Ajasra 68030730e9 Implement comprehensive transformation module with safety limits and validations
- Introduced a new transformation module that includes safety limits for trade operations, enhancing data integrity and preventing errors.
- Refactored existing transformation logic into dedicated classes and functions, improving modularity and maintainability.
- Added detailed validation for trade sizes, prices, and symbol formats, ensuring compliance with trading rules.
- Implemented logging for significant operations and validation checks, aiding in monitoring and debugging.
- Created a changelog to document the new features and changes, providing clarity for future development.
- Developed extensive unit tests to cover the new functionality, ensuring reliability and preventing regressions.

These changes significantly enhance the architecture of the transformation module, making it more robust and easier to manage.
2025-06-07 13:23:59 +08:00

249 lines
9.4 KiB
Python

"""
Real-time candle processor for live trade data.
This module provides the RealTimeCandleProcessor class for building OHLCV candles
from live trade data in real-time.
"""
from datetime import datetime, timezone, timedelta
from decimal import Decimal
from typing import Dict, List, Optional, Any, Callable
from collections import defaultdict
from ..data_types import (
StandardizedTrade,
OHLCVCandle,
CandleProcessingConfig,
ProcessingStats
)
from .bucket import TimeframeBucket
class RealTimeCandleProcessor:
"""
Real-time candle processor for live trade data.
This class processes trades immediately as they arrive from WebSocket,
building candles incrementally and emitting completed candles when
time boundaries are crossed.
AGGREGATION PROCESS (NO FUTURE LEAKAGE):
1. Trade arrives from WebSocket/API with timestamp T
2. For each configured timeframe (1m, 5m, etc.):
a. Calculate which time bucket this trade belongs to
b. Get current bucket for this timeframe
c. Check if trade timestamp crosses time boundary
d. If boundary crossed: complete and emit previous bucket, create new bucket
e. Add trade to current bucket (updates OHLCV)
3. Only emit candles when time boundary is definitively crossed
4. Never emit incomplete/future candles during real-time processing
TIMESTAMP ALIGNMENT:
- Uses RIGHT-ALIGNED timestamps (industry standard)
- 1-minute candle covering 09:00:00-09:01:00 gets timestamp 09:01:00
- 5-minute candle covering 09:00:00-09:05:00 gets timestamp 09:05:00
- Candle represents PAST data, never future
"""
def __init__(self,
symbol: str,
exchange: str,
config: Optional[CandleProcessingConfig] = None,
component_name: str = "realtime_candle_processor",
logger = None):
"""
Initialize real-time candle processor.
Args:
symbol: Trading symbol (e.g., 'BTC-USDT')
exchange: Exchange name
config: Candle processing configuration
component_name: Name for logging/stats
logger: Optional logger instance
"""
self.symbol = symbol
self.exchange = exchange
self.config = config or CandleProcessingConfig()
self.component_name = component_name
self.logger = logger
# Current buckets for each timeframe
self.current_buckets: Dict[str, TimeframeBucket] = {}
# Callbacks for completed candles
self.candle_callbacks: List[Callable[[OHLCVCandle], None]] = []
# Stats tracking
self.stats = ProcessingStats()
self.stats.active_timeframes = len(self.config.timeframes)
def add_candle_callback(self, callback: Callable[[OHLCVCandle], None]) -> None:
"""Add callback to be called when candle is completed."""
self.candle_callbacks.append(callback)
def process_trade(self, trade: StandardizedTrade) -> List[OHLCVCandle]:
"""
Process a single trade and return any completed candles.
Args:
trade: Standardized trade data
Returns:
List of completed candles (if any time boundaries were crossed)
"""
self.stats.trades_processed += 1
self.stats.last_trade_time = trade.timestamp
completed_candles = []
for timeframe in self.config.timeframes:
completed = self._process_trade_for_timeframe(trade, timeframe)
if completed:
completed_candles.append(completed)
self.stats.candles_emitted += 1
self.stats.last_candle_time = completed.end_time
return completed_candles
def _process_trade_for_timeframe(self, trade: StandardizedTrade, timeframe: str) -> Optional[OHLCVCandle]:
"""
Process trade for a specific timeframe and return completed candle if boundary crossed.
Args:
trade: Trade to process
timeframe: Timeframe to process for (e.g., '1m', '5m')
Returns:
Completed candle if time boundary crossed, None otherwise
"""
# Calculate which bucket this trade belongs to
bucket_start = self._get_bucket_start_time(trade.timestamp, timeframe)
# Get current bucket for this timeframe
current_bucket = self.current_buckets.get(timeframe)
completed_candle = None
# If we have a current bucket and trade belongs in a new bucket,
# complete current bucket and create new one
if current_bucket and bucket_start >= current_bucket.end_time:
completed_candle = current_bucket.to_candle(is_complete=True)
self._emit_candle(completed_candle)
current_bucket = None
# Create new bucket if needed
if not current_bucket:
current_bucket = TimeframeBucket(
symbol=self.symbol,
timeframe=timeframe,
start_time=bucket_start,
exchange=self.exchange
)
self.current_buckets[timeframe] = current_bucket
# Add trade to current bucket
current_bucket.add_trade(trade)
return completed_candle
def _get_bucket_start_time(self, timestamp: datetime, timeframe: str) -> datetime:
"""
Calculate the start time for the bucket that this timestamp belongs to.
IMPORTANT: Uses RIGHT-ALIGNED timestamps
- For 5m timeframe, buckets start at 00:00, 00:05, 00:10, etc.
- Trade at 09:03:45 belongs to 09:00-09:05 bucket
- Trade at 09:07:30 belongs to 09:05-09:10 bucket
Args:
timestamp: Trade timestamp
timeframe: Time period (e.g., '1m', '5m', '1h')
Returns:
Start time for the appropriate bucket
"""
if timeframe == '1s':
return timestamp.replace(microsecond=0)
elif timeframe == '5s':
seconds = (timestamp.second // 5) * 5
return timestamp.replace(second=seconds, microsecond=0)
elif timeframe == '10s':
seconds = (timestamp.second // 10) * 10
return timestamp.replace(second=seconds, microsecond=0)
elif timeframe == '15s':
seconds = (timestamp.second // 15) * 15
return timestamp.replace(second=seconds, microsecond=0)
elif timeframe == '30s':
seconds = (timestamp.second // 30) * 30
return timestamp.replace(second=seconds, microsecond=0)
elif timeframe == '1m':
return timestamp.replace(second=0, microsecond=0)
elif timeframe == '5m':
minutes = (timestamp.minute // 5) * 5
return timestamp.replace(minute=minutes, second=0, microsecond=0)
elif timeframe == '15m':
minutes = (timestamp.minute // 15) * 15
return timestamp.replace(minute=minutes, second=0, microsecond=0)
elif timeframe == '30m':
minutes = (timestamp.minute // 30) * 30
return timestamp.replace(minute=minutes, second=0, microsecond=0)
elif timeframe == '1h':
return timestamp.replace(minute=0, second=0, microsecond=0)
elif timeframe == '4h':
hours = (timestamp.hour // 4) * 4
return timestamp.replace(hour=hours, minute=0, second=0, microsecond=0)
elif timeframe == '1d':
return timestamp.replace(hour=0, minute=0, second=0, microsecond=0)
else:
raise ValueError(f"Unsupported timeframe: {timeframe}")
def _emit_candle(self, candle: OHLCVCandle) -> None:
"""Emit completed candle to all registered callbacks."""
for callback in self.candle_callbacks:
try:
callback(candle)
except Exception as e:
if self.logger:
self.logger.error(f"Error in candle callback: {e}")
self.stats.errors_count += 1
def get_current_candles(self, incomplete: bool = True) -> List[OHLCVCandle]:
"""
Get current (incomplete) candles for all timeframes.
Args:
incomplete: Whether to mark candles as incomplete (default True)
"""
return [
bucket.to_candle(is_complete=not incomplete)
for bucket in self.current_buckets.values()
]
def force_complete_all_candles(self) -> List[OHLCVCandle]:
"""
Force completion of all current candles (e.g., on connection close).
Returns:
List of completed candles
"""
completed = []
for timeframe, bucket in self.current_buckets.items():
candle = bucket.to_candle(is_complete=True)
completed.append(candle)
self._emit_candle(candle)
self.stats.candles_emitted += 1
self.current_buckets.clear()
return completed
def get_stats(self) -> Dict[str, Any]:
"""Get processing statistics."""
stats_dict = self.stats.to_dict()
stats_dict.update({
'component': self.component_name,
'symbol': self.symbol,
'exchange': self.exchange,
'active_timeframes': list(self.current_buckets.keys())
})
return stats_dict
__all__ = ['RealTimeCandleProcessor']