invalid_count': len(invalid_quantities)},
recovery_suggestion='Trade quantities must be positive values'
)
self.error_handler.warnings.append(error)
return True
except Exception as e:
self.logger.error(f"Chart Trade: Error validating trade data: {e}")
error = ChartError(
code='TRADE_VALIDATION_ERROR',
message=f'Trade validation failed: {str(e)}',
severity=ErrorSeverity.ERROR,
context={'exception': str(e), 'layer_type': 'trade'}
)
self.error_handler.errors.append(error)
return False
def filter_trades_by_config(self, trades: pd.DataFrame) -> pd.DataFrame:
"""
Filter trades based on layer configuration.
Args:
trades: Raw trade data
Returns:
Filtered trade data
"""
try:
if trades.empty:
return trades
filtered = trades.copy()
# Filter by bot_id if specified
if self.config.bot_id is not None:
if 'bot_id' in filtered.columns:
filtered = filtered[filtered['bot_id'] == self.config.bot_id]
else:
self.logger.warning(f"bot_id filter requested but no bot_id column in trade data")
# Filter by minimum P&L if specified
if self.config.min_pnl_display is not None and 'pnl' in filtered.columns:
# Only show trades with P&L above threshold (absolute value)
filtered = filtered[filtered['pnl'].abs() >= self.config.min_pnl_display]
self.logger.info(f"Filtered trades: {len(trades)} -> {len(filtered)} trades")
return filtered
except Exception as e:
self.logger.error(f"Chart Trade: Error filtering trades: {e}")
return pd.DataFrame() # Return empty DataFrame on error
def pair_entry_exit_trades(self, trades: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Pair buy and sell trades to create entry/exit connections.
Args:
trades: Filtered trade data
Returns:
List of trade pairs with entry/exit information
"""
try:
trade_pairs = []
if trades.empty:
return trade_pairs
# Sort trades by timestamp
sorted_trades = trades.sort_values('timestamp').reset_index(drop=True)
# Simple FIFO pairing logic
position = 0 # Current position (positive = long, negative = short)
open_positions = [] # Stack of open positions
for _, trade in sorted_trades.iterrows():
trade_dict = trade.to_dict()
if trade['side'] == 'buy':
# Opening long position or reducing short position
if position < 0:
# Closing short position(s)
remaining_quantity = trade['quantity']
while remaining_quantity > 0 and open_positions:
open_trade = open_positions.pop()
close_quantity = min(remaining_quantity, open_trade['quantity'])
# Create trade pair
pnl = (open_trade['price'] - trade['price']) * close_quantity
trade_pair = {
'entry_trade': open_trade,
'exit_trade': trade_dict,
'entry_time': open_trade['timestamp'],
'exit_time': trade['timestamp'],
'entry_price': open_trade['price'],
'exit_price': trade['price'],
'quantity': close_quantity,
'pnl': pnl,
'side': 'short', # This was a short position
'duration': trade['timestamp'] - open_trade['timestamp']
}
trade_pairs.append(trade_pair)
remaining_quantity -= close_quantity
open_trade['quantity'] -= close_quantity
# If open trade still has quantity, put it back
if open_trade['quantity'] > 0:
open_positions.append(open_trade)
# If there's remaining quantity, it opens a new long position
if remaining_quantity > 0:
new_trade = trade_dict.copy()
new_trade['quantity'] = remaining_quantity
open_positions.append(new_trade)
position += remaining_quantity
else:
# Opening new long position
open_positions.append(trade_dict)
position += trade['quantity']
else: # sell
# Opening short position or reducing long position
if position > 0:
# Closing long position(s)
remaining_quantity = trade['quantity']
while remaining_quantity > 0 and open_positions:
open_trade = open_positions.pop(0) # FIFO for long positions
close_quantity = min(remaining_quantity, open_trade['quantity'])
# Create trade pair
pnl = (trade['price'] - open_trade['price']) * close_quantity
trade_pair = {
'entry_trade': open_trade,
'exit_trade': trade_dict,
'entry_time': open_trade['timestamp'],
'exit_time': trade['timestamp'],
'entry_price': open_trade['price'],
'exit_price': trade['price'],
'quantity': close_quantity,
'pnl': pnl,
'side': 'long', # This was a long position
'duration': trade['timestamp'] - open_trade['timestamp']
}
trade_pairs.append(trade_pair)
remaining_quantity -= close_quantity
open_trade['quantity'] -= close_quantity
# If open trade still has quantity, put it back
if open_trade['quantity'] > 0:
open_positions.insert(0, open_trade)
# If there's remaining quantity, it opens a new short position
if remaining_quantity > 0:
new_trade = trade_dict.copy()
new_trade['quantity'] = remaining_quantity
open_positions.append(new_trade)
position -= remaining_quantity
else:
# Opening new short position
open_positions.append(trade_dict)
position -= trade['quantity']
self.logger.info(f"Paired {len(trade_pairs)} trade pairs from {len(sorted_trades)} trades")
return trade_pairs
except Exception as e:
self.logger.error(f"Chart Trade: Error pairing trades: {e}")
return []
def is_enabled(self) -> bool:
"""Check if the trade layer is enabled."""
return self.config.enabled
def is_overlay(self) -> bool:
"""Trade layers are always overlays on the main chart."""
return True
def get_subplot_row(self) -> Optional[int]:
"""Trade layers appear on main chart (no subplot)."""
return None
class TradingSignalLayer(BaseSignalLayer):
"""
Main trading signal layer for displaying buy/sell/hold signals from database.
"""
def __init__(self, config: SignalLayerConfig = None):
"""
Initialize trading signal layer.
Args:
config: Signal layer configuration (optional, uses defaults)
"""
if config is None:
config = SignalLayerConfig(
name="Trading Signals",
enabled=True,
signal_types=['buy', 'sell'],
confidence_threshold=0.3, # Only show signals with >30% confidence
marker_size=10,
show_confidence=True,
show_price_labels=True
)
super().__init__(config)
self.logger.info(f"Initialized TradingSignalLayer: {config.name}")
def render(self, fig: go.Figure, data: pd.DataFrame, signals: pd.DataFrame = None, **kwargs) -> go.Figure:
"""
Render signal markers on the chart.
Args:
fig: Plotly figure to render onto
data: Market data (OHLCV format)
signals: Signal data from database (optional)
**kwargs: Additional rendering parameters
Returns:
Updated figure with signal overlays
"""
try:
if signals is None or signals.empty:
self.logger.info("No signals provided for rendering")
return fig
# Validate signal data
if not self.validate_signal_data(signals):
self.logger.warning("Signal data validation failed")
# Add error annotation if validation failed
error_message = self.error_handler.get_user_friendly_message()
fig.add_annotation(
text=f"Signal Error: {error_message}",
x=0.5, y=0.95,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="red", size=10)
)
return fig
# Filter signals based on configuration
filtered_signals = self.filter_signals_by_config(signals)
if filtered_signals.empty:
self.logger.info("No signals remain after filtering")
return fig
# Create signal traces
signal_traces = self.create_signal_traces(filtered_signals)
# Add traces to figure
for trace in signal_traces:
fig.add_trace(trace)
# Store processed data for potential reuse
self.signal_data = filtered_signals
self.logger.info(f"Successfully rendered {len(filtered_signals)} signals")
return fig
except Exception as e:
self.logger.error(f"Chart Signals: Error rendering signal layer: {e}")
# Add error annotation to chart
fig.add_annotation(
text=f"Signal Rendering Error: {str(e)}",
x=0.5, y=0.9,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="red", size=10)
)
return fig
class TradeExecutionLayer(BaseTradeLayer):
"""
Trade execution layer for displaying actual buy/sell trades with entry/exit connections.
"""
def __init__(self, config: TradeLayerConfig = None):
"""
Initialize trade execution layer.
Args:
config: Trade layer configuration (optional, uses defaults)
"""
if config is None:
config = TradeLayerConfig(
name="Trade Executions",
enabled=True,
show_pnl=True,
show_trade_lines=True,
show_quantity=True,
show_fees=True,
trade_marker_size=12
)
super().__init__(config)
self.logger.info(f"Initialized TradeExecutionLayer: {config.name}")
def create_trade_traces(self, trades: pd.DataFrame) -> List[go.Scatter]:
"""
Create Plotly traces for trade markers and connections.
Args:
trades: Filtered trade data
Returns:
List of Plotly traces for trades
"""
traces = []
try:
if trades.empty:
return traces
# Create trade pairs for entry/exit connections
trade_pairs = self.pair_entry_exit_trades(trades)
# Create individual trade markers
for side in ['buy', 'sell']:
side_trades = trades[trades['side'] == side]
if side_trades.empty:
continue
# Prepare hover text
hover_text = []
for _, trade in side_trades.iterrows():
hover_parts = [
f"Trade: {trade['side'].upper()}",
f"Price: ${trade['price']:.4f}",
f"Time: {trade['timestamp']}"
]
if self.config.show_quantity:
hover_parts.append(f"Quantity: {trade['quantity']:.8f}")
if self.config.show_pnl and 'pnl' in trade:
pnl_value = trade.get('pnl', 0)
if pnl_value != 0:
hover_parts.append(f"P&L: ${pnl_value:.4f}")
if self.config.show_fees and 'fees' in trade:
fees = trade.get('fees', 0)
if fees > 0:
hover_parts.append(f"Fees: ${fees:.4f}")
if 'bot_id' in trade:
hover_parts.append(f"Bot ID: {trade['bot_id']}")
hover_text.append("<br>".join(hover_parts))
# Create trace for this trade side
trace = go.Scatter(
x=side_trades['timestamp'],
y=side_trades['price'],
mode='markers',
marker=dict(
symbol=self.trade_symbols.get(side, 'circle'),
size=self.config.trade_marker_size,
color=self.trade_colors.get(side, '#666666'),
line=dict(width=2, color='white'),
opacity=0.9
),
name=f"{side.upper()} Trades",
text=hover_text,
hoverinfo='text',
showlegend=True,
legendgroup=f"trades_{side}"
)
traces.append(trace)
# Create entry/exit connection lines if enabled
if self.config.show_trade_lines and trade_pairs:
for i, pair in enumerate(trade_pairs):
# Determine line color based on P&L
line_color = self.trade_colors['profit'] if pair['pnl'] >= 0 else self.trade_colors['loss']
# Create connection line
line_trace = go.Scatter(
x=[pair['entry_time'], pair['exit_time']],
y=[pair['entry_price'], pair['exit_price']],
mode='lines',
line=dict(
color=line_color,
width=2,
dash='solid' if pair['pnl'] >= 0 else 'dash'
),
name=f"Trade #{i+1}" if i < 10 else None, # Only show legend for first 10
showlegend=i < 10,
legendgroup=f"trade_lines",
hovertext=f"P&L: ${pair['pnl']:.4f}<br>Duration: {pair['duration']}",
hoverinfo='text'
)
traces.append(line_trace)
return traces
except Exception as e:
self.logger.error(f"Chart Trade: Error creating trade traces: {e}")
# Return error trace
error_trace = self.create_error_trace(f"Error displaying trades: {str(e)}")
return [error_trace]
def render(self, fig: go.Figure, data: pd.DataFrame, trades: pd.DataFrame = None, **kwargs) -> go.Figure:
"""
Render trade execution markers and connections on the chart.
Args:
fig: Plotly figure to render onto
data: Market data (OHLCV format)
trades: Trade data from database (optional)
**kwargs: Additional rendering parameters
Returns:
Updated figure with trade overlays
"""
try:
if trades is None or trades.empty:
self.logger.info("No trades provided for rendering")
return fig
# Validate trade data
if not self.validate_trade_data(trades):
self.logger.warning("Trade data validation failed")
# Add error annotation if validation failed
error_message = self.error_handler.get_user_friendly_message()
fig.add_annotation(
text=f"Trade Error: {error_message}",
x=0.5, y=0.95,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="red", size=10)
)
return fig
# Filter trades based on configuration
filtered_trades = self.filter_trades_by_config(trades)
if filtered_trades.empty:
self.logger.info("No trades remain after filtering")
return fig
# Create trade traces
trade_traces = self.create_trade_traces(filtered_trades)
# Add traces to figure
for trace in trade_traces:
fig.add_trace(trace)
# Store processed data for potential reuse
self.trade_data = filtered_trades
self.logger.info(f"Successfully rendered {len(filtered_trades)} trades")
return fig
except Exception as e:
self.logger.error(f"Chart Trade: Error rendering trade layer: {e}")
# Add error annotation to chart
fig.add_annotation(
text=f"Trade Rendering Error: {str(e)}",
x=0.5, y=0.9,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="red", size=10)
)
return fig
# Convenience functions for creating signal layers
def create_trading_signal_layer(bot_id: Optional[int] = None,
confidence_threshold: float = 0.3,
signal_types: List[str] = None,
**kwargs) -> TradingSignalLayer:
"""
Create a trading signal layer with common configurations.
Args:
bot_id: Filter signals by specific bot (None for all bots)
confidence_threshold: Minimum confidence to display signals
signal_types: Signal types to display (['buy', 'sell'] by default)
**kwargs: Additional configuration options
Returns:
Configured TradingSignalLayer instance
"""
if signal_types is None:
signal_types = ['buy', 'sell']
config = SignalLayerConfig(
name=f"Bot {bot_id} Signals" if bot_id else "Trading Signals",
enabled=True,
signal_types=signal_types,
confidence_threshold=confidence_threshold,
bot_id=bot_id,
marker_size=kwargs.get('marker_size', 10),
show_confidence=kwargs.get('show_confidence', True),
show_price_labels=kwargs.get('show_price_labels', True),
**{k: v for k, v in kwargs.items() if k not in ['marker_size', 'show_confidence', 'show_price_labels']}
)
return TradingSignalLayer(config)
def create_buy_signals_only_layer(**kwargs) -> TradingSignalLayer:
"""Create a signal layer that shows only buy signals."""
return create_trading_signal_layer(signal_types=['buy'], **kwargs)
def create_sell_signals_only_layer(**kwargs) -> TradingSignalLayer:
"""Create a signal layer that shows only sell signals."""
return create_trading_signal_layer(signal_types=['sell'], **kwargs)
def create_high_confidence_signals_layer(confidence_threshold: float = 0.7, **kwargs) -> TradingSignalLayer:
"""Create a signal layer for high-confidence signals only."""
return create_trading_signal_layer(
confidence_threshold=confidence_threshold,
**kwargs
)
# Convenience functions for creating trade layers
def create_trade_execution_layer(bot_id: Optional[int] = None,
show_pnl: bool = True,
show_trade_lines: bool = True,
**kwargs) -> TradeExecutionLayer:
"""
Create a trade execution layer with common configurations.
Args:
bot_id: Filter trades by specific bot (None for all bots)
show_pnl: Show profit/loss information
show_trade_lines: Draw lines connecting entry/exit points
**kwargs: Additional configuration options
Returns:
Configured TradeExecutionLayer instance
"""
config = TradeLayerConfig(
name=f"Bot {bot_id} Trades" if bot_id else "Trade Executions",
enabled=True,
show_pnl=show_pnl,
show_trade_lines=show_trade_lines,
bot_id=bot_id,
show_quantity=kwargs.get('show_quantity', True),
show_fees=kwargs.get('show_fees', True),
trade_marker_size=kwargs.get('trade_marker_size', 12),
min_pnl_display=kwargs.get('min_pnl_display', None),
**{k: v for k, v in kwargs.items() if k not in ['show_quantity', 'show_fees', 'trade_marker_size', 'min_pnl_display']}
)
return TradeExecutionLayer(config)
def create_profitable_trades_only_layer(**kwargs) -> TradeExecutionLayer:
"""Create a trade layer that shows only profitable trades."""
return create_trade_execution_layer(min_pnl_display=0.01, **kwargs)
def create_losing_trades_only_layer(**kwargs) -> TradeExecutionLayer:
"""Create a trade layer that shows only losing trades (for analysis)."""
config = kwargs.copy()
config['min_pnl_display'] = -float('inf') # Show all losing trades
layer = create_trade_execution_layer(**config)
# Override filter to show only losing trades
original_filter = layer.filter_trades_by_config
def losing_trades_filter(trades):
filtered = original_filter(trades)
if not filtered.empty and 'pnl' in filtered.columns:
filtered = filtered[filtered['pnl'] < 0]
return filtered
layer.filter_trades_by_config = losing_trades_filter
return layer
@dataclass
class SupportResistanceLayerConfig(LayerConfig):
"""Extended configuration for support/resistance line layers"""
line_types: List[str] = None # ['support', 'resistance', 'trend'] or subset
line_width: int = 2 # Width of support/resistance lines
line_opacity: float = 0.7 # Opacity of lines
show_price_labels: bool = True # Show price labels on lines
show_break_points: bool = True # Show where price breaks S/R levels
auto_detect: bool = False # Auto-detect S/R levels from price data
manual_levels: List[Dict[str, Any]] = None # Manual S/R levels
sensitivity: float = 0.02 # Price sensitivity for level detection (2% default)
min_touches: int = 2 # Minimum touches required for valid S/R level
def __post_init__(self):
super().__post_init__()
if self.line_types is None:
self.line_types = ['support', 'resistance']
if self.manual_levels is None:
self.manual_levels = []
class BaseSupportResistanceLayer(BaseLayer):
"""
Base class for support/resistance line layers.
"""
def __init__(self, config: SupportResistanceLayerConfig):
"""
Initialize base support/resistance layer.
Args:
config: Support/resistance layer configuration
"""
super().__init__(config)
self.sr_data = None
# Support/resistance styling defaults
self.sr_colors = {
'support': '#4caf50', # Green for support
'resistance': '#f44336', # Red for resistance
'trend': '#2196f3', # Blue for trend lines
'broken_support': '#ff9800', # Orange for broken support (becomes resistance)
'broken_resistance': '#9c27b0' # Purple for broken resistance (becomes support)
}
self.line_styles = {
'support': 'solid',
'resistance': 'solid',
'trend': 'dash',
'broken_support': 'dot',
'broken_resistance': 'dot'
}
def validate_sr_data(self, sr_levels: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool:
"""
Validate support/resistance data structure.
Args:
sr_levels: Support/resistance level data
Returns:
True if data is valid for S/R rendering
"""
try:
# Clear previous errors
self.error_handler.clear_errors()
# Convert to DataFrame if needed
if isinstance(sr_levels, list):
if not sr_levels:
# Empty levels are valid (no S/R to show)
return True
df = pd.DataFrame(sr_levels)
else:
df = sr_levels.copy()
# Check required columns for S/R levels
required_columns = ['price_level', 'line_type']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
error = ChartError(
code='MISSING_SR_COLUMNS',
message=f'Missing S/R columns: {missing_columns}',
severity=ErrorSeverity.ERROR,
context={
'missing_columns': missing_columns,
'available_columns': list(df.columns),
'layer_type': 'support_resistance'
},
recovery_suggestion=f'Ensure S/R data contains: {required_columns}'
)
self.error_handler.errors.append(error)
return False
# Validate line types
valid_line_types = {'support', 'resistance', 'trend'}
invalid_lines = df[~df['line_type'].isin(valid_line_types)]
if not invalid_lines.empty:
error = ChartError(
code='INVALID_SR_TYPES',
message=f'Invalid S/R line types: {set(invalid_lines["line_type"].unique())}',
severity=ErrorSeverity.WARNING,
context={
'invalid_types': list(invalid_lines['line_type'].unique()),
'valid_types': list(valid_line_types)
},
recovery_suggestion='Line types must be: support, resistance, or trend'
)
self.error_handler.warnings.append(error)
# Validate positive price levels
invalid_prices = df[df['price_level'] <= 0]
if not invalid_prices.empty:
error = ChartError(
code='INVALID_SR_PRICES',
message=f'Invalid price levels found (must be > 0)',
severity=ErrorSeverity.WARNING,
context={'invalid_count': len(invalid_prices)},
recovery_suggestion='Price levels must be positive values'
)
self.error_handler.warnings.append(error)
return True
except Exception as e:
self.logger.error(f"Chart Support Resistance: Error validating S/R data: {e}")
error = ChartError(
code='SR_VALIDATION_ERROR',
message=f'S/R validation failed: {str(e)}',
severity=ErrorSeverity.ERROR,
context={'exception': str(e), 'layer_type': 'support_resistance'}
)
self.error_handler.errors.append(error)
return False
def detect_support_resistance_levels(self, data: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Auto-detect support and resistance levels from price data.
Args:
data: OHLCV market data
Returns:
List of detected S/R levels
"""
try:
sr_levels = []
if data.empty:
return sr_levels
# Simple pivot point detection for support/resistance
window = 5 # Look for pivots in 5-period windows
sensitivity = self.config.sensitivity
highs = data['high'].values
lows = data['low'].values
timestamps = data['timestamp'].values
# Find pivot highs (potential resistance)
for i in range(window, len(highs) - window):
is_pivot_high = True
current_high = highs[i]
# Check if this is a local maximum
for j in range(i - window, i + window + 1):
if j != i and highs[j] >= current_high:
is_pivot_high = False
break
if is_pivot_high:
# Count how many times price touched this level
touches = 0
level_range = current_high * sensitivity
for price in highs:
if abs(price - current_high) <= level_range:
touches += 1
if touches >= self.config.min_touches:
sr_levels.append({
'price_level': current_high,
'line_type': 'resistance',
'strength': touches,
'first_touch': timestamps[i],
'last_touch': timestamps[i],
'touch_count': touches
})
# Find pivot lows (potential support)
for i in range(window, len(lows) - window):
is_pivot_low = True
current_low = lows[i]
# Check if this is a local minimum
for j in range(i - window, i + window + 1):
if j != i and lows[j] <= current_low:
is_pivot_low = False
break
if is_pivot_low:
# Count how many times price touched this level
touches = 0
level_range = current_low * sensitivity
for price in lows:
if abs(price - current_low) <= level_range:
touches += 1
if touches >= self.config.min_touches:
sr_levels.append({
'price_level': current_low,
'line_type': 'support',
'strength': touches,
'first_touch': timestamps[i],
'last_touch': timestamps[i],
'touch_count': touches
})
# Sort by strength (touch count) and remove duplicates
sr_levels = sorted(sr_levels, key=lambda x: x['strength'], reverse=True)
# Remove levels that are too close to each other
filtered_levels = []
for level in sr_levels:
is_duplicate = False
for existing in filtered_levels:
if abs(level['price_level'] - existing['price_level']) / existing['price_level'] < sensitivity:
is_duplicate = True
break
if not is_duplicate:
filtered_levels.append(level)
self.logger.info(f"Detected {len(filtered_levels)} S/R levels from {len(data)} candles")
return filtered_levels
except Exception as e:
self.logger.error(f"Chart Support Resistance: Error detecting S/R levels: {e}")
return []
def filter_sr_by_config(self, sr_levels: pd.DataFrame) -> pd.DataFrame:
"""
Filter support/resistance levels based on configuration.
Args:
sr_levels: Raw S/R level data
Returns:
Filtered S/R level data
"""
try:
if sr_levels.empty:
return sr_levels
filtered = sr_levels.copy()
# Filter by line types
if self.config.line_types:
filtered = filtered[filtered['line_type'].isin(self.config.line_types)]
self.logger.info(f"Filtered S/R levels: {len(sr_levels)} -> {len(filtered)} levels")
return filtered
except Exception as e:
self.logger.error(f"Chart Support Resistance: Error filtering S/R levels: {e}")
return pd.DataFrame()
def create_sr_traces(self, sr_levels: pd.DataFrame, data_range: Tuple[datetime, datetime]) -> List[go.Scatter]:
"""
Create Plotly traces for support/resistance lines.
Args:
sr_levels: Filtered S/R level data
data_range: (start_time, end_time) for drawing lines
Returns:
List of Plotly traces for S/R lines
"""
traces = []
try:
if sr_levels.empty:
return traces
start_time, end_time = data_range
# Group levels by type
for line_type in sr_levels['line_type'].unique():
type_levels = sr_levels[sr_levels['line_type'] == line_type]
if type_levels.empty:
continue
# Create horizontal lines for each level
for _, level in type_levels.iterrows():
price = level['price_level']
# Prepare hover text
hover_parts = [
f"{level['line_type'].upper()}: ${price:.4f}"
]
if 'strength' in level:
hover_parts.append(f"Strength: {level['strength']}")
if 'touch_count' in level:
hover_parts.append(f"Touches: {level['touch_count']}")
hover_text = "<br>".join(hover_parts)
# Create horizontal line trace
line_trace = go.Scatter(
x=[start_time, end_time],
y=[price, price],
mode='lines',
line=dict(
color=self.sr_colors.get(line_type, '#666666'),
width=self.config.line_width,
dash=self.line_styles.get(line_type, 'solid')
),
opacity=self.config.line_opacity,
name=f"{line_type.upper()} ${price:.2f}",
text=hover_text,
hoverinfo='text',
showlegend=True,
legendgroup=f"sr_{line_type}"
)
traces.append(line_trace)
# Add price labels if enabled
if self.config.show_price_labels:
label_trace = go.Scatter(
x=[end_time],
y=[price],
mode='text',
text=[f"${price:.2f}"],
textposition='middle right',
textfont=dict(
size=10,
color=self.sr_colors.get(line_type, '#666666')
),
showlegend=False,
hoverinfo='skip'
)
traces.append(label_trace)
return traces
except Exception as e:
self.logger.error(f"Chart Support Resistance: Error creating S/R traces: {e}")
# Return error trace
error_trace = self.create_error_trace(f"Error displaying S/R lines: {str(e)}")
return [error_trace]
def is_enabled(self) -> bool:
"""Check if the S/R layer is enabled."""
return self.config.enabled
def is_overlay(self) -> bool:
"""S/R layers are always overlays on the main chart."""
return True
def get_subplot_row(self) -> Optional[int]:
"""S/R layers appear on main chart (no subplot)."""
return None
class SupportResistanceLayer(BaseSupportResistanceLayer):
"""
Support and resistance line layer for displaying key price levels.
"""
def __init__(self, config: SupportResistanceLayerConfig = None):
"""
Initialize support/resistance layer.
Args:
config: S/R layer configuration (optional, uses defaults)
"""
if config is None:
config = SupportResistanceLayerConfig(
name="Support/Resistance",
enabled=True,
line_types=['support', 'resistance'],
line_width=2,
line_opacity=0.7,
show_price_labels=True,
auto_detect=True,
sensitivity=0.02,
min_touches=2
)
super().__init__(config)
self.logger.info(f"Initialized SupportResistanceLayer: {config.name}")
def render(self, fig: go.Figure, data: pd.DataFrame, sr_levels: pd.DataFrame = None, **kwargs) -> go.Figure:
"""
Render support/resistance lines on the chart.
Args:
fig: Plotly figure to render onto
data: Market data (OHLCV format)
sr_levels: Manual S/R level data (optional)
**kwargs: Additional rendering parameters
Returns:
Updated figure with S/R overlays
"""
try:
# Determine data time range for drawing lines
if data.empty:
self.logger.warning("No market data provided for S/R rendering")
return fig
start_time = data['timestamp'].min()
end_time = data['timestamp'].max()
data_range = (start_time, end_time)
# Combine manual levels and auto-detected levels
combined_levels = []
# Add manual levels from configuration
if self.config.manual_levels:
for level in self.config.manual_levels:
if 'price_level' in level and 'line_type' in level:
combined_levels.append(level)
# Add manual levels from parameter
if sr_levels is not None and not sr_levels.empty:
# Validate manual S/R data
if self.validate_sr_data(sr_levels):
combined_levels.extend(sr_levels.to_dict('records'))
# Auto-detect levels if enabled
if self.config.auto_detect:
detected_levels = self.detect_support_resistance_levels(data)
combined_levels.extend(detected_levels)
if not combined_levels:
self.logger.info("No S/R levels to display")
return fig
# Convert to DataFrame and filter
sr_df = pd.DataFrame(combined_levels)
# Validate combined data
if not self.validate_sr_data(sr_df):
self.logger.warning("S/R data validation failed")
error_message = self.error_handler.get_user_friendly_message()
fig.add_annotation(
text=f"S/R Error: {error_message}",
x=0.5, y=0.95,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="orange", size=10)
)
return fig
# Filter S/R levels based on configuration
filtered_sr = self.filter_sr_by_config(sr_df)
if filtered_sr.empty:
self.logger.info("No S/R levels remain after filtering")
return fig
# Create S/R traces
sr_traces = self.create_sr_traces(filtered_sr, data_range)
# Add traces to figure
for trace in sr_traces:
fig.add_trace(trace)
# Store processed data for potential reuse
self.sr_data = filtered_sr
self.logger.info(f"Successfully rendered {len(filtered_sr)} S/R levels")
return fig
except Exception as e:
self.logger.error(f"Chart Support Resistance: Error rendering S/R layer: {e}")
# Add error annotation to chart
fig.add_annotation(
text=f"S/R Rendering Error: {str(e)}",
x=0.5, y=0.9,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="orange", size=10)
)
return fig
# Convenience functions for creating support/resistance layers
def create_support_resistance_layer(auto_detect: bool = True,
manual_levels: List[Dict[str, Any]] = None,
sensitivity: float = 0.02,
line_types: List[str] = None,
**kwargs) -> SupportResistanceLayer:
"""
Create a support/resistance layer with common configurations.
Args:
auto_detect: Automatically detect S/R levels from price data
manual_levels: List of manual S/R levels to display
sensitivity: Price sensitivity for level detection (2% default)
line_types: Types of lines to display (['support', 'resistance'] by default)
**kwargs: Additional configuration options
Returns:
Configured SupportResistanceLayer instance
"""
if line_types is None:
line_types = ['support', 'resistance']
if manual_levels is None:
manual_levels = []
config = SupportResistanceLayerConfig(
name="Support/Resistance",
enabled=True,
line_types=line_types,
auto_detect=auto_detect,
manual_levels=manual_levels,
sensitivity=sensitivity,
line_width=kwargs.get('line_width', 2),
line_opacity=kwargs.get('line_opacity', 0.7),
show_price_labels=kwargs.get('show_price_labels', True),
min_touches=kwargs.get('min_touches', 2),
**{k: v for k, v in kwargs.items() if k not in ['line_width', 'line_opacity', 'show_price_labels', 'min_touches']}
)
return SupportResistanceLayer(config)
def create_support_only_layer(**kwargs) -> SupportResistanceLayer:
"""Create a layer that shows only support levels."""
return create_support_resistance_layer(line_types=['support'], **kwargs)
def create_resistance_only_layer(**kwargs) -> SupportResistanceLayer:
"""Create a layer that shows only resistance levels."""
return create_support_resistance_layer(line_types=['resistance'], **kwargs)
def create_trend_lines_layer(manual_levels: List[Dict[str, Any]] = None, **kwargs) -> SupportResistanceLayer:
"""
Create a layer for manual trend lines.
Args:
manual_levels: List of trend line definitions
**kwargs: Additional configuration options
Returns:
Configured SupportResistanceLayer for trend lines
"""
if manual_levels is None:
manual_levels = []
return create_support_resistance_layer(
auto_detect=False, # Trend lines are usually manual
line_types=['trend'],
manual_levels=manual_levels,
**kwargs
)
def create_key_levels_layer(levels: List[float],
level_type: str = 'resistance',
**kwargs) -> SupportResistanceLayer:
"""
Create a layer for specific price levels (e.g., round numbers, previous highs/lows).
Args:
levels: List of price levels to display
level_type: Type of level ('support', 'resistance', or 'trend')
**kwargs: Additional configuration options
Returns:
Configured SupportResistanceLayer for key levels
"""
manual_levels = [
{'price_level': level, 'line_type': level_type, 'strength': 1}
for level in levels
]
return create_support_resistance_layer(
auto_detect=False,
manual_levels=manual_levels,
line_types=[level_type],
**kwargs
)
@dataclass
class CustomStrategySignalConfig(LayerConfig):
"""Configuration for custom strategy signal definitions"""
signal_definitions: Dict[str, Dict[str, Any]] = None # Custom signal type definitions
custom_colors: Dict[str, str] = None # Custom colors for signal types
custom_symbols: Dict[str, str] = None # Custom symbols for signal types
custom_sizes: Dict[str, int] = None # Custom sizes for signal types
strategy_name: str = "Custom Strategy" # Name of the strategy
allow_multiple_signals: bool = True # Allow multiple signals at same time
signal_priority: Dict[str, int] = None # Priority order for overlapping signals
def __post_init__(self):
super().__post_init__()
if self.signal_definitions is None:
self.signal_definitions = {}
if self.custom_colors is None:
self.custom_colors = {}
if self.custom_symbols is None:
self.custom_symbols = {}
if self.custom_sizes is None:
self.custom_sizes = {}
if self.signal_priority is None:
self.signal_priority = {}
class CustomStrategySignalInterface:
"""
Interface for custom trading strategies to define their signal visualization.
"""
def __init__(self):
"""Initialize custom strategy signal interface."""
self.signal_types = {}
self.signal_validators = {}
self.signal_renderers = {}
def register_signal_type(self,
signal_type: str,
color: str,
symbol: str,
size: int = 12,
description: str = "",
validator: callable = None,
renderer: callable = None) -> None:
"""
Register a custom signal type with visualization properties.
Args:
signal_type: Unique signal type identifier
color: Color for the signal marker (hex or CSS color)
symbol: Plotly marker symbol
size: Marker size in pixels
description: Human-readable description
validator: Optional custom validation function
renderer: Optional custom rendering function
"""
self.signal_types[signal_type] = {
'color': color,
'symbol': symbol,
'size': size,
'description': description
}
if validator:
self.signal_validators[signal_type] = validator
if renderer:
self.signal_renderers[signal_type] = renderer
def get_signal_style(self, signal_type: str) -> Dict[str, Any]:
"""
Get style properties for a signal type.
Args:
signal_type: Signal type identifier
Returns:
Style properties dictionary
"""
return self.signal_types.get(signal_type, {
'color': '#666666',
'symbol': 'circle',
'size': 10,
'description': 'Unknown signal'
})
def validate_custom_signal(self, signal_type: str, signal_data: Dict[str, Any]) -> bool:
"""
Validate custom signal data using registered validators.
Args:
signal_type: Signal type to validate
signal_data: Signal data dictionary
Returns:
True if signal is valid
"""
if signal_type in self.signal_validators:
return self.signal_validators[signal_type](signal_data)
return True # Default to valid if no validator
def render_custom_signal(self, signal_type: str, signal_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Render custom signal using registered renderers.
Args:
signal_type: Signal type to render
signal_data: Signal data dictionary
Returns:
Rendered signal properties
"""
if signal_type in self.signal_renderers:
return self.signal_renderers[signal_type](signal_data)
return signal_data # Default passthrough
def get_all_signal_types(self) -> List[str]:
"""Get list of all registered signal types."""
return list(self.signal_types.keys())
class BaseCustomStrategyLayer(BaseLayer):
"""
Base class for custom strategy signal layers.
"""
def __init__(self, config: CustomStrategySignalConfig):
"""
Initialize custom strategy signal layer.
Args:
config: Custom strategy signal configuration
"""
super().__init__(config)
self.signal_interface = CustomStrategySignalInterface()
self.strategy_data = None
# Register custom signal types from config
self._register_config_signals()
# Default fallback styling
self.default_colors = {
'entry_long': '#4caf50', # Green
'exit_long': '#81c784', # Light green
'entry_short': '#f44336', # Red
'exit_short': '#e57373', # Light red
'stop_loss': '#ff5722', # Deep orange
'take_profit': '#2196f3', # Blue
'rebalance': '#9c27b0', # Purple
'hedge': '#ff9800', # Orange
}
self.default_symbols = {
'entry_long': 'triangle-up',
'exit_long': 'triangle-up-open',
'entry_short': 'triangle-down',
'exit_short': 'triangle-down-open',
'stop_loss': 'x',
'take_profit': 'star',
'rebalance': 'diamond',
'hedge': 'hexagon',
}
def _register_config_signals(self):
"""Register signal types from configuration."""
for signal_type, definition in self.config.signal_definitions.items():
color = self.config.custom_colors.get(signal_type, definition.get('color', '#666666'))
symbol = self.config.custom_symbols.get(signal_type, definition.get('symbol', 'circle'))
size = self.config.custom_sizes.get(signal_type, definition.get('size', 12))
description = definition.get('description', f'{signal_type} signal')
self.signal_interface.register_signal_type(
signal_type=signal_type,
color=color,
symbol=symbol,
size=size,
description=description
)
def validate_strategy_data(self, signals: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool:
"""
Validate custom strategy signal data.
Args:
signals: Strategy signal data
Returns:
True if data is valid
"""
try:
# Clear previous errors
self.error_handler.clear_errors()
# Convert to DataFrame if needed
if isinstance(signals, list):
if not signals:
return True
df = pd.DataFrame(signals)
else:
df = signals.copy()
# Check required columns
required_columns = ['timestamp', 'signal_type', 'price']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
error = ChartError(
code='MISSING_STRATEGY_COLUMNS',
message=f'Missing strategy signal columns: {missing_columns}',
severity=ErrorSeverity.ERROR,
context={
'missing_columns': missing_columns,
'available_columns': list(df.columns),
'layer_type': 'custom_strategy'
},
recovery_suggestion=f'Ensure strategy data contains: {required_columns}'
)
self.error_handler.errors.append(error)
return False
# Validate custom signal types using interface
for _, signal in df.iterrows():
signal_data = signal.to_dict()
signal_type = signal_data.get('signal_type')
if not self.signal_interface.validate_custom_signal(signal_type, signal_data):
error = ChartError(
code='INVALID_CUSTOM_SIGNAL',
message=f'Custom signal validation failed for type: {signal_type}',
severity=ErrorSeverity.WARNING,
context={
'signal_type': signal_type,
'signal_data': signal_data
},
recovery_suggestion='Check custom signal validator logic'
)
self.error_handler.warnings.append(error)
return True
except Exception as e:
self.logger.error(f"Chart Custom Strategy: Error validating strategy data: {e}")
error = ChartError(
code='STRATEGY_VALIDATION_ERROR',
message=f'Strategy validation failed: {str(e)}',
severity=ErrorSeverity.ERROR,
context={'exception': str(e), 'layer_type': 'custom_strategy'}
)
self.error_handler.errors.append(error)
return False
def create_strategy_traces(self, signals: pd.DataFrame) -> List[go.Scatter]:
"""
Create Plotly traces for custom strategy signals.
Args:
signals: Filtered strategy signal data
Returns:
List of Plotly traces for strategy signals
"""
traces = []
try:
if signals.empty:
return traces
# Group signals by type for better legend organization
for signal_type in signals['signal_type'].unique():
type_signals = signals[signals['signal_type'] == signal_type]
if type_signals.empty:
continue
# Get style for this signal type
style = self.signal_interface.get_signal_style(signal_type)
# Prepare hover text
hover_texts = []
for _, signal in type_signals.iterrows():
# Allow custom renderer to modify signal data
rendered_signal = self.signal_interface.render_custom_signal(
signal_type, signal.to_dict()
)
hover_parts = [
f"{signal_type.upper()}: ${signal['price']:.4f}",
f"Time: {signal['timestamp']}"
]
# Add custom fields if present
for field in ['confidence', 'quantity', 'reason', 'metadata']:
if field in rendered_signal and rendered_signal[field] is not None:
if field == 'confidence':
hover_parts.append(f"Confidence: {rendered_signal[field]:.2%}")
elif field == 'quantity':
hover_parts.append(f"Quantity: {rendered_signal[field]}")
elif field == 'reason':
hover_parts.append(f"Reason: {rendered_signal[field]}")
elif field == 'metadata' and isinstance(rendered_signal[field], dict):
for key, value in rendered_signal[field].items():
hover_parts.append(f"{key}: {value}")
hover_texts.append("<br>".join(hover_parts))
# Create scatter trace for this signal type
trace = go.Scatter(
x=type_signals['timestamp'],
y=type_signals['price'],
mode='markers',
marker=dict(
symbol=style['symbol'],
size=style['size'],
color=style['color'],
line=dict(width=1, color='white'),
opacity=0.8
),
name=f"{self.config.strategy_name} - {signal_type.replace('_', ' ').title()}",
text=hover_texts,
hoverinfo='text',
showlegend=True,
legendgroup=f"strategy_{signal_type}"
)
traces.append(trace)
return traces
except Exception as e:
self.logger.error(f"Chart Custom Strategy: Error creating strategy traces: {e}")
# Return error trace
error_trace = self.create_error_trace(f"Error displaying strategy signals: {str(e)}")
return [error_trace]
def is_enabled(self) -> bool:
"""Check if the custom strategy layer is enabled."""
return self.config.enabled
def is_overlay(self) -> bool:
"""Custom strategy layers are overlays on the main chart."""
return True
def get_subplot_row(self) -> Optional[int]:
"""Custom strategy layers appear on main chart (no subplot)."""
return None
class CustomStrategySignalLayer(BaseCustomStrategyLayer):
"""
Custom strategy signal layer for flexible strategy signal visualization.
"""
def __init__(self, config: CustomStrategySignalConfig = None):
"""
Initialize custom strategy signal layer.
Args:
config: Custom strategy signal configuration (optional)
"""
if config is None:
config = CustomStrategySignalConfig(
name="Custom Strategy",
enabled=True,
strategy_name="Custom Strategy",
signal_definitions={},
allow_multiple_signals=True
)
super().__init__(config)
self.logger.info(f"Initialized CustomStrategySignalLayer: {config.strategy_name}")
def add_signal_type(self, signal_type: str, color: str, symbol: str, size: int = 12, **kwargs):
"""
Add a new signal type to this layer.
Args:
signal_type: Signal type identifier
color: Signal color
symbol: Plotly marker symbol
size: Marker size
**kwargs: Additional properties
"""
self.signal_interface.register_signal_type(
signal_type=signal_type,
color=color,
symbol=symbol,
size=size,
**kwargs
)
self.logger.info(f"Added signal type '{signal_type}' to {self.config.strategy_name}")
def render(self, fig: go.Figure, data: pd.DataFrame, signals: pd.DataFrame = None, **kwargs) -> go.Figure:
"""
Render custom strategy signals on the chart.
Args:
fig: Plotly figure to render onto
data: Market data (OHLCV format)
signals: Strategy signal data (optional)
**kwargs: Additional rendering parameters
Returns:
Updated figure with strategy signal overlays
"""
try:
if signals is None or signals.empty:
self.logger.info(f"No signals provided for {self.config.strategy_name}")
return fig
# Validate strategy signal data
if not self.validate_strategy_data(signals):
self.logger.warning(f"Strategy signal data validation failed for {self.config.strategy_name}")
error_message = self.error_handler.get_user_friendly_message()
fig.add_annotation(
text=f"Strategy Error: {error_message}",
x=0.5, y=0.95,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="purple", size=10)
)
return fig
# Create strategy signal traces
strategy_traces = self.create_strategy_traces(signals)
# Add traces to figure
for trace in strategy_traces:
fig.add_trace(trace)
# Store processed data for potential reuse
self.strategy_data = signals
self.logger.info(f"Successfully rendered {len(signals)} {self.config.strategy_name} signals")
return fig
except Exception as e:
self.logger.error(f"Chart Custom Strategy: Error rendering {self.config.strategy_name} layer: {e}")
# Add error annotation to chart
fig.add_annotation(
text=f"Strategy Rendering Error: {str(e)}",
x=0.5, y=0.9,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="purple", size=10)
)
return fig
# Convenience functions for creating custom strategy signal layers
def create_custom_strategy_layer(strategy_name: str,
signal_definitions: Dict[str, Dict[str, Any]] = None,
**kwargs) -> CustomStrategySignalLayer:
"""
Create a custom strategy signal layer.
Args:
strategy_name: Name of the strategy
signal_definitions: Dictionary of signal type definitions
**kwargs: Additional configuration options
Returns:
Configured CustomStrategySignalLayer instance
"""
if signal_definitions is None:
signal_definitions = {}
config = CustomStrategySignalConfig(
name=f"{strategy_name} Signals",
enabled=True,
strategy_name=strategy_name,
signal_definitions=signal_definitions,
custom_colors=kwargs.get('custom_colors', {}),
custom_symbols=kwargs.get('custom_symbols', {}),
custom_sizes=kwargs.get('custom_sizes', {}),
allow_multiple_signals=kwargs.get('allow_multiple_signals', True),
signal_priority=kwargs.get('signal_priority', {}),
**{k: v for k, v in kwargs.items() if k not in [
'custom_colors', 'custom_symbols', 'custom_sizes',
'allow_multiple_signals', 'signal_priority'
]}
)
return CustomStrategySignalLayer(config)
def create_pairs_trading_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for pairs trading signals."""
signal_definitions = {
'long_spread': {
'color': '#4caf50',
'symbol': 'triangle-up',
'size': 12,
'description': 'Long spread signal'
},
'short_spread': {
'color': '#f44336',
'symbol': 'triangle-down',
'size': 12,
'description': 'Short spread signal'
},
'close_spread': {
'color': '#ff9800',
'symbol': 'circle',
'size': 10,
'description': 'Close spread signal'
}
}
return create_custom_strategy_layer(
strategy_name="Pairs Trading",
signal_definitions=signal_definitions,
**kwargs
)
def create_momentum_strategy_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for momentum trading signals."""
signal_definitions = {
'momentum_buy': {
'color': '#2e7d32',
'symbol': 'triangle-up',
'size': 14,
'description': 'Momentum buy signal'
},
'momentum_sell': {
'color': '#c62828',
'symbol': 'triangle-down',
'size': 14,
'description': 'Momentum sell signal'
},
'momentum_exit': {
'color': '#1565c0',
'symbol': 'circle-open',
'size': 12,
'description': 'Momentum exit signal'
}
}
return create_custom_strategy_layer(
strategy_name="Momentum Strategy",
signal_definitions=signal_definitions,
**kwargs
)
def create_arbitrage_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for arbitrage opportunity signals."""
signal_definitions = {
'arb_opportunity': {
'color': '#6a1b9a',
'symbol': 'star',
'size': 16,
'description': 'Arbitrage opportunity'
},
'arb_entry': {
'color': '#8e24aa',
'symbol': 'diamond',
'size': 12,
'description': 'Arbitrage entry'
},
'arb_exit': {
'color': '#ab47bc',
'symbol': 'diamond-open',
'size': 12,
'description': 'Arbitrage exit'
}
}
return create_custom_strategy_layer(
strategy_name="Arbitrage",
signal_definitions=signal_definitions,
**kwargs
)
def create_mean_reversion_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for mean reversion strategy signals."""
signal_definitions = {
'oversold_entry': {
'color': '#388e3c',
'symbol': 'triangle-up',
'size': 12,
'description': 'Oversold entry signal'
},
'overbought_entry': {
'color': '#d32f2f',
'symbol': 'triangle-down',
'size': 12,
'description': 'Overbought entry signal'
},
'mean_revert': {
'color': '#1976d2',
'symbol': 'circle',
'size': 10,
'description': 'Mean reversion exit'
}
}
return create_custom_strategy_layer(
strategy_name="Mean Reversion",
signal_definitions=signal_definitions,
**kwargs
)
def create_breakout_strategy_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for breakout strategy signals."""
signal_definitions = {
'breakout_long': {
'color': '#43a047',
'symbol': 'triangle-up',
'size': 14,
'description': 'Breakout long signal'
},
'breakout_short': {
'color': '#e53935',
'symbol': 'triangle-down',
'size': 14,
'description': 'Breakout short signal'
},
'false_breakout': {
'color': '#fb8c00',
'symbol': 'x',
'size': 12,
'description': 'False breakout signal'
}
}
return create_custom_strategy_layer(
strategy_name="Breakout",
signal_definitions=signal_definitions,
**kwargs
)
@dataclass
class SignalStyleConfig:
"""Configuration for signal visual styling and customization"""
color_scheme: str = "default" # Color scheme name
custom_colors: Dict[str, str] = None # Custom color mappings
marker_shapes: Dict[str, str] = None # Custom marker shapes
marker_sizes: Dict[str, int] = None # Custom marker sizes
opacity: float = 0.8 # Signal marker opacity
border_width: int = 1 # Marker border width
border_color: str = "white" # Marker border color
gradient_effects: bool = False # Enable gradient effects
animation_enabled: bool = False # Enable marker animations
hover_effects: Dict[str, Any] = None # Custom hover styling
def __post_init__(self):
if self.custom_colors is None:
self.custom_colors = {}
if self.marker_shapes is None:
self.marker_shapes = {}
if self.marker_sizes is None:
self.marker_sizes = {}
if self.hover_effects is None:
self.hover_effects = {}
class SignalStyleManager:
"""
Manager for signal styling, themes, and customization options.
"""
def __init__(self):
"""Initialize signal style manager with predefined themes."""
self.color_schemes = {
'default': {
'buy': '#4caf50',
'sell': '#f44336',
'hold': '#ff9800',
'entry_long': '#4caf50',
'exit_long': '#81c784',
'entry_short': '#f44336',
'exit_short': '#e57373',
'stop_loss': '#ff5722',
'take_profit': '#2196f3'
},
'professional': {
'buy': '#00c853',
'sell': '#d50000',
'hold': '#ff6f00',
'entry_long': '#00c853',
'exit_long': '#69f0ae',
'entry_short': '#d50000',
'exit_short': '#ff5252',
'stop_loss': '#ff1744',
'take_profit': '#2979ff'
},
'colorblind_friendly': {
'buy': '#1f77b4', # Blue
'sell': '#ff7f0e', # Orange
'hold': '#2ca02c', # Green
'entry_long': '#1f77b4',
'exit_long': '#aec7e8',
'entry_short': '#ff7f0e',
'exit_short': '#ffbb78',
'stop_loss': '#d62728',
'take_profit': '#9467bd'
},
'dark_theme': {
'buy': '#66bb6a',
'sell': '#ef5350',
'hold': '#ffa726',
'entry_long': '#66bb6a',
'exit_long': '#a5d6a7',
'entry_short': '#ef5350',
'exit_short': '#ffab91',
'stop_loss': '#ff7043',
'take_profit': '#42a5f5'
},
'minimal': {
'buy': '#424242',
'sell': '#757575',
'hold': '#9e9e9e',
'entry_long': '#424242',
'exit_long': '#616161',
'entry_short': '#757575',
'exit_short': '#bdbdbd',
'stop_loss': '#212121',
'take_profit': '#424242'
}
}
self.marker_shapes = {
'default': {
'buy': 'triangle-up',
'sell': 'triangle-down',
'hold': 'circle',
'entry_long': 'triangle-up',
'exit_long': 'triangle-up-open',
'entry_short': 'triangle-down',
'exit_short': 'triangle-down-open',
'stop_loss': 'x',
'take_profit': 'star'
},
'geometric': {
'buy': 'diamond',
'sell': 'diamond',
'hold': 'square',
'entry_long': 'diamond',
'exit_long': 'diamond-open',
'entry_short': 'diamond',
'exit_short': 'diamond-open',
'stop_loss': 'square',
'take_profit': 'hexagon'
},
'arrows': {
'buy': 'triangle-up',
'sell': 'triangle-down',
'hold': 'circle',
'entry_long': 'triangle-up',
'exit_long': 'triangle-right',
'entry_short': 'triangle-down',
'exit_short': 'triangle-left',
'stop_loss': 'x',
'take_profit': 'cross'
}
}
self.size_schemes = {
'small': {
'default': 8,
'important': 10,
'critical': 12
},
'medium': {
'default': 12,
'important': 14,
'critical': 16
},
'large': {
'default': 16,
'important': 18,
'critical': 20
}
}
def get_signal_style(self, signal_type: str, style_config: SignalStyleConfig) -> Dict[str, Any]:
"""
Get complete styling for a signal type.
Args:
signal_type: Type of signal
style_config: Style configuration
Returns:
Complete style dictionary
"""
# Get base color scheme
color_scheme = self.color_schemes.get(style_config.color_scheme, self.color_schemes['default'])
# Apply custom color if specified
color = style_config.custom_colors.get(signal_type, color_scheme.get(signal_type, '#666666'))
# Get marker shape
shape_scheme = self.marker_shapes.get(style_config.color_scheme, self.marker_shapes['default'])
shape = style_config.marker_shapes.get(signal_type, shape_scheme.get(signal_type, 'circle'))
# Get marker size
size = style_config.marker_sizes.get(signal_type, 12)
return {
'color': color,
'symbol': shape,
'size': size,
'opacity': style_config.opacity,
'border_width': style_config.border_width,
'border_color': style_config.border_color,
'hover_effects': style_config.hover_effects.get(signal_type, {})
}
def create_gradient_colors(self, base_color: str, steps: int = 5) -> List[str]:
"""
Create gradient color variations for enhanced styling.
Args:
base_color: Base hex color
steps: Number of gradient steps
Returns:
List of gradient colors
"""
try:
# Simple gradient implementation
# In a real implementation, you might use a color library
base_rgb = int(base_color[1:], 16)
colors = []
for i in range(steps):
# Create lighter/darker variations
factor = 0.7 + (i * 0.6 / steps) # Range from 0.7 to 1.3
r = min(255, int(((base_rgb >> 16) & 0xFF) * factor))
g = min(255, int(((base_rgb >> 8) & 0xFF) * factor))
b = min(255, int((base_rgb & 0xFF) * factor))
color_hex = f"#{r:02x}{g:02x}{b:02x}"
colors.append(color_hex)
return colors
except Exception:
# Fallback to base color
return [base_color] * steps
def apply_theme(self, theme_name: str, signals: pd.DataFrame) -> Dict[str, Dict[str, Any]]:
"""
Apply a complete theme to signals.
Args:
theme_name: Name of the theme to apply
signals: Signal data
Returns:
Theme styling for all signal types
"""
if theme_name not in self.color_schemes:
theme_name = 'default'
theme_colors = self.color_schemes[theme_name]
theme_shapes = self.marker_shapes.get(theme_name, self.marker_shapes['default'])
styles = {}
if not signals.empty and 'signal_type' in signals.columns:
for signal_type in signals['signal_type'].unique():
styles[signal_type] = {
'color': theme_colors.get(signal_type, '#666666'),
'symbol': theme_shapes.get(signal_type, 'circle'),
'size': 12,
'opacity': 0.8
}
return styles
def create_custom_style(self,
signal_type: str,
color: str = None,
shape: str = None,
size: int = None,
**kwargs) -> Dict[str, Any]:
"""
Create custom style for a specific signal type.
Args:
signal_type: Signal type identifier
color: Custom color
shape: Custom marker shape
size: Custom marker size
**kwargs: Additional style properties
Returns:
Custom style dictionary
"""
style = {
'color': color or '#666666',
'symbol': shape or 'circle',
'size': size or 12,
'opacity': kwargs.get('opacity', 0.8),
'border_width': kwargs.get('border_width', 1),
'border_color': kwargs.get('border_color', 'white')
}
return style
class EnhancedSignalLayer(BaseSignalLayer):
"""
Enhanced signal layer with advanced styling and customization options.
"""
def __init__(self, config: SignalLayerConfig, style_config: SignalStyleConfig = None):
"""
Initialize enhanced signal layer.
Args:
config: Signal layer configuration
style_config: Style configuration (optional)
"""
super().__init__(config)
if style_config is None:
style_config = SignalStyleConfig()
self.style_config = style_config
self.style_manager = SignalStyleManager()
self.logger.info(f"Enhanced Signal Layer: Initialized with {style_config.color_scheme} theme")
def update_style_config(self, style_config: SignalStyleConfig):
"""Update the style configuration."""
self.style_config = style_config
self.logger.info(f"Enhanced Signal Layer: Updated style config to {style_config.color_scheme} theme")
def set_color_scheme(self, scheme_name: str):
"""
Set the color scheme for signals.
Args:
scheme_name: Name of the color scheme
"""
self.style_config.color_scheme = scheme_name
self.logger.info(f"Enhanced Signal Layer: Set color scheme to: {scheme_name}")
def add_custom_signal_style(self, signal_type: str, color: str, shape: str, size: int = 12):
"""
Add custom styling for a signal type.
Args:
signal_type: Signal type identifier
color: Signal color
shape: Marker shape
size: Marker size
"""
self.style_config.custom_colors[signal_type] = color
self.style_config.marker_shapes[signal_type] = shape
self.style_config.marker_sizes[signal_type] = size
self.logger.info(f"Enhanced Signal Layer: Added custom style for {signal_type}: {color}, {shape}, {size}")
def create_enhanced_signal_traces(self, signals: pd.DataFrame) -> List[go.Scatter]:
"""
Create enhanced signal traces with advanced styling.
Args:
signals: Filtered signal data
Returns:
List of enhanced Plotly traces
"""
traces = []
try:
if signals.empty:
return traces
# Group signals by type for styling
for signal_type in signals['signal_type'].unique():
type_signals = signals[signals['signal_type'] == signal_type]
if type_signals.empty:
continue
# Get enhanced styling
style = self.style_manager.get_signal_style(signal_type, self.style_config)
# Prepare enhanced hover text
hover_texts = []
for _, signal in type_signals.iterrows():
hover_parts = [
f"<b>{signal_type.upper()}</b>",
f"Price: <b>${signal['price']:.4f}</b>",
f"Time: {signal['timestamp']}"
]
if 'confidence' in signal and signal['confidence'] is not None:
confidence = float(signal['confidence'])
hover_parts.append(f"Confidence: <b>{confidence:.1%}</b>")
if 'reason' in signal and signal['reason']:
hover_parts.append(f"Reason: {signal['reason']}")
hover_texts.append("<br>".join(hover_parts))
# Create enhanced marker styling
marker_dict = {
'symbol': style['symbol'],
'size': style['size'],
'color': style['color'],
'opacity': style['opacity'],
'line': dict(
width=style['border_width'],
color=style['border_color']
)
}
# Add gradient effects if enabled
if self.style_config.gradient_effects:
gradient_colors = self.style_manager.create_gradient_colors(style['color'], len(type_signals))
marker_dict['color'] = gradient_colors[:len(type_signals)]
# Create enhanced trace
trace = go.Scatter(
x=type_signals['timestamp'],
y=type_signals['price'],
mode='markers',
marker=marker_dict,
name=f"{signal_type.replace('_', ' ').title()}",
text=hover_texts,
hoverinfo='text',
hovertemplate='%{text}<extra></extra>',
showlegend=True,
legendgroup=f"enhanced_{signal_type}"
)
traces.append(trace)
return traces
except Exception as e:
self.logger.error(f"Enhanced Signal Layer: Error creating enhanced signal traces: {e}")
error_trace = self.create_error_trace(f"Error displaying enhanced signals: {str(e)}")
return [error_trace]
def render(self, fig: go.Figure, data: pd.DataFrame, signals: pd.DataFrame = None, **kwargs) -> go.Figure:
"""
Render enhanced signals with advanced styling.
Args:
fig: Plotly figure to render onto
data: Market data (OHLCV format)
signals: Signal data (optional)
**kwargs: Additional rendering parameters
Returns:
Updated figure with enhanced signal overlays
"""
try:
if signals is None or signals.empty:
self.logger.info("No signals provided for enhanced rendering")
return fig
# Validate signal data
if not self.validate_signal_data(signals):
self.logger.warning("Enhanced signal data validation failed")
error_message = self.error_handler.get_user_friendly_message()
fig.add_annotation(
text=f"Enhanced Signal Error: {error_message}",
x=0.5, y=0.95,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="blue", size=10)
)
return fig
# Filter signals based on configuration
filtered_signals = self.filter_signals_by_config(signals)
if filtered_signals.empty:
self.logger.info("No signals remain after enhanced filtering")
return fig
# Create enhanced signal traces
enhanced_traces = self.create_enhanced_signal_traces(filtered_signals)
# Add traces to figure
for trace in enhanced_traces:
fig.add_trace(trace)
# Store processed data
self.signal_data = filtered_signals
self.logger.info(f"Successfully rendered {len(filtered_signals)} enhanced signals")
return fig
except Exception as e:
self.logger.error(f"Enhanced Signal Layer: Error rendering enhanced signal layer: {e}")
# Add error annotation
fig.add_annotation(
text=f"Enhanced Signal Rendering Error: {str(e)}",
x=0.5, y=0.9,
xref="paper", yref="paper",
showarrow=False,
font=dict(color="blue", size=10)
)
return fig
# Convenience functions for creating custom strategy signal layers
def create_custom_strategy_layer(strategy_name: str,
signal_definitions: Dict[str, Dict[str, Any]] = None,
**kwargs) -> CustomStrategySignalLayer:
"""
Create a custom strategy signal layer.
Args:
strategy_name: Name of the strategy
signal_definitions: Dictionary of signal type definitions
**kwargs: Additional configuration options
Returns:
Configured CustomStrategySignalLayer instance
"""
if signal_definitions is None:
signal_definitions = {}
config = CustomStrategySignalConfig(
name=f"{strategy_name} Signals",
enabled=True,
strategy_name=strategy_name,
signal_definitions=signal_definitions,
custom_colors=kwargs.get('custom_colors', {}),
custom_symbols=kwargs.get('custom_symbols', {}),
custom_sizes=kwargs.get('custom_sizes', {}),
allow_multiple_signals=kwargs.get('allow_multiple_signals', True),
signal_priority=kwargs.get('signal_priority', {}),
**{k: v for k, v in kwargs.items() if k not in [
'custom_colors', 'custom_symbols', 'custom_sizes',
'allow_multiple_signals', 'signal_priority'
]}
)
return CustomStrategySignalLayer(config)
def create_pairs_trading_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for pairs trading signals."""
signal_definitions = {
'long_spread': {
'color': '#4caf50',
'symbol': 'triangle-up',
'size': 12,
'description': 'Long spread signal'
},
'short_spread': {
'color': '#f44336',
'symbol': 'triangle-down',
'size': 12,
'description': 'Short spread signal'
},
'close_spread': {
'color': '#ff9800',
'symbol': 'circle',
'size': 10,
'description': 'Close spread signal'
}
}
return create_custom_strategy_layer(
strategy_name="Pairs Trading",
signal_definitions=signal_definitions,
**kwargs
)
def create_momentum_strategy_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for momentum trading signals."""
signal_definitions = {
'momentum_buy': {
'color': '#2e7d32',
'symbol': 'triangle-up',
'size': 14,
'description': 'Momentum buy signal'
},
'momentum_sell': {
'color': '#c62828',
'symbol': 'triangle-down',
'size': 14,
'description': 'Momentum sell signal'
},
'momentum_exit': {
'color': '#1565c0',
'symbol': 'circle-open',
'size': 12,
'description': 'Momentum exit signal'
}
}
return create_custom_strategy_layer(
strategy_name="Momentum Strategy",
signal_definitions=signal_definitions,
**kwargs
)
def create_arbitrage_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for arbitrage opportunity signals."""
signal_definitions = {
'arb_opportunity': {
'color': '#6a1b9a',
'symbol': 'star',
'size': 16,
'description': 'Arbitrage opportunity'
},
'arb_entry': {
'color': '#8e24aa',
'symbol': 'diamond',
'size': 12,
'description': 'Arbitrage entry'
},
'arb_exit': {
'color': '#ab47bc',
'symbol': 'diamond-open',
'size': 12,
'description': 'Arbitrage exit'
}
}
return create_custom_strategy_layer(
strategy_name="Arbitrage",
signal_definitions=signal_definitions,
**kwargs
)
def create_mean_reversion_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for mean reversion strategy signals."""
signal_definitions = {
'oversold_entry': {
'color': '#388e3c',
'symbol': 'triangle-up',
'size': 12,
'description': 'Oversold entry signal'
},
'overbought_entry': {
'color': '#d32f2f',
'symbol': 'triangle-down',
'size': 12,
'description': 'Overbought entry signal'
},
'mean_revert': {
'color': '#1976d2',
'symbol': 'circle',
'size': 10,
'description': 'Mean reversion exit'
}
}
return create_custom_strategy_layer(
strategy_name="Mean Reversion",
signal_definitions=signal_definitions,
**kwargs
)
def create_breakout_strategy_layer(**kwargs) -> CustomStrategySignalLayer:
"""Create a layer for breakout strategy signals."""
signal_definitions = {
'breakout_long': {
'color': '#43a047',
'symbol': 'triangle-up',
'size': 14,
'description': 'Breakout long signal'
},
'breakout_short': {
'color': '#e53935',
'symbol': 'triangle-down',
'size': 14,
'description': 'Breakout short signal'
},
'false_breakout': {
'color': '#fb8c00',
'symbol': 'x',
'size': 12,
'description': 'False breakout signal'
}
}
return create_custom_strategy_layer(
strategy_name="Breakout",
signal_definitions=signal_definitions,
**kwargs
)
# Convenience functions for creating enhanced signal layers
def create_enhanced_signal_layer(color_scheme: str = "default",
signal_types: List[str] = None,
**kwargs) -> EnhancedSignalLayer:
"""
Create an enhanced signal layer with styling.
Args:
color_scheme: Color scheme name
signal_types: Signal types to display
**kwargs: Additional configuration options
Returns:
Configured EnhancedSignalLayer instance
"""
if signal_types is None:
signal_types = ['buy', 'sell']
signal_config = SignalLayerConfig(
name="Enhanced Signals",
enabled=True,
signal_types=signal_types,
confidence_threshold=kwargs.get('confidence_threshold', 0.0),
show_confidence=kwargs.get('show_confidence', True),
marker_size=kwargs.get('marker_size', 12),
show_price_labels=kwargs.get('show_price_labels', True),
bot_id=kwargs.get('bot_id', None)
)
style_config = SignalStyleConfig(
color_scheme=color_scheme,
custom_colors=kwargs.get('custom_colors', {}),
marker_shapes=kwargs.get('marker_shapes', {}),
marker_sizes=kwargs.get('marker_sizes', {}),
opacity=kwargs.get('opacity', 0.8),
border_width=kwargs.get('border_width', 1),
border_color=kwargs.get('border_color', 'white'),
gradient_effects=kwargs.get('gradient_effects', False),
animation_enabled=kwargs.get('animation_enabled', False)
)
return EnhancedSignalLayer(signal_config, style_config)
def create_professional_signal_layer(**kwargs) -> EnhancedSignalLayer:
"""Create an enhanced signal layer with professional styling."""
return create_enhanced_signal_layer(color_scheme="professional", **kwargs)
def create_colorblind_friendly_signal_layer(**kwargs) -> EnhancedSignalLayer:
"""Create an enhanced signal layer with colorblind-friendly styling."""
return create_enhanced_signal_layer(color_scheme="colorblind_friendly", **kwargs)
def create_dark_theme_signal_layer(**kwargs) -> EnhancedSignalLayer:
"""Create an enhanced signal layer with dark theme styling."""
return create_enhanced_signal_layer(color_scheme="dark_theme", **kwargs)
def create_minimal_signal_layer(**kwargs) -> EnhancedSignalLayer:
"""Create an enhanced signal layer with minimal styling."""
return create_enhanced_signal_layer(color_scheme="minimal", **kwargs)