2025-06-06 11:59:44 +08:00

446 lines
24 KiB
Python

"""
Chart-related callbacks for the dashboard.
"""
from dash import Output, Input, State, Patch, ctx, html, no_update
from datetime import datetime, timedelta
from utils.logger import get_logger
from components.charts import (
create_strategy_chart,
create_chart_with_indicators,
create_error_chart,
get_market_statistics
)
from components.charts.config import get_all_example_strategies
from database.connection import DatabaseManager
from components.charts.builder import ChartBuilder
from components.charts.utils import prepare_chart_data
logger = get_logger("default_logger")
def calculate_time_range(time_range_quick, custom_start_date, custom_end_date, analysis_mode, n_intervals):
"""Calculate days_back and status message based on time range controls."""
try:
# Define predefined quick select options (excluding 'custom' and 'realtime')
predefined_ranges = ['1h', '4h', '6h', '12h', '1d', '3d', '7d', '30d']
# PRIORITY 1: Explicit Predefined Dropdown Selection
if time_range_quick in predefined_ranges:
time_map = {
'1h': (1/24, '🕐 Last 1 Hour'),
'4h': (4/24, '🕐 Last 4 Hours'),
'6h': (6/24, '🕐 Last 6 Hours'),
'12h': (12/24, '🕐 Last 12 Hours'),
'1d': (1, '📅 Last 1 Day'),
'3d': (3, '📅 Last 3 Days'),
'7d': (7, '📅 Last 7 Days'),
'30d': (30, '📅 Last 30 Days')
}
days_back_fractional, label = time_map[time_range_quick]
mode_text = "🔒 Locked" if analysis_mode == 'locked' else "🔴 Live"
status = f"{label} | {mode_text}"
days_back = days_back_fractional if days_back_fractional < 1 else int(days_back_fractional)
logger.debug(f"Using predefined dropdown selection: {time_range_quick} -> {days_back} days. Custom dates ignored.")
return days_back, status
# PRIORITY 2: Custom Date Range (if dropdown is 'custom' and dates are set)
if time_range_quick == 'custom' and custom_start_date and custom_end_date:
start_date = datetime.fromisoformat(custom_start_date.split('T')[0])
end_date = datetime.fromisoformat(custom_end_date.split('T')[0])
days_diff = (end_date - start_date).days
status = f"📅 Custom Range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')} ({days_diff} days)"
logger.debug(f"Using custom date range: {days_diff} days as dropdown is 'custom'.")
return max(1, days_diff), status
# PRIORITY 3: Real-time (uses default lookback, typically 7 days for context)
if time_range_quick == 'realtime':
mode_text = "🔒 Analysis Mode" if analysis_mode == 'locked' else "🔴 Real-time Updates"
status = f"📈 Real-time Mode | {mode_text} (Default: Last 7 Days)"
logger.debug("Using real-time mode with default 7 days lookback.")
return 7, status
# Fallback / Default (e.g., if time_range_quick is None or an unexpected value, or 'custom' without dates)
# This also covers the case where 'custom' is selected but dates are not yet picked.
mode_text = "🔒 Analysis Mode" if analysis_mode == 'locked' else "🔴 Live"
default_label = "📅 Default (Last 7 Days)"
if time_range_quick == 'custom' and not (custom_start_date and custom_end_date):
default_label = "⏳ Select Custom Dates" # Prompt user if 'custom' is chosen but dates aren't set
status = f"{default_label} | {mode_text}"
logger.debug(f"Fallback to default time range (7 days). time_range_quick: {time_range_quick}")
return 7, status
except Exception as e:
logger.warning(f"Error calculating time range: {e}. Defaulting to 7 days.")
return 7, f"⚠️ Error in time range. Defaulting to 7 days."
def register_chart_callbacks(app):
"""Register chart-related callbacks."""
@app.callback(
[Output('price-chart', 'figure'),
Output('time-range-status', 'children')],
[Input('symbol-dropdown', 'value'),
Input('timeframe-dropdown', 'value'),
Input('overlay-indicators-checklist', 'value'),
Input('subplot-indicators-checklist', 'value'),
Input('strategy-dropdown', 'value'),
Input('time-range-quick-select', 'value'),
Input('custom-date-range', 'start_date'),
Input('custom-date-range', 'end_date'),
Input('analysis-mode-toggle', 'value'),
Input('interval-component', 'n_intervals')],
[State('price-chart', 'relayoutData'),
State('price-chart', 'figure')]
)
def update_price_chart(symbol, timeframe, overlay_indicators, subplot_indicators, selected_strategy,
time_range_quick, custom_start_date, custom_end_date, analysis_mode, n_intervals,
relayout_data, current_figure):
"""Update the price chart with latest market data and selected indicators."""
try:
triggered_id = ctx.triggered_id
logger.debug(f"Update_price_chart triggered by: {triggered_id}")
# If the update is from the interval and the chart is locked, do nothing.
if triggered_id == 'interval-component' and analysis_mode == 'locked':
logger.debug("Analysis mode is 'locked'. Skipping interval-based chart update.")
return no_update, no_update
days_back, status_message = calculate_time_range(
time_range_quick, custom_start_date, custom_end_date, analysis_mode, n_intervals
)
# Condition for attempting to use Patch()
can_patch = (
triggered_id == 'interval-component' and
analysis_mode == 'realtime' and
(not selected_strategy or selected_strategy == 'basic') and
not (overlay_indicators or []) and # Ensure lists are treated as empty if None
not (subplot_indicators or [])
)
if can_patch:
logger.info(f"Attempting to PATCH chart for {symbol} {timeframe}")
try:
# Find trace indices from current_figure
candlestick_trace_idx = -1
volume_trace_idx = -1
if current_figure and 'data' in current_figure:
for i, trace in enumerate(current_figure['data']):
if trace.get('type') == 'candlestick':
candlestick_trace_idx = i
elif trace.get('type') == 'bar' and trace.get('name', '').lower() == 'volume': # Basic volume trace often named 'Volume'
volume_trace_idx = i
logger.debug(f"Found candlestick trace at index {candlestick_trace_idx}, volume trace at index {volume_trace_idx}")
if candlestick_trace_idx == -1:
logger.warning(f"Could not find candlestick trace in current figure for patch. Falling back to full draw.")
# Fall through to full draw by re-setting can_patch or just letting logic proceed
else:
chart_builder = ChartBuilder(logger_instance=logger)
candles = chart_builder.fetch_market_data_enhanced(symbol, timeframe, days_back)
if not candles:
logger.warning(f"Patch update: No candles fetched for {symbol} {timeframe}. No update.")
return ctx.no_update, status_message
df = prepare_chart_data(candles)
if df.empty:
logger.warning(f"Patch update: DataFrame empty after preparing chart data for {symbol} {timeframe}. No update.")
return ctx.no_update, status_message
patched_figure = Patch()
# Patch Candlestick Data using found index
patched_figure['data'][candlestick_trace_idx]['x'] = df['timestamp']
patched_figure['data'][candlestick_trace_idx]['open'] = df['open']
patched_figure['data'][candlestick_trace_idx]['high'] = df['high']
patched_figure['data'][candlestick_trace_idx]['low'] = df['low']
patched_figure['data'][candlestick_trace_idx]['close'] = df['close']
logger.debug(f"Patched candlestick data (trace {candlestick_trace_idx}) for {symbol} {timeframe} with {len(df)} points.")
# Patch Volume Data using found index (if volume trace exists)
if volume_trace_idx != -1:
if 'volume' in df.columns and df['volume'].sum() > 0:
patched_figure['data'][volume_trace_idx]['x'] = df['timestamp']
patched_figure['data'][volume_trace_idx]['y'] = df['volume']
logger.debug(f"Patched volume data (trace {volume_trace_idx}) for {symbol} {timeframe}.")
else:
logger.debug(f"No significant volume data in new fetch for {symbol} {timeframe}. Clearing data for volume trace {volume_trace_idx}.")
patched_figure['data'][volume_trace_idx]['x'] = []
patched_figure['data'][volume_trace_idx]['y'] = []
elif 'volume' in df.columns and df['volume'].sum() > 0:
logger.warning(f"New volume data present, but no existing volume trace found to patch in current figure.")
logger.info(f"Successfully prepared patch for {symbol} {timeframe}.")
return patched_figure, status_message
except Exception as patch_exception:
logger.error(f"Error during chart PATCH attempt for {symbol} {timeframe}: {patch_exception}. Falling back to full draw.")
# Fall through to full chart creation if patching fails
# Full figure creation (default or if not patching or if patch failed)
logger.debug(f"Performing full chart draw for {symbol} {timeframe}. Can_patch: {can_patch}")
if selected_strategy and selected_strategy != 'basic':
fig = create_strategy_chart(symbol, timeframe, selected_strategy, days_back=days_back)
logger.debug(f"Chart callback: Created strategy chart for {symbol} ({timeframe}) with strategy: {selected_strategy}, days_back: {days_back}")
else:
fig = create_chart_with_indicators(
symbol=symbol,
timeframe=timeframe,
overlay_indicators=overlay_indicators or [],
subplot_indicators=subplot_indicators or [],
days_back=days_back
)
indicator_count = len(overlay_indicators or []) + len(subplot_indicators or [])
logger.debug(f"Chart callback: Created dynamic chart for {symbol} ({timeframe}) with {indicator_count} indicators, days_back: {days_back}")
if relayout_data and 'xaxis.range' in relayout_data:
fig.update_layout(
xaxis=dict(range=relayout_data['xaxis.range']),
yaxis=dict(range=relayout_data.get('yaxis.range'))
)
logger.debug("Chart callback: Preserved chart zoom/pan state")
return fig, status_message
except Exception as e:
logger.error(f"Error updating price chart: {e}")
error_fig = create_error_chart(f"Error loading chart: {str(e)}")
error_status = f"❌ Error: {str(e)}"
return error_fig, error_status
@app.callback(
Output('analysis-mode-toggle', 'value'),
Input('price-chart', 'relayoutData'),
State('analysis-mode-toggle', 'value'),
prevent_initial_call=True
)
def auto_lock_chart_on_interaction(relayout_data, current_mode):
"""Automatically switch to 'locked' mode when the user zooms or pans."""
# relayout_data is triggered by zoom/pan actions.
if relayout_data and 'xaxis.range' in relayout_data:
if current_mode != 'locked':
logger.debug("User chart interaction detected (zoom/pan). Switching to 'locked' analysis mode.")
return 'locked'
return no_update
# Strategy selection callback - automatically load strategy indicators
@app.callback(
[Output('overlay-indicators-checklist', 'value'),
Output('subplot-indicators-checklist', 'value')],
[Input('strategy-dropdown', 'value')]
)
def update_indicators_from_strategy(selected_strategy):
"""Update indicator selections when a strategy is chosen."""
if not selected_strategy or selected_strategy == 'basic':
return [], []
try:
# Get strategy configuration
all_strategies = get_all_example_strategies()
if selected_strategy in all_strategies:
strategy_example = all_strategies[selected_strategy]
config = strategy_example.config
# Extract overlay and subplot indicators from strategy
overlay_indicators = config.overlay_indicators or []
# Extract subplot indicators from subplot configs
subplot_indicators = []
for subplot_config in config.subplot_configs or []:
subplot_indicators.extend(subplot_config.indicators or [])
logger.debug(f"Chart callback: Loaded strategy {selected_strategy}: {len(overlay_indicators)} overlays, {len(subplot_indicators)} subplots")
return overlay_indicators, subplot_indicators
else:
logger.warning(f"Chart callback: Strategy {selected_strategy} not found")
return [], []
except Exception as e:
logger.error(f"Chart callback: Error loading strategy indicators: {e}")
return [], []
# Enhanced market statistics callback with comprehensive analysis
@app.callback(
Output('market-stats', 'children'),
[Input('symbol-dropdown', 'value'),
Input('timeframe-dropdown', 'value'),
Input('time-range-quick-select', 'value'),
Input('custom-date-range', 'start_date'),
Input('custom-date-range', 'end_date'),
Input('analysis-mode-toggle', 'value'),
Input('interval-component', 'n_intervals')]
)
def update_market_stats(symbol, timeframe, time_range_quick, custom_start_date, custom_end_date, analysis_mode, n_intervals):
"""Update comprehensive market statistics with analysis."""
try:
triggered_id = ctx.triggered_id
logger.debug(f"update_market_stats triggered by: {triggered_id}, analysis_mode: {analysis_mode}")
if analysis_mode == 'locked' and triggered_id == 'interval-component':
logger.info("Stats: Analysis mode is locked and triggered by interval; skipping stats update.")
return no_update
# Calculate time range for analysis
days_back, time_status = calculate_time_range(
time_range_quick, custom_start_date, custom_end_date, analysis_mode, n_intervals
)
# Import analysis classes
from dashboard.components.data_analysis import VolumeAnalyzer, PriceMovementAnalyzer
# Get basic market statistics for the selected time range
basic_stats = get_market_statistics(symbol, timeframe, days_back=days_back)
# Create analyzers for comprehensive analysis
volume_analyzer = VolumeAnalyzer()
price_analyzer = PriceMovementAnalyzer()
# Get analysis for the selected time range
volume_analysis = volume_analyzer.get_volume_statistics(symbol, timeframe, days_back)
price_analysis = price_analyzer.get_price_movement_statistics(symbol, timeframe, days_back)
# Create enhanced statistics layout
return html.Div([
html.H3("📊 Enhanced Market Statistics"),
html.P(
f"{time_status}",
style={'font-weight': 'bold', 'margin-bottom': '15px', 'color': '#4A4A4A', 'text-align': 'center', 'font-size': '1.1em'}
),
# Basic Market Data
html.Div([
html.H4("💹 Current Market Data", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.Div([
html.Div([
html.Strong(f"{key}: "),
html.Span(value, style={
'color': '#27ae60' if '+' in str(value) else '#e74c3c' if '-' in str(value) else '#2c3e50',
'font-weight': 'bold'
})
], style={'margin': '5px 0'}) for key, value in basic_stats.items()
])
], style={'border': '1px solid #bdc3c7', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#f8f9fa'}),
# Volume Analysis Section
create_volume_analysis_section(volume_analysis, days_back),
# Price Movement Analysis Section
create_price_movement_section(price_analysis, days_back),
# Additional Market Insights
html.Div([
html.H4("🔍 Market Insights", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.Div([
html.P(f"📈 Analysis Period: {days_back} days | Timeframe: {timeframe}", style={'margin': '5px 0'}),
html.P(f"🎯 Symbol: {symbol}", style={'margin': '5px 0'}),
html.P("💡 Statistics are calculated for the selected time range.", style={'margin': '5px 0', 'font-style': 'italic', 'font-size': '14px'})
])
], style={'border': '1px solid #3498db', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#ebf3fd'})
])
except Exception as e:
logger.error(f"Chart callback: Error updating enhanced market stats: {e}")
return html.Div([
html.H3("Market Statistics"),
html.P(f"Error loading statistics: {str(e)}", style={'color': '#e74c3c'})
])
def create_volume_analysis_section(volume_stats, days_back=7):
"""Create volume analysis section for market statistics."""
if not volume_stats or volume_stats.get('total_volume', 0) == 0:
return html.Div([
html.H4(f"📊 Volume Analysis ({days_back} days)", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.P("No volume data available for analysis", style={'color': '#e74c3c'})
], style={'border': '1px solid #e74c3c', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#fdeded'})
return html.Div([
html.H4(f"📊 Volume Analysis ({days_back} days)", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.Div([
html.Div([
html.Strong("Total Volume: "),
html.Span(f"{volume_stats.get('total_volume', 0):,.2f}", style={'color': '#27ae60'})
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Average Volume: "),
html.Span(f"{volume_stats.get('average_volume', 0):,.2f}", style={'color': '#2c3e50'})
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Volume Trend: "),
html.Span(
volume_stats.get('volume_trend', 'Neutral'),
style={'color': '#27ae60' if volume_stats.get('volume_trend') == 'Increasing' else '#e74c3c' if volume_stats.get('volume_trend') == 'Decreasing' else '#f39c12'}
)
], style={'margin': '5px 0'}),
html.Div([
html.Strong("High Volume Periods: "),
html.Span(f"{volume_stats.get('high_volume_periods', 0)}", style={'color': '#2c3e50'})
], style={'margin': '5px 0'})
])
], style={'border': '1px solid #27ae60', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#eafaf1'})
def create_price_movement_section(price_stats, days_back=7):
"""Create price movement analysis section for market statistics."""
if not price_stats or price_stats.get('total_returns') is None:
return html.Div([
html.H4(f"📈 Price Movement Analysis ({days_back} days)", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.P("No price movement data available for analysis", style={'color': '#e74c3c'})
], style={'border': '1px solid #e74c3c', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#fdeded'})
return html.Div([
html.H4(f"📈 Price Movement Analysis ({days_back} days)", style={'color': '#2c3e50', 'margin-bottom': '10px'}),
html.Div([
html.Div([
html.Strong("Total Return: "),
html.Span(
f"{price_stats.get('total_returns', 0):+.2f}%",
style={'color': '#27ae60' if price_stats.get('total_returns', 0) >= 0 else '#e74c3c'}
)
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Volatility: "),
html.Span(f"{price_stats.get('volatility', 0):.2f}%", style={'color': '#2c3e50'})
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Bullish Periods: "),
html.Span(f"{price_stats.get('bullish_periods', 0)}", style={'color': '#27ae60'})
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Bearish Periods: "),
html.Span(f"{price_stats.get('bearish_periods', 0)}", style={'color': '#e74c3c'})
], style={'margin': '5px 0'}),
html.Div([
html.Strong("Trend Strength: "),
html.Span(
price_stats.get('trend_strength', 'Neutral'),
style={'color': '#27ae60' if 'Strong' in str(price_stats.get('trend_strength', '')) else '#f39c12'}
)
], style={'margin': '5px 0'})
])
], style={'border': '1px solid #3498db', 'padding': '15px', 'margin': '10px 0', 'border-radius': '5px', 'background-color': '#ebf3fd'})
# Clear date range button callback
@app.callback(
[Output('custom-date-range', 'start_date'),
Output('custom-date-range', 'end_date'),
Output('time-range-quick-select', 'value')],
[Input('clear-date-range-btn', 'n_clicks')],
prevent_initial_call=True
)
def clear_custom_date_range(n_clicks):
"""Clear the custom date range and reset dropdown to force update."""
if n_clicks and n_clicks > 0:
logger.debug("Clear button clicked: Clearing custom dates and setting dropdown to 7d.")
return None, None, '7d' # Clear dates AND set dropdown to default '7d'
# Should not happen with prevent_initial_call=True and n_clicks > 0 check, but as a fallback:
return ctx.no_update, ctx.no_update, ctx.no_update
logger.info("Chart callback: Chart callbacks registered successfully")