TCPDashboard/tests/test_indicators_safety.py
Vasily.onl ec8f5514bb Refactor technical indicators to return DataFrames and enhance documentation
- Updated all technical indicators to return pandas DataFrames instead of lists, improving consistency and usability.
- Modified the `calculate` method in `TechnicalIndicators` to directly return DataFrames with relevant indicator values.
- Enhanced the `data_integration.py` to utilize the new DataFrame outputs for better integration with charting.
- Updated documentation to reflect the new DataFrame-centric approach, including usage examples and output structures.
- Improved error handling to ensure empty DataFrames are returned when insufficient data is available.

These changes streamline the indicator calculations and improve the overall architecture, aligning with project standards for maintainability and performance.
2025-06-09 16:28:16 +08:00

323 lines
12 KiB
Python

"""
Safety net tests for technical indicators module.
These tests ensure that the core functionality of the indicators module
remains intact during refactoring.
"""
import pytest
from datetime import datetime, timezone, timedelta
from decimal import Decimal
import pandas as pd
import numpy as np
from data.common.indicators import (
TechnicalIndicators,
IndicatorResult,
create_default_indicators_config,
validate_indicator_config
)
from data.common.data_types import OHLCVCandle
class TestTechnicalIndicatorsSafety:
"""Safety net test suite for TechnicalIndicators class."""
@pytest.fixture
def sample_candles(self):
"""Create sample OHLCV candles for testing."""
candles = []
base_time = datetime(2024, 1, 1, 9, 0, 0, tzinfo=timezone.utc)
# Create 30 candles with realistic price movement
prices = [100.0, 101.0, 102.5, 101.8, 103.0, 104.2, 103.8, 105.0, 104.5, 106.0,
107.5, 108.0, 107.2, 109.0, 108.5, 110.0, 109.8, 111.0, 110.5, 112.0,
111.8, 113.0, 112.5, 114.0, 113.2, 115.0, 114.8, 116.0, 115.5, 117.0]
for i, price in enumerate(prices):
candle = OHLCVCandle(
symbol='BTC-USDT',
timeframe='1m',
start_time=base_time + timedelta(minutes=i),
end_time=base_time + timedelta(minutes=i+1),
open=Decimal(str(price - 0.2)),
high=Decimal(str(price + 0.5)),
low=Decimal(str(price - 0.5)),
close=Decimal(str(price)),
volume=Decimal('1000'),
trade_count=10,
exchange='test',
is_complete=True
)
candles.append(candle)
return candles
@pytest.fixture
def sparse_candles(self):
"""Create sample OHLCV candles with time gaps for testing."""
candles = []
base_time = datetime(2024, 1, 1, 9, 0, 0, tzinfo=timezone.utc)
# Create 15 candles with gaps (every other minute)
prices = [100.0, 102.5, 104.2, 105.0, 106.0,
108.0, 109.0, 110.0, 111.0, 112.0,
113.0, 114.0, 115.0, 116.0, 117.0]
for i, price in enumerate(prices):
# Create 2-minute gaps between candles
candle = OHLCVCandle(
symbol='BTC-USDT',
timeframe='1m',
start_time=base_time + timedelta(minutes=i*2),
end_time=base_time + timedelta(minutes=(i*2)+1),
open=Decimal(str(price - 0.2)),
high=Decimal(str(price + 0.5)),
low=Decimal(str(price - 0.5)),
close=Decimal(str(price)),
volume=Decimal('1000'),
trade_count=10,
exchange='test',
is_complete=True
)
candles.append(candle)
return candles
@pytest.fixture
def indicators(self):
"""Create TechnicalIndicators instance."""
return TechnicalIndicators()
def test_initialization(self, indicators):
"""Test indicator calculator initialization."""
assert isinstance(indicators, TechnicalIndicators)
def test_prepare_dataframe_from_list(self, indicators, sample_candles):
"""Test DataFrame preparation from OHLCV candles."""
df = indicators._prepare_dataframe_from_list(sample_candles)
assert isinstance(df, pd.DataFrame)
assert not df.empty
assert len(df) == len(sample_candles)
assert 'close' in df.columns
assert 'timestamp' in df.index.names
def test_prepare_dataframe_empty(self, indicators):
"""Test DataFrame preparation with empty candles list."""
df = indicators._prepare_dataframe_from_list([])
assert isinstance(df, pd.DataFrame)
assert df.empty
def test_sma_calculation(self, indicators, sample_candles):
"""Test Simple Moving Average calculation."""
period = 5
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.sma(df, period)
assert len(results) > 0
assert isinstance(results[0], IndicatorResult)
assert 'sma' in results[0].values
assert results[0].metadata['period'] == period
def test_sma_insufficient_data(self, indicators, sample_candles):
"""Test SMA with insufficient data."""
period = 50 # More than available candles
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.sma(df, period)
assert len(results) == 0
def test_ema_calculation(self, indicators, sample_candles):
"""Test Exponential Moving Average calculation."""
period = 10
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.ema(df, period)
assert len(results) > 0
assert isinstance(results[0], IndicatorResult)
assert 'ema' in results[0].values
assert results[0].metadata['period'] == period
def test_rsi_calculation(self, indicators, sample_candles):
"""Test Relative Strength Index calculation."""
period = 14
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.rsi(df, period)
assert len(results) > 0
assert isinstance(results[0], IndicatorResult)
assert 'rsi' in results[0].values
assert results[0].metadata['period'] == period
assert 0 <= results[0].values['rsi'] <= 100
def test_macd_calculation(self, indicators, sample_candles):
"""Test MACD calculation."""
fast_period = 12
slow_period = 26
signal_period = 9
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.macd(df, fast_period, slow_period, signal_period)
# MACD should start producing results after slow_period periods
assert len(results) > 0
if results: # Only test if we have results
first_result = results[0]
assert isinstance(first_result, IndicatorResult)
assert 'macd' in first_result.values
assert 'signal' in first_result.values
assert 'histogram' in first_result.values
# Histogram should equal MACD - Signal
expected_histogram = first_result.values['macd'] - first_result.values['signal']
assert abs(first_result.values['histogram'] - expected_histogram) < 0.001
def test_bollinger_bands_calculation(self, indicators, sample_candles):
"""Test Bollinger Bands calculation."""
period = 20
std_dev = 2.0
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.bollinger_bands(df, period, std_dev)
assert len(results) > 0
assert isinstance(results[0], IndicatorResult)
assert 'upper_band' in results[0].values
assert 'middle_band' in results[0].values
assert 'lower_band' in results[0].values
assert results[0].metadata['period'] == period
assert results[0].metadata['std_dev'] == std_dev
def test_sparse_data_handling(self, indicators, sparse_candles):
"""Test indicators with sparse data (time gaps)."""
period = 5
df = indicators._prepare_dataframe_from_list(sparse_candles)
sma_df = indicators.sma(df, period)
assert not sma_df.empty
timestamps = sma_df.index.to_list()
for i in range(1, len(timestamps)):
time_diff = timestamps[i] - timestamps[i-1]
assert time_diff >= timedelta(minutes=1)
def test_calculate_multiple_indicators(self, indicators, sample_candles):
"""Test calculating multiple indicators at once."""
config = {
'sma_10': {'type': 'sma', 'period': 10},
'ema_12': {'type': 'ema', 'period': 12},
'rsi_14': {'type': 'rsi', 'period': 14},
'macd': {'type': 'macd'},
'bb_20': {'type': 'bollinger_bands', 'period': 20}
}
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.calculate_multiple_indicators(df, config)
assert len(results) == len(config)
assert 'sma_10' in results
assert 'ema_12' in results
assert 'rsi_14' in results
assert 'macd' in results
assert 'bb_20' in results
# Check that each indicator has appropriate results
assert len(results['sma_10']) > 0
assert len(results['ema_12']) > 0
assert len(results['rsi_14']) > 0
assert len(results['macd']) > 0
assert len(results['bb_20']) > 0
def test_different_price_columns(self, indicators, sample_candles):
"""Test indicators with different price columns."""
df = indicators._prepare_dataframe_from_list(sample_candles)
# Test SMA with 'high' price column
sma_high = indicators.sma(df, 5, price_column='high')
assert len(sma_high) > 0
# Test SMA with 'low' price column
sma_low = indicators.sma(df, 5, price_column='low')
assert len(sma_low) > 0
# Values should be different
assert sma_high[0].values['sma'] != sma_low[0].values['sma']
class TestIndicatorHelperFunctions:
"""Test suite for indicator helper functions."""
def test_create_default_indicators_config(self):
"""Test default indicator configuration creation."""
config = create_default_indicators_config()
assert isinstance(config, dict)
assert len(config) > 0
assert 'sma_20' in config
assert 'ema_12' in config
assert 'rsi_14' in config
assert 'macd_default' in config
assert 'bollinger_bands_20' in config
def test_validate_indicator_config_valid(self):
"""Test indicator configuration validation with valid config."""
valid_configs = [
{'type': 'sma', 'period': 20},
{'type': 'ema', 'period': 12},
{'type': 'rsi', 'period': 14},
{'type': 'macd'},
{'type': 'bollinger_bands', 'period': 20, 'std_dev': 2.0}
]
for config in valid_configs:
assert validate_indicator_config(config)
def test_validate_indicator_config_invalid(self):
"""Test indicator configuration validation with invalid config."""
invalid_configs = [
{}, # Empty config
{'type': 'unknown'}, # Invalid type
{'type': 'sma', 'period': -1}, # Invalid period
{'type': 'bollinger_bands', 'std_dev': -1}, # Invalid std_dev
{'type': 'sma', 'period': 'not_a_number'} # Wrong type for period
]
for config in invalid_configs:
assert not validate_indicator_config(config)
class TestIndicatorResultDataClass:
"""Test suite for IndicatorResult dataclass."""
def test_indicator_result_creation(self):
"""Test IndicatorResult creation with all fields."""
timestamp = datetime.now(timezone.utc)
values = {'sma': 100.0}
metadata = {'period': 20}
result = IndicatorResult(
timestamp=timestamp,
symbol='BTC-USDT',
timeframe='1m',
values=values,
metadata=metadata
)
assert result.timestamp == timestamp
assert result.symbol == 'BTC-USDT'
assert result.timeframe == '1m'
assert result.values == values
assert result.metadata == metadata
def test_indicator_result_without_metadata(self):
"""Test IndicatorResult creation without optional metadata."""
timestamp = datetime.now(timezone.utc)
values = {'sma': 100.0}
result = IndicatorResult(
timestamp=timestamp,
symbol='BTC-USDT',
timeframe='1m',
values=values
)
assert result.timestamp == timestamp
assert result.symbol == 'BTC-USDT'
assert result.timeframe == '1m'
assert result.values == values
assert result.metadata is None