# Task 3.5 - Market Data Monitoring Dashboard **Status**: ✅ **COMPLETED** ## Overview Implemented a comprehensive market data monitoring dashboard with real-time data feed status monitoring, database health tracking, Redis monitoring, and system performance metrics. ## Implementation Details ### Key Features Implemented 1. **Real-time Status Overview** - Quick status cards for Data Collection, Database, Redis, and Performance - Color-coded badges (green/yellow/red) for instant status recognition - Auto-refreshing status indicators every 30 seconds 2. **Data Collection Service Monitoring** - Service running status detection - Data collection metrics (candles, tickers collected) - Data freshness indicators - Service control buttons (refresh, view details, view logs) 3. **Individual Collectors Health** - Placeholder for collector health monitoring - Ready for integration with data collection service health API - Instructions for starting monitoring 4. **Database Health Monitoring** - Connection status verification - PostgreSQL version and connection count - Database statistics (table sizes, recent activity) - Performance metrics 5. **Redis Status Monitoring** - Connection verification - Redis server information - Memory usage and client statistics - Uptime tracking 6. **System Performance Metrics** - CPU usage with color-coded warnings - Memory utilization - Disk usage monitoring - Network I/O statistics 7. **Interactive Features** - Data collection details modal - Service logs viewer modal - Refresh controls for real-time updates ### UI Framework - **Mantine Components**: Used Mantine UI library for consistency with existing dashboard - **Responsive Layout**: Grid-based layout for optimal viewing - **Modern Design**: Cards, badges, alerts, and modals for professional appearance ### Files Modified/Created 1. **`dashboard/layouts/system_health.py`** - Complete rewrite using Mantine components - Comprehensive layout with monitoring sections - Modal dialogs for detailed views 2. **`dashboard/callbacks/system_health.py`** - Enhanced callbacks with comprehensive monitoring - Real-time status updates - Error handling and graceful degradation - Integration with database and Redis managers ## Technical Implementation ### Real-time Monitoring Architecture ```python # Status Update Flow Interval Component (30s) → Callbacks → Status Checkers → UI Updates ``` ### Status Checking Functions - `_get_data_collection_quick_status()` - Service running detection - `_get_database_quick_status()` - Database connectivity - `_get_redis_quick_status()` - Redis connectivity - `_get_performance_quick_status()` - System metrics ### Detailed Monitoring Functions - `_get_data_collection_service_status()` - Service details - `_get_data_collection_metrics()` - Collection statistics - `_get_database_status()` & `_get_database_statistics()` - DB health - `_get_redis_status()` & `_get_redis_statistics()` - Redis health - `_get_system_performance_metrics()` - System performance ### Error Handling - Graceful degradation when services are unavailable - User-friendly error messages with troubleshooting hints - Fallback status indicators for unknown states ## Integration Points ### Database Integration - Uses `DatabaseManager` for connection testing - Queries `market_data` table for collection statistics - Monitors database performance metrics ### Redis Integration - Uses `RedisManager` for connection verification - Retrieves Redis server information and statistics - Monitors memory usage and client connections ### System Integration - Uses `psutil` for system performance monitoring - Process detection for data collection service - Resource utilization tracking ## Usage ### Dashboard Access 1. Navigate to "⚙️ System Health" tab in the main dashboard 2. View real-time status cards at the top 3. Explore detailed monitoring sections below ### Service Controls - **Refresh Status**: Manually refresh data collection status - **View Details**: Open modal with comprehensive service information - **View Logs**: Access service logs in scrollable modal ### Status Indicators - 🟢 **Green**: Healthy/Connected/Good performance - 🟡 **Yellow**: Warning/Checking/Moderate usage - 🔴 **Red**: Error/Disconnected/High usage - ❓ **Gray**: Unknown status ## Future Enhancements ### Planned Improvements (Section 3.7) 1. **Real-time Updates via Redis**: Replace polling with Redis pub/sub 2. **Advanced Metrics**: Historical performance trends 3. **Alerting System**: Notifications for critical issues 4. **Service Management**: Start/stop controls for data collection ### Integration with Data Collection Service - Real-time collector health reporting - Performance metrics streaming - Service configuration management - Log aggregation and filtering ## Testing ### Manual Testing 1. **Service Detection**: Start/stop data collection service to verify detection 2. **Database Connectivity**: Test with database running/stopped 3. **Redis Connectivity**: Test with Redis running/stopped 4. **Performance Monitoring**: Verify metrics under different system loads ### Integration Testing - Database manager integration - Redis manager integration - System metrics accuracy - Error handling scenarios ## Dependencies ### UI Framework - `dash-mantine-components` - Modern UI components - `dash` - Core dashboard framework - `plotly` - Charts and visualizations ### System Monitoring - `psutil` - System performance metrics - `subprocess` - Process management - `datetime` - Time handling ### Database/Redis - `database.connection.DatabaseManager` - Database operations - `database.redis_manager.RedisManager` - Redis operations ## Troubleshooting ### Common Issues 1. **"Service Stopped" Status** - Solution: Run `python scripts/start_data_collection.py` 2. **Database Connection Failed** - Check Docker containers: `docker-compose ps` - Verify database configuration in `.env` 3. **Redis Connection Failed** - Ensure Redis container is running - Check Redis configuration 4. **Performance Metrics Unavailable** - Usually permissions issue on system metrics - Check if `psutil` has necessary permissions ### Logs and Debugging - Check dashboard logs for callback errors - Use browser developer tools for frontend issues - Monitor system logs for resource issues ## Documentation Updates ### Files Updated - `tasks/tasks-crypto-bot-prd.md` - Marked Task 3.5 as completed - Added this documentation file ### Next Task Ready to proceed with **Task 3.6**: Build simple data analysis tools (volume analysis, price movement statistics)