Vasily.onl ec8f5514bb Refactor technical indicators to return DataFrames and enhance documentation
- Updated all technical indicators to return pandas DataFrames instead of lists, improving consistency and usability.
- Modified the `calculate` method in `TechnicalIndicators` to directly return DataFrames with relevant indicator values.
- Enhanced the `data_integration.py` to utilize the new DataFrame outputs for better integration with charting.
- Updated documentation to reflect the new DataFrame-centric approach, including usage examples and output structures.
- Improved error handling to ensure empty DataFrames are returned when insufficient data is available.

These changes streamline the indicator calculations and improve the overall architecture, aligning with project standards for maintainability and performance.
2025-06-09 16:28:16 +08:00

44 lines
1.5 KiB
Python

"""
Exponential Moving Average (EMA) indicator implementation.
"""
import pandas as pd
from ..base import BaseIndicator
class EMAIndicator(BaseIndicator):
"""
Exponential Moving Average (EMA) technical indicator.
Calculates weighted moving average giving more weight to recent prices.
Handles sparse data appropriately without interpolation.
"""
def calculate(self, df: pd.DataFrame, period: int = 20,
price_column: str = 'close') -> pd.DataFrame:
"""
Calculate Exponential Moving Average (EMA).
Args:
df: DataFrame with OHLCV data
period: Number of periods for moving average (default: 20)
price_column: Price column to use ('open', 'high', 'low', 'close')
Returns:
DataFrame with EMA values and metadata, indexed by timestamp
"""
# Validate input data
if not self.validate_dataframe(df, period):
return pd.DataFrame()
try:
df = df.copy()
df['ema'] = df[price_column].ewm(span=period, adjust=False).mean()
# Only keep rows with valid EMA, and only 'timestamp' and 'ema' columns
result_df = df.loc[df['ema'].notna(), ['timestamp', 'ema']].copy()
# Only keep rows after enough data for EMA
result_df = result_df.iloc[period-1:]
result_df.set_index('timestamp', inplace=True)
return result_df
except Exception:
return pd.DataFrame()