""" Technical Indicators Module for OHLCV Data This module provides technical indicator calculations optimized for sparse OHLCV data as produced by the TCP Trading Platform's aggregation strategy. IMPORTANT: Handles Sparse Data - Missing candles (time gaps) are normal in this system - Indicators properly handle gaps without interpolation - Uses pandas for efficient vectorized calculations - Follows right-aligned timestamp convention Supported Indicators: - Simple Moving Average (SMA) - Exponential Moving Average (EMA) - Relative Strength Index (RSI) - Moving Average Convergence Divergence (MACD) - Bollinger Bands """ from datetime import datetime, timedelta from decimal import Decimal from typing import Dict, List, Optional, Any, Union, Tuple import pandas as pd import numpy as np from dataclasses import dataclass from .data_types import OHLCVCandle @dataclass class IndicatorResult: """ Container for technical indicator calculation results. Attributes: timestamp: Candle timestamp (right-aligned) symbol: Trading symbol timeframe: Candle timeframe values: Dictionary of indicator values metadata: Additional calculation metadata """ timestamp: datetime symbol: str timeframe: str values: Dict[str, float] metadata: Optional[Dict[str, Any]] = None class TechnicalIndicators: """ Technical indicator calculator for OHLCV candle data. This class provides vectorized technical indicator calculations designed to handle sparse data efficiently. All calculations use pandas for performance and handle missing data appropriately. SPARSE DATA HANDLING: - Gaps in timestamps are preserved (no interpolation) - Indicators calculate only on available data points - Periods with insufficient data return NaN - Results maintain original timestamp alignment """ def __init__(self, logger=None): """ Initialize technical indicators calculator. Args: logger: Optional logger instance """ self.logger = logger if self.logger: self.logger.info("TechnicalIndicators: Initialized indicator calculator") def _prepare_dataframe_from_list(self, candles: List[OHLCVCandle]) -> pd.DataFrame: """ Convert OHLCV candles to pandas DataFrame for efficient calculations. Args: candles: List of OHLCV candles (can be sparse) Returns: DataFrame with OHLCV data, sorted by timestamp """ if not candles: return pd.DataFrame() # Convert to DataFrame data = [] for candle in candles: data.append({ 'timestamp': candle.end_time, # Right-aligned timestamp 'symbol': candle.symbol, 'timeframe': candle.timeframe, 'open': float(candle.open), 'high': float(candle.high), 'low': float(candle.low), 'close': float(candle.close), 'volume': float(candle.volume), 'trade_count': candle.trade_count }) df = pd.DataFrame(data) # Sort by timestamp to ensure proper order df = df.sort_values('timestamp').reset_index(drop=True) # Set timestamp as index for time-series operations df.set_index('timestamp', inplace=True) return df def sma(self, df: pd.DataFrame, period: int, price_column: str = 'close') -> List[IndicatorResult]: """ Calculate Simple Moving Average (SMA). Args: df: DataFrame with OHLCV data period: Number of periods for moving average price_column: Price column to use ('open', 'high', 'low', 'close') Returns: List of indicator results with SMA values """ if df.empty or len(df) < period: return [] # Calculate SMA using pandas rolling window df['sma'] = df[price_column].rolling(window=period, min_periods=period).mean() # Convert results back to IndicatorResult objects results = [] for timestamp, row in df.iterrows(): if not pd.isna(row['sma']): result = IndicatorResult( timestamp=timestamp, symbol=row['symbol'], timeframe=row['timeframe'], values={'sma': row['sma']}, metadata={'period': period, 'price_column': price_column} ) results.append(result) return results def ema(self, df: pd.DataFrame, period: int, price_column: str = 'close') -> List[IndicatorResult]: """ Calculate Exponential Moving Average (EMA). Args: df: DataFrame with OHLCV data period: Number of periods for moving average price_column: Price column to use ('open', 'high', 'low', 'close') Returns: List of indicator results with EMA values """ if df.empty or len(df) < period: return [] # Calculate EMA using pandas exponential weighted moving average df['ema'] = df[price_column].ewm(span=period, adjust=False).mean() # Convert results back to IndicatorResult objects results = [] for i, (timestamp, row) in enumerate(df.iterrows()): # Only return results after minimum period if i >= period - 1 and not pd.isna(row['ema']): result = IndicatorResult( timestamp=timestamp, symbol=row['symbol'], timeframe=row['timeframe'], values={'ema': row['ema']}, metadata={'period': period, 'price_column': price_column} ) results.append(result) return results def rsi(self, df: pd.DataFrame, period: int = 14, price_column: str = 'close') -> List[IndicatorResult]: """ Calculate Relative Strength Index (RSI). Args: df: DataFrame with OHLCV data period: Number of periods for RSI calculation (default 14) price_column: Price column to use ('open', 'high', 'low', 'close') Returns: List of indicator results with RSI values """ if df.empty or len(df) < period + 1: return [] # Calculate price changes df['price_change'] = df[price_column].diff() # Separate gains and losses df['gain'] = df['price_change'].where(df['price_change'] > 0, 0) df['loss'] = (-df['price_change']).where(df['price_change'] < 0, 0) # Calculate average gain and loss using EMA df['avg_gain'] = df['gain'].ewm(span=period, adjust=False).mean() df['avg_loss'] = df['loss'].ewm(span=period, adjust=False).mean() # Calculate RS and RSI df['rs'] = df['avg_gain'] / df['avg_loss'] df['rsi'] = 100 - (100 / (1 + df['rs'])) # Handle division by zero df['rsi'] = df['rsi'].fillna(50) # Neutral RSI when no losses # Convert results back to IndicatorResult objects results = [] for i, (timestamp, row) in enumerate(df.iterrows()): # Only return results after minimum period if i >= period and not pd.isna(row['rsi']): result = IndicatorResult( timestamp=timestamp, symbol=row['symbol'], timeframe=row['timeframe'], values={'rsi': row['rsi']}, metadata={'period': period, 'price_column': price_column} ) results.append(result) return results def macd(self, df: pd.DataFrame, fast_period: int = 12, slow_period: int = 26, signal_period: int = 9, price_column: str = 'close') -> List[IndicatorResult]: """ Calculate Moving Average Convergence Divergence (MACD). Args: df: DataFrame with OHLCV data fast_period: Fast EMA period (default 12) slow_period: Slow EMA period (default 26) signal_period: Signal line EMA period (default 9) price_column: Price column to use ('open', 'high', 'low', 'close') Returns: List of indicator results with MACD, signal, and histogram values """ if df.empty or len(df) < slow_period: return [] # Calculate fast and slow EMAs df['ema_fast'] = df[price_column].ewm(span=fast_period, adjust=False).mean() df['ema_slow'] = df[price_column].ewm(span=slow_period, adjust=False).mean() # Calculate MACD line df['macd'] = df['ema_fast'] - df['ema_slow'] # Calculate signal line (EMA of MACD) df['signal'] = df['macd'].ewm(span=signal_period, adjust=False).mean() # Calculate histogram df['histogram'] = df['macd'] - df['signal'] # Convert results back to IndicatorResult objects results = [] for i, (timestamp, row) in enumerate(df.iterrows()): # Only return results after minimum period if i >= slow_period - 1: if not (pd.isna(row['macd']) or pd.isna(row['signal']) or pd.isna(row['histogram'])): result = IndicatorResult( timestamp=timestamp, symbol=row['symbol'], timeframe=row['timeframe'], values={ 'macd': row['macd'], 'signal': row['signal'], 'histogram': row['histogram'] }, metadata={ 'fast_period': fast_period, 'slow_period': slow_period, 'signal_period': signal_period, 'price_column': price_column } ) results.append(result) return results def bollinger_bands(self, df: pd.DataFrame, period: int = 20, std_dev: float = 2.0, price_column: str = 'close') -> List[IndicatorResult]: """ Calculate Bollinger Bands. Args: df: DataFrame with OHLCV data period: Number of periods for moving average (default 20) std_dev: Number of standard deviations (default 2.0) price_column: Price column to use ('open', 'high', 'low', 'close') Returns: List of indicator results with upper band, middle band (SMA), and lower band """ if df.empty or len(df) < period: return [] # Calculate middle band (SMA) df['middle_band'] = df[price_column].rolling(window=period, min_periods=period).mean() # Calculate standard deviation df['std'] = df[price_column].rolling(window=period, min_periods=period).std() # Calculate upper and lower bands df['upper_band'] = df['middle_band'] + (std_dev * df['std']) df['lower_band'] = df['middle_band'] - (std_dev * df['std']) # Calculate bandwidth and %B df['bandwidth'] = (df['upper_band'] - df['lower_band']) / df['middle_band'] df['percent_b'] = (df[price_column] - df['lower_band']) / (df['upper_band'] - df['lower_band']) # Convert results back to IndicatorResult objects results = [] for timestamp, row in df.iterrows(): if not pd.isna(row['middle_band']): result = IndicatorResult( timestamp=timestamp, symbol=row['symbol'], timeframe=row['timeframe'], values={ 'upper_band': row['upper_band'], 'middle_band': row['middle_band'], 'lower_band': row['lower_band'], 'bandwidth': row['bandwidth'], 'percent_b': row['percent_b'] }, metadata={ 'period': period, 'std_dev': std_dev, 'price_column': price_column } ) results.append(result) return results def calculate_multiple_indicators(self, candles: List[OHLCVCandle], indicators_config: Dict[str, Dict[str, Any]]) -> Dict[str, List[IndicatorResult]]: """ Calculate multiple indicators at once for efficiency. Args: candles: List of OHLCV candles indicators_config: Configuration for indicators to calculate Example: { 'sma_20': {'type': 'sma', 'period': 20}, 'ema_12': {'type': 'ema', 'period': 12}, 'rsi_14': {'type': 'rsi', 'period': 14}, 'macd': {'type': 'macd'}, 'bb_20': {'type': 'bollinger_bands', 'period': 20} } Returns: Dictionary mapping indicator names to their results """ results = {} for indicator_name, config in indicators_config.items(): indicator_type = config.get('type') try: if indicator_type == 'sma': period = config.get('period', 20) price_column = config.get('price_column', 'close') results[indicator_name] = self.sma(candles, period, price_column) elif indicator_type == 'ema': period = config.get('period', 20) price_column = config.get('price_column', 'close') results[indicator_name] = self.ema(candles, period, price_column) elif indicator_type == 'rsi': period = config.get('period', 14) price_column = config.get('price_column', 'close') results[indicator_name] = self.rsi(candles, period, price_column) elif indicator_type == 'macd': fast_period = config.get('fast_period', 12) slow_period = config.get('slow_period', 26) signal_period = config.get('signal_period', 9) price_column = config.get('price_column', 'close') results[indicator_name] = self.macd(candles, fast_period, slow_period, signal_period, price_column) elif indicator_type == 'bollinger_bands': period = config.get('period', 20) std_dev = config.get('std_dev', 2.0) price_column = config.get('price_column', 'close') results[indicator_name] = self.bollinger_bands(candles, period, std_dev, price_column) else: if self.logger: self.logger.warning(f"TechnicalIndicators: Unknown indicator type: {indicator_type}") results[indicator_name] = [] except Exception as e: if self.logger: self.logger.error(f"TechnicalIndicators: Error calculating {indicator_name}: {e}") results[indicator_name] = [] return results def calculate(self, indicator_type: str, candles: Union[pd.DataFrame, List[OHLCVCandle]], **kwargs) -> Optional[Dict[str, Any]]: """ Calculate a single indicator with dynamic dispatch. Args: indicator_type: Name of the indicator (e.g., 'sma', 'ema') candles: List of OHLCV candles or a pre-prepared DataFrame **kwargs: Indicator-specific parameters (e.g., period=20) Returns: A dictionary containing the indicator results, or None if the type is unknown. """ # Get the indicator calculation method indicator_method = getattr(self, indicator_type, None) if not indicator_method: if self.logger: self.logger.error(f"TechnicalIndicators: Unknown indicator type '{indicator_type}'") return None try: # Prepare DataFrame if input is a list of candles if isinstance(candles, list): df = self._prepare_dataframe_from_list(candles) elif isinstance(candles, pd.DataFrame): df = candles else: raise TypeError("Input 'candles' must be a list of OHLCVCandle objects or a pandas DataFrame.") if df.empty: return {'data': [], 'metadata': {}} # Call the indicator method raw_result = indicator_method(df, **kwargs) # Extract metadata from the first result if available metadata = raw_result[0].metadata if raw_result else {} # The methods return List[IndicatorResult], let's package that if raw_result: return { "data": raw_result, "metadata": metadata } return None except Exception as e: if self.logger: self.logger.error(f"TechnicalIndicators: Error calculating {indicator_type}: {e}") return None def create_default_indicators_config() -> Dict[str, Dict[str, Any]]: """ Create default configuration for common technical indicators. Returns: Dictionary with default indicator configurations """ return { 'sma_20': {'type': 'sma', 'period': 20}, 'sma_50': {'type': 'sma', 'period': 50}, 'ema_12': {'type': 'ema', 'period': 12}, 'ema_26': {'type': 'ema', 'period': 26}, 'rsi_14': {'type': 'rsi', 'period': 14}, 'macd_default': {'type': 'macd'}, 'bollinger_bands_20': {'type': 'bollinger_bands', 'period': 20} } def validate_indicator_config(config: Dict[str, Any]) -> bool: """ Validate technical indicator configuration. Args: config: Indicator configuration dictionary Returns: True if configuration is valid, False otherwise """ required_fields = ['type'] # Check required fields for field in required_fields: if field not in config: return False # Validate indicator type valid_types = ['sma', 'ema', 'rsi', 'macd', 'bollinger_bands'] if config['type'] not in valid_types: return False # Validate period fields if 'period' in config and (not isinstance(config['period'], int) or config['period'] <= 0): return False # Validate standard deviation for Bollinger Bands if config['type'] == 'bollinger_bands' and 'std_dev' in config: if not isinstance(config['std_dev'], (int, float)) or config['std_dev'] <= 0: return False return True