import pytest import pandas as pd from datetime import datetime from unittest.mock import MagicMock from strategies.factory import StrategyFactory from strategies.base import BaseStrategy from strategies.data_types import StrategyResult, StrategySignal, SignalType from data.common.data_types import OHLCVCandle from data.common.indicators import TechnicalIndicators # For mocking purposes # Mock logger for testing class MockLogger: def __init__(self): self.info_calls = [] self.warning_calls = [] self.error_calls = [] def info(self, message): self.info_calls.append(message) def warning(self, message): self.warning_calls.append(message) def error(self, message): self.error_calls.append(message) # Mock Concrete Strategy for testing StrategyFactory class MockEMAStrategy(BaseStrategy): def __init__(self, logger=None): super().__init__("ema_crossover", logger) self.calculate_calls = [] def get_required_indicators(self) -> list[dict]: return [{'type': 'ema', 'period': 12}, {'type': 'ema', 'period': 26}] def calculate(self, data: pd.DataFrame, **kwargs) -> list[StrategyResult]: self.calculate_calls.append((data, kwargs)) # Simulate a signal for testing if not data.empty: first_row = data.iloc[0] return [StrategyResult( timestamp=first_row.name, symbol=first_row['symbol'], timeframe=first_row['timeframe'], strategy_name=self.strategy_name, signals=[StrategySignal( timestamp=first_row.name, symbol=first_row['symbol'], timeframe=first_row['timeframe'], signal_type=SignalType.BUY, price=float(first_row['close']), confidence=1.0 )], indicators_used={} )] return [] class MockRSIStrategy(BaseStrategy): def __init__(self, logger=None): super().__init__("rsi", logger) self.calculate_calls = [] def get_required_indicators(self) -> list[dict]: return [{'type': 'rsi', 'period': 14}] def calculate(self, data: pd.DataFrame, **kwargs) -> list[StrategyResult]: self.calculate_calls.append((data, kwargs)) # Simulate a signal for testing if not data.empty: first_row = data.iloc[0] return [StrategyResult( timestamp=first_row.name, symbol=first_row['symbol'], timeframe=first_row['timeframe'], strategy_name=self.strategy_name, signals=[StrategySignal( timestamp=first_row.name, symbol=first_row['symbol'], timeframe=first_row['timeframe'], signal_type=SignalType.SELL, price=float(first_row['close']), confidence=0.9 )], indicators_used={} )] return [] @pytest.fixture def mock_logger(): return MockLogger() @pytest.fixture def mock_technical_indicators(): mock_ti = MagicMock(spec=TechnicalIndicators) # Configure the mock to return dummy data for indicators def mock_calculate(indicator_type, df, **kwargs): if indicator_type == 'ema': # Simulate EMA data return pd.DataFrame({ 'ema_fast': df['close'] * 1.02, 'ema_slow': df['close'] * 0.98 }, index=df.index) elif indicator_type == 'rsi': # Simulate RSI data return pd.DataFrame({ 'rsi': pd.Series([60, 65, 72, 28, 35], index=df.index) }, index=df.index) return pd.DataFrame(index=df.index) mock_ti.calculate.side_effect = mock_calculate return mock_ti @pytest.fixture def strategy_factory(mock_technical_indicators, mock_logger, monkeypatch): # Patch the strategy factory to use our mock strategies monkeypatch.setattr( "strategies.factory.StrategyFactory._STRATEGIES", { "ema_crossover": MockEMAStrategy, "rsi": MockRSIStrategy, } ) return StrategyFactory(mock_technical_indicators, mock_logger) @pytest.fixture def sample_ohlcv_data(): return pd.DataFrame({ 'open': [100, 101, 102, 103, 104], 'high': [105, 106, 107, 108, 109], 'low': [99, 100, 101, 102, 103], 'close': [102, 103, 104, 105, 106], 'volume': [1000, 1100, 1200, 1300, 1400], 'symbol': ['BTC/USDT'] * 5, 'timeframe': ['1h'] * 5 }, index=pd.to_datetime(['2023-01-01 00:00:00', '2023-01-01 01:00:00', '2023-01-01 02:00:00', '2023-01-01 03:00:00', '2023-01-01 04:00:00'])) def test_get_available_strategies(strategy_factory): available_strategies = strategy_factory.get_available_strategies() assert "ema_crossover" in available_strategies assert "rsi" in available_strategies assert "macd" not in available_strategies # Should not be present if not mocked def test_create_strategy_success(strategy_factory): ema_strategy = strategy_factory.create_strategy("ema_crossover") assert isinstance(ema_strategy, MockEMAStrategy) assert ema_strategy.strategy_name == "ema_crossover" def test_create_strategy_unknown(strategy_factory): with pytest.raises(ValueError, match="Unknown strategy type: unknown_strategy"): strategy_factory.create_strategy("unknown_strategy") def test_calculate_multiple_strategies_success(strategy_factory, sample_ohlcv_data, mock_technical_indicators): strategy_configs = [ {"strategy": "ema_crossover", "fast_period": 12, "slow_period": 26}, {"strategy": "rsi", "period": 14, "overbought": 70, "oversold": 30} ] all_strategy_results = strategy_factory.calculate_multiple_strategies( strategy_configs, sample_ohlcv_data ) assert len(all_strategy_results) == 2 # Expect results for both strategies assert "ema_crossover" in all_strategy_results assert "rsi" in all_strategy_results ema_results = all_strategy_results["ema_crossover"] rsi_results = all_strategy_results["rsi"] assert len(ema_results) > 0 assert ema_results[0].strategy_name == "ema_crossover" assert len(rsi_results) > 0 assert rsi_results[0].strategy_name == "rsi" # Verify that TechnicalIndicators.calculate was called with correct arguments # EMA calls ema_calls = [call for call in mock_technical_indicators.calculate.call_args_list if call.args[0] == 'ema'] assert len(ema_calls) == 2 # Two EMA indicators for ema_crossover strategy assert ema_calls[0].kwargs['period'] == 12 or ema_calls[0].kwargs['period'] == 26 assert ema_calls[1].kwargs['period'] == 12 or ema_calls[1].kwargs['period'] == 26 # RSI calls rsi_calls = [call for call in mock_technical_indicators.calculate.call_args_list if call.args[0] == 'rsi'] assert len(rsi_calls) == 1 # One RSI indicator for rsi strategy assert rsi_calls[0].kwargs['period'] == 14 def test_calculate_multiple_strategies_no_configs(strategy_factory, sample_ohlcv_data): results = strategy_factory.calculate_multiple_strategies([], sample_ohlcv_data) assert not results def test_calculate_multiple_strategies_empty_data(strategy_factory, mock_technical_indicators): strategy_configs = [ {"strategy": "ema_crossover", "fast_period": 12, "slow_period": 26} ] empty_df = pd.DataFrame(columns=['open', 'high', 'low', 'close', 'volume', 'symbol', 'timeframe']) results = strategy_factory.calculate_multiple_strategies(strategy_configs, empty_df) assert not results def test_calculate_multiple_strategies_missing_indicator_data(strategy_factory, sample_ohlcv_data, mock_logger, mock_technical_indicators): # Simulate a scenario where an indicator is requested but not returned by TechnicalIndicators def mock_calculate_no_ema(indicator_type, df, **kwargs): if indicator_type == 'ema': return pd.DataFrame(index=df.index) # Simulate no EMA data returned elif indicator_type == 'rsi': return pd.DataFrame({'rsi': df['close']}, index=df.index) return pd.DataFrame(index=df.index) mock_technical_indicators.calculate.side_effect = mock_calculate_no_ema strategy_configs = [ {"strategy": "ema_crossover", "fast_period": 12, "slow_period": 26} ] results = strategy_factory.calculate_multiple_strategies( strategy_configs, sample_ohlcv_data ) assert not results # Expect no results if indicators are missing assert "Missing required indicator data for key: ema_period_12" in mock_logger.error_calls or \ "Missing required indicator data for key: ema_period_26" in mock_logger.error_calls