TCPDashboard/tests/test_real_okx_aggregation.py
Vasily.onl e7ede7f329 Refactor aggregation module and enhance structure
- Split the `aggregation.py` file into a dedicated sub-package, improving modularity and maintainability.
- Moved `TimeframeBucket`, `RealTimeCandleProcessor`, and `BatchCandleProcessor` classes into their respective files within the new `aggregation` sub-package.
- Introduced utility functions for trade aggregation and validation, enhancing code organization.
- Updated import paths throughout the codebase to reflect the new structure, ensuring compatibility.
- Added safety net tests for the aggregation package to verify core functionality and prevent regressions during refactoring.

These changes enhance the overall architecture of the aggregation module, making it more scalable and easier to manage.
2025-06-07 01:17:22 +08:00

404 lines
16 KiB
Python

#!/usr/bin/env python3
"""
Real OKX Data Aggregation Test
This script connects to OKX's live WebSocket feed and tests the second-based
aggregation functionality with real market data. It demonstrates how trades
are processed into 1s, 5s, 10s, 15s, and 30s candles in real-time.
NO DATABASE OPERATIONS - Pure aggregation testing with live data.
"""
import asyncio
import logging
import json
from datetime import datetime, timezone
from decimal import Decimal
from typing import Dict, List, Any
from collections import defaultdict
# Import our modules
from data.common.data_types import StandardizedTrade, CandleProcessingConfig, OHLCVCandle
from data.common.aggregation.realtime import RealTimeCandleProcessor
from data.exchanges.okx.websocket import OKXWebSocketClient, OKXSubscription, OKXChannelType
from data.exchanges.okx.data_processor import OKXDataProcessor
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
datefmt='%H:%M:%S'
)
logger = logging.getLogger(__name__)
class RealTimeAggregationTester:
"""
Test real-time second-based aggregation with live OKX data.
"""
def __init__(self, symbol: str = "BTC-USDT"):
self.symbol = symbol
self.component_name = f"real_test_{symbol.replace('-', '_').lower()}"
# WebSocket client
self._ws_client = None
# Aggregation processor with all second timeframes
self.config = CandleProcessingConfig(
timeframes=['1s', '5s', '10s', '15s', '30s'],
auto_save_candles=False, # Don't save to database
emit_incomplete_candles=False
)
self.processor = RealTimeCandleProcessor(
symbol=symbol,
exchange="okx",
config=self.config,
component_name=f"{self.component_name}_processor",
logger=logger
)
# Statistics tracking
self.stats = {
'trades_received': 0,
'trades_processed': 0,
'candles_completed': defaultdict(int),
'last_trade_time': None,
'session_start': datetime.now(timezone.utc)
}
# Candle tracking for analysis
self.completed_candles = []
self.latest_candles = {} # Latest candle for each timeframe
# Set up callbacks
self.processor.add_candle_callback(self._on_candle_completed)
logger.info(f"Initialized real-time aggregation tester for {symbol}")
logger.info(f"Testing timeframes: {self.config.timeframes}")
async def start_test(self, duration_seconds: int = 300):
"""
Start the real-time aggregation test.
Args:
duration_seconds: How long to run the test (default: 5 minutes)
"""
try:
logger.info("=" * 80)
logger.info("STARTING REAL-TIME OKX AGGREGATION TEST")
logger.info("=" * 80)
logger.info(f"Symbol: {self.symbol}")
logger.info(f"Duration: {duration_seconds} seconds")
logger.info(f"Timeframes: {', '.join(self.config.timeframes)}")
logger.info("=" * 80)
# Connect to OKX WebSocket
await self._connect_websocket()
# Subscribe to trades
await self._subscribe_to_trades()
# Monitor for specified duration
await self._monitor_aggregation(duration_seconds)
except KeyboardInterrupt:
logger.info("Test interrupted by user")
except Exception as e:
logger.error(f"Test failed: {e}")
raise
finally:
await self._cleanup()
await self._print_final_statistics()
async def _connect_websocket(self):
"""Connect to OKX WebSocket."""
logger.info("Connecting to OKX WebSocket...")
self._ws_client = OKXWebSocketClient(
component_name=f"{self.component_name}_ws",
ping_interval=25.0,
pong_timeout=10.0,
max_reconnect_attempts=3,
reconnect_delay=5.0,
logger=logger
)
# Add message callback
self._ws_client.add_message_callback(self._on_websocket_message)
# Connect
if not await self._ws_client.connect(use_public=True):
raise RuntimeError("Failed to connect to OKX WebSocket")
logger.info("✅ Connected to OKX WebSocket")
async def _subscribe_to_trades(self):
"""Subscribe to trade data for the symbol."""
logger.info(f"Subscribing to trades for {self.symbol}...")
subscription = OKXSubscription(
channel=OKXChannelType.TRADES.value,
inst_id=self.symbol,
enabled=True
)
if not await self._ws_client.subscribe([subscription]):
raise RuntimeError(f"Failed to subscribe to trades for {self.symbol}")
logger.info(f"✅ Subscribed to {self.symbol} trades")
def _on_websocket_message(self, message: Dict[str, Any]):
"""Handle incoming WebSocket message."""
try:
# Only process trade data messages
if not isinstance(message, dict):
return
if 'data' not in message or 'arg' not in message:
return
arg = message['arg']
if arg.get('channel') != 'trades' or arg.get('instId') != self.symbol:
return
# Process each trade in the message
for trade_data in message['data']:
self._process_trade_data(trade_data)
except Exception as e:
logger.error(f"Error processing WebSocket message: {e}")
def _process_trade_data(self, trade_data: Dict[str, Any]):
"""Process individual trade data."""
try:
self.stats['trades_received'] += 1
# Convert OKX trade to StandardizedTrade
trade = StandardizedTrade(
symbol=trade_data['instId'],
trade_id=trade_data['tradeId'],
price=Decimal(trade_data['px']),
size=Decimal(trade_data['sz']),
side=trade_data['side'],
timestamp=datetime.fromtimestamp(int(trade_data['ts']) / 1000, tz=timezone.utc),
exchange="okx",
raw_data=trade_data
)
# Update statistics
self.stats['trades_processed'] += 1
self.stats['last_trade_time'] = trade.timestamp
# Process through aggregation
completed_candles = self.processor.process_trade(trade)
# Log trade details
if self.stats['trades_processed'] % 10 == 1: # Log every 10th trade
logger.info(
f"Trade #{self.stats['trades_processed']}: "
f"{trade.side.upper()} {trade.size} @ ${trade.price} "
f"(ID: {trade.trade_id}) at {trade.timestamp.strftime('%H:%M:%S.%f')[:-3]}"
)
# Log completed candles
if completed_candles:
logger.info(f"🕯️ Completed {len(completed_candles)} candle(s)")
except Exception as e:
logger.error(f"Error processing trade data: {e}")
def _on_candle_completed(self, candle: OHLCVCandle):
"""Handle completed candle."""
try:
# Update statistics
self.stats['candles_completed'][candle.timeframe] += 1
self.completed_candles.append(candle)
self.latest_candles[candle.timeframe] = candle
# Calculate candle metrics
candle_range = candle.high - candle.low
price_change = candle.close - candle.open
change_percent = (price_change / candle.open * 100) if candle.open > 0 else 0
# Log candle completion with detailed info
logger.info(
f"📊 {candle.timeframe.upper()} CANDLE COMPLETED at {candle.end_time.strftime('%H:%M:%S')}: "
f"O=${candle.open} H=${candle.high} L=${candle.low} C=${candle.close} "
f"V={candle.volume} T={candle.trade_count} "
f"Range=${candle_range:.2f} Change={change_percent:+.2f}%"
)
# Show timeframe summary every 10 candles
total_candles = sum(self.stats['candles_completed'].values())
if total_candles % 10 == 0:
self._print_timeframe_summary()
except Exception as e:
logger.error(f"Error handling completed candle: {e}")
async def _monitor_aggregation(self, duration_seconds: int):
"""Monitor the aggregation process."""
logger.info(f"🔍 Monitoring aggregation for {duration_seconds} seconds...")
logger.info("Waiting for trade data to start arriving...")
start_time = datetime.now(timezone.utc)
last_status_time = start_time
status_interval = 30 # Print status every 30 seconds
while (datetime.now(timezone.utc) - start_time).total_seconds() < duration_seconds:
await asyncio.sleep(1)
current_time = datetime.now(timezone.utc)
# Print periodic status
if (current_time - last_status_time).total_seconds() >= status_interval:
self._print_status_update(current_time - start_time)
last_status_time = current_time
logger.info("⏰ Test duration completed")
def _print_status_update(self, elapsed_time):
"""Print periodic status update."""
logger.info("=" * 60)
logger.info(f"📈 STATUS UPDATE - Elapsed: {elapsed_time.total_seconds():.0f}s")
logger.info(f"Trades received: {self.stats['trades_received']}")
logger.info(f"Trades processed: {self.stats['trades_processed']}")
if self.stats['last_trade_time']:
logger.info(f"Last trade: {self.stats['last_trade_time'].strftime('%H:%M:%S.%f')[:-3]}")
# Show candle counts
total_candles = sum(self.stats['candles_completed'].values())
logger.info(f"Total candles completed: {total_candles}")
for timeframe in self.config.timeframes:
count = self.stats['candles_completed'][timeframe]
logger.info(f" {timeframe}: {count} candles")
# Show current aggregation status
current_candles = self.processor.get_current_candles(incomplete=True)
logger.info(f"Current incomplete candles: {len(current_candles)}")
# Show latest prices from latest candles
if self.latest_candles:
logger.info("Latest candle closes:")
for tf in self.config.timeframes:
if tf in self.latest_candles:
candle = self.latest_candles[tf]
logger.info(f" {tf}: ${candle.close} (at {candle.end_time.strftime('%H:%M:%S')})")
logger.info("=" * 60)
def _print_timeframe_summary(self):
"""Print summary of timeframe performance."""
logger.info("⚡ TIMEFRAME SUMMARY:")
total_candles = sum(self.stats['candles_completed'].values())
for timeframe in self.config.timeframes:
count = self.stats['candles_completed'][timeframe]
percentage = (count / total_candles * 100) if total_candles > 0 else 0
logger.info(f" {timeframe:>3s}: {count:>3d} candles ({percentage:5.1f}%)")
async def _cleanup(self):
"""Clean up resources."""
logger.info("🧹 Cleaning up...")
if self._ws_client:
await self._ws_client.disconnect()
# Force complete any remaining candles for final analysis
remaining_candles = self.processor.force_complete_all_candles()
if remaining_candles:
logger.info(f"🔚 Force completed {len(remaining_candles)} remaining candles")
async def _print_final_statistics(self):
"""Print comprehensive final statistics."""
session_duration = datetime.now(timezone.utc) - self.stats['session_start']
logger.info("")
logger.info("=" * 80)
logger.info("📊 FINAL TEST RESULTS")
logger.info("=" * 80)
# Basic stats
logger.info(f"Symbol: {self.symbol}")
logger.info(f"Session duration: {session_duration.total_seconds():.1f} seconds")
logger.info(f"Total trades received: {self.stats['trades_received']}")
logger.info(f"Total trades processed: {self.stats['trades_processed']}")
if self.stats['trades_processed'] > 0:
trade_rate = self.stats['trades_processed'] / session_duration.total_seconds()
logger.info(f"Average trade rate: {trade_rate:.2f} trades/second")
# Candle statistics
total_candles = sum(self.stats['candles_completed'].values())
logger.info(f"Total candles completed: {total_candles}")
logger.info("\nCandles by timeframe:")
for timeframe in self.config.timeframes:
count = self.stats['candles_completed'][timeframe]
percentage = (count / total_candles * 100) if total_candles > 0 else 0
# Calculate expected candles
if timeframe == '1s':
expected = int(session_duration.total_seconds())
elif timeframe == '5s':
expected = int(session_duration.total_seconds() / 5)
elif timeframe == '10s':
expected = int(session_duration.total_seconds() / 10)
elif timeframe == '15s':
expected = int(session_duration.total_seconds() / 15)
elif timeframe == '30s':
expected = int(session_duration.total_seconds() / 30)
else:
expected = "N/A"
logger.info(f" {timeframe:>3s}: {count:>3d} candles ({percentage:5.1f}%) - Expected: ~{expected}")
# Latest candle analysis
if self.latest_candles:
logger.info("\nLatest candle closes:")
for tf in self.config.timeframes:
if tf in self.latest_candles:
candle = self.latest_candles[tf]
logger.info(f" {tf}: ${candle.close}")
# Processor statistics
processor_stats = self.processor.get_stats()
logger.info(f"\nProcessor statistics:")
logger.info(f" Trades processed: {processor_stats.get('trades_processed', 0)}")
logger.info(f" Candles emitted: {processor_stats.get('candles_emitted', 0)}")
logger.info(f" Errors: {processor_stats.get('errors_count', 0)}")
logger.info("=" * 80)
logger.info("✅ REAL-TIME AGGREGATION TEST COMPLETED SUCCESSFULLY")
logger.info("=" * 80)
async def main():
"""Main test function."""
# Configuration
SYMBOL = "BTC-USDT" # High-activity pair for good test data
DURATION = 180 # 3 minutes for good test coverage
print("🚀 Real-Time OKX Second-Based Aggregation Test")
print(f"Testing symbol: {SYMBOL}")
print(f"Duration: {DURATION} seconds")
print("Press Ctrl+C to stop early\n")
# Create and run tester
tester = RealTimeAggregationTester(symbol=SYMBOL)
await tester.start_test(duration_seconds=DURATION)
if __name__ == "__main__":
try:
asyncio.run(main())
except KeyboardInterrupt:
print("\n⏹️ Test stopped by user")
except Exception as e:
print(f"\n❌ Test failed: {e}")
import traceback
traceback.print_exc()