""" Trading Signal Chart Layers This module implements signal overlay layers for displaying buy/sell/hold signals generated by trading strategies on charts. Integrates with the database signal model. """ import pandas as pd import plotly.graph_objects as go from typing import Dict, Any, Optional, List, Union, Tuple from dataclasses import dataclass from decimal import Decimal from datetime import datetime from ..error_handling import ( ChartErrorHandler, ChartError, ErrorSeverity, DataValidationError, create_error_annotation, get_error_message ) from .base import BaseLayer, LayerConfig from utils.logger import get_logger # Initialize logger logger = get_logger("chart_signals") @dataclass class SignalLayerConfig(LayerConfig): """Extended configuration for signal layers""" signal_types: List[str] = None # ['buy', 'sell', 'hold'] or subset confidence_threshold: float = 0.0 # Minimum confidence to display (0.0-1.0) show_confidence: bool = True # Show confidence in marker hover text marker_size: int = 12 # Size of signal markers show_price_labels: bool = True # Show price labels on signals bot_id: Optional[int] = None # Filter signals by specific bot def __post_init__(self): super().__post_init__() if self.signal_types is None: self.signal_types = ['buy', 'sell'] # Default to buy/sell only @dataclass class TradeLayerConfig(LayerConfig): """Extended configuration for trade visualization layers""" show_pnl: bool = True # Show profit/loss information show_trade_lines: bool = True # Draw lines connecting entry/exit points show_quantity: bool = True # Show trade quantity in hover show_fees: bool = True # Show fees in hover min_pnl_display: Optional[float] = None # Minimum P&L to display trade bot_id: Optional[int] = None # Filter trades by specific bot trade_marker_size: int = 14 # Size of trade markers (slightly larger than signals) def __post_init__(self): super().__post_init__() class BaseSignalLayer(BaseLayer): """ Base class for all signal layers with database integration. """ def __init__(self, config: SignalLayerConfig): """ Initialize base signal layer. Args: config: Signal layer configuration """ super().__init__(config) self.signal_data = None # Signal styling defaults self.signal_colors = { 'buy': '#4caf50', # Green 'sell': '#f44336', # Red 'hold': '#ff9800' # Orange } self.signal_symbols = { 'buy': 'triangle-up', 'sell': 'triangle-down', 'hold': 'circle' } def validate_signal_data(self, signals: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool: """ Validate signal data structure and requirements. Args: signals: Signal data from database or API Returns: True if data is valid for signal rendering """ try: # Clear previous errors self.error_handler.clear_errors() # Convert to DataFrame if needed if isinstance(signals, list): if not signals: # Empty signals are valid (no signals to show) return True df = pd.DataFrame(signals) else: df = signals.copy() # Check required columns for signals required_columns = ['timestamp', 'signal_type', 'price', 'confidence'] missing_columns = [col for col in required_columns if col not in df.columns] if missing_columns: error = ChartError( code='MISSING_SIGNAL_COLUMNS', message=f'Missing signal columns: {missing_columns}', severity=ErrorSeverity.ERROR, context={ 'missing_columns': missing_columns, 'available_columns': list(df.columns), 'layer_type': 'signal' }, recovery_suggestion=f'Ensure signal data contains: {required_columns}' ) self.error_handler.errors.append(error) return False # Validate signal types valid_signal_types = {'buy', 'sell', 'hold'} invalid_signals = df[~df['signal_type'].isin(valid_signal_types)] if not invalid_signals.empty: error = ChartError( code='INVALID_SIGNAL_TYPES', message=f'Invalid signal types found: {set(invalid_signals["signal_type"].unique())}', severity=ErrorSeverity.WARNING, context={ 'invalid_types': list(invalid_signals['signal_type'].unique()), 'valid_types': list(valid_signal_types) }, recovery_suggestion='Signal types must be: buy, sell, or hold' ) self.error_handler.warnings.append(error) # Validate confidence range invalid_confidence = df[(df['confidence'] < 0) | (df['confidence'] > 1)] if not invalid_confidence.empty: error = ChartError( code='INVALID_CONFIDENCE_RANGE', message=f'Confidence values must be between 0.0 and 1.0', severity=ErrorSeverity.WARNING, context={ 'invalid_count': len(invalid_confidence), 'min_found': float(df['confidence'].min()), 'max_found': float(df['confidence'].max()) }, recovery_suggestion='Confidence values will be clamped to 0.0-1.0 range' ) self.error_handler.warnings.append(error) return True except Exception as e: self.logger.error(f"Error validating signal data: {e}") error = ChartError( code='SIGNAL_VALIDATION_ERROR', message=f'Signal validation failed: {str(e)}', severity=ErrorSeverity.ERROR, context={'exception': str(e), 'layer_type': 'signal'} ) self.error_handler.errors.append(error) return False def filter_signals_by_config(self, signals: pd.DataFrame) -> pd.DataFrame: """ Filter signals based on layer configuration. Args: signals: Raw signal data Returns: Filtered signal data """ try: if signals.empty: return signals filtered = signals.copy() # Filter by signal types if self.config.signal_types: filtered = filtered[filtered['signal_type'].isin(self.config.signal_types)] # Filter by confidence threshold if self.config.confidence_threshold > 0: filtered = filtered[filtered['confidence'] >= self.config.confidence_threshold] # Filter by bot_id if specified if self.config.bot_id is not None: if 'bot_id' in filtered.columns: filtered = filtered[filtered['bot_id'] == self.config.bot_id] else: self.logger.warning(f"bot_id filter requested but no bot_id column in signal data") # Clamp confidence values to valid range filtered['confidence'] = filtered['confidence'].clip(0.0, 1.0) self.logger.info(f"Filtered signals: {len(signals)} -> {len(filtered)} signals") return filtered except Exception as e: self.logger.error(f"Error filtering signals: {e}") return pd.DataFrame() # Return empty DataFrame on error def create_signal_traces(self, signals: pd.DataFrame) -> List[go.Scatter]: """ Create Plotly traces for signal markers. Args: signals: Filtered signal data Returns: List of Plotly traces for each signal type """ traces = [] try: if signals.empty: return traces # Group signals by type for signal_type in signals['signal_type'].unique(): signal_group = signals[signals['signal_type'] == signal_type] if signal_group.empty: continue # Prepare hover text hover_text = [] for _, signal in signal_group.iterrows(): hover_parts = [ f"Signal: {signal['signal_type'].upper()}", f"Price: ${signal['price']:.4f}", f"Time: {signal['timestamp']}" ] if self.config.show_confidence: confidence_pct = signal['confidence'] * 100 hover_parts.append(f"Confidence: {confidence_pct:.1f}%") if 'bot_id' in signal_group.columns: hover_parts.append(f"Bot ID: {signal['bot_id']}") hover_text.append("
".join(hover_parts)) # Create trace for this signal type trace = go.Scatter( x=signal_group['timestamp'], y=signal_group['price'], mode='markers', marker=dict( symbol=self.signal_symbols.get(signal_type, 'circle'), size=self.config.marker_size, color=self.signal_colors.get(signal_type, '#666666'), line=dict(width=1, color='white'), opacity=0.8 ), name=f"{signal_type.upper()} Signals", text=hover_text, hoverinfo='text', showlegend=True, legendgroup=f"signals_{signal_type}" ) traces.append(trace) # Add price labels if enabled if self.config.show_price_labels: price_trace = go.Scatter( x=signal_group['timestamp'], y=signal_group['price'], mode='text', text=[f"${price:.2f}" for price in signal_group['price']], textposition='top center' if signal_type == 'buy' else 'bottom center', textfont=dict( size=8, color=self.signal_colors.get(signal_type, '#666666') ), showlegend=False, hoverinfo='skip' ) traces.append(price_trace) return traces except Exception as e: self.logger.error(f"Error creating signal traces: {e}") # Return error trace error_trace = self.create_error_trace(f"Error displaying signals: {str(e)}") return [error_trace] def is_enabled(self) -> bool: """Check if the signal layer is enabled.""" return self.config.enabled def is_overlay(self) -> bool: """Signal layers are always overlays on the main chart.""" return True def get_subplot_row(self) -> Optional[int]: """Signal layers appear on main chart (no subplot).""" return None class BaseTradeLayer(BaseLayer): """ Base class for trade visualization layers with database integration. """ def __init__(self, config: TradeLayerConfig): """ Initialize base trade layer. Args: config: Trade layer configuration """ super().__init__(config) self.trade_data = None # Trade styling defaults self.trade_colors = { 'buy': '#2e7d32', # Darker green for trades 'sell': '#c62828', # Darker red for trades 'profit': '#4caf50', # Green for profitable trades 'loss': '#f44336' # Red for losing trades } self.trade_symbols = { 'buy': 'triangle-up', 'sell': 'triangle-down' } def validate_trade_data(self, trades: Union[pd.DataFrame, List[Dict[str, Any]]]) -> bool: """ Validate trade data structure and requirements. Args: trades: Trade data from database Returns: True if data is valid for trade rendering """ try: # Clear previous errors self.error_handler.clear_errors() # Convert to DataFrame if needed if isinstance(trades, list): if not trades: # Empty trades are valid (no trades to show) return True df = pd.DataFrame(trades) else: df = trades.copy() # Check required columns for trades required_columns = ['timestamp', 'side', 'price', 'quantity'] missing_columns = [col for col in required_columns if col not in df.columns] if missing_columns: error = ChartError( code='MISSING_TRADE_COLUMNS', message=f'Missing trade columns: {missing_columns}', severity=ErrorSeverity.ERROR, context={ 'missing_columns': missing_columns, 'available_columns': list(df.columns), 'layer_type': 'trade' }, recovery_suggestion=f'Ensure trade data contains: {required_columns}' ) self.error_handler.errors.append(error) return False # Validate trade sides valid_sides = {'buy', 'sell'} invalid_trades = df[~df['side'].isin(valid_sides)] if not invalid_trades.empty: error = ChartError( code='INVALID_TRADE_SIDES', message=f'Invalid trade sides found: {set(invalid_trades["side"].unique())}', severity=ErrorSeverity.WARNING, context={ 'invalid_sides': list(invalid_trades['side'].unique()), 'valid_sides': list(valid_sides) }, recovery_suggestion='Trade sides must be: buy or sell' ) self.error_handler.warnings.append(error) # Validate positive prices and quantities invalid_prices = df[df['price'] <= 0] invalid_quantities = df[df['quantity'] <= 0] if not invalid_prices.empty: error = ChartError( code='INVALID_TRADE_PRICES', message=f'Invalid trade prices found (must be > 0)', severity=ErrorSeverity.WARNING, context={'invalid_count': len(invalid_prices)}, recovery_suggestion='Trade prices must be positive values' ) self.error_handler.warnings.append(error) if not invalid_quantities.empty: error = ChartError( code='INVALID_TRADE_QUANTITIES', message=f'Invalid trade quantities found (must be > 0)', severity=ErrorSeverity.WARNING, context={'invalid_count': len(invalid_quantities)}, recovery_suggestion='Trade quantities must be positive values' ) self.error_handler.warnings.append(error) return True except Exception as e: self.logger.error(f"Error validating trade data: {e}") error = ChartError( code='TRADE_VALIDATION_ERROR', message=f'Trade validation failed: {str(e)}', severity=ErrorSeverity.ERROR, context={'exception': str(e), 'layer_type': 'trade'} ) self.error_handler.errors.append(error) return False def filter_trades_by_config(self, trades: pd.DataFrame) -> pd.DataFrame: """ Filter trades based on layer configuration. Args: trades: Raw trade data Returns: Filtered trade data """ try: if trades.empty: return trades filtered = trades.copy() # Filter by bot_id if specified if self.config.bot_id is not None: if 'bot_id' in filtered.columns: filtered = filtered[filtered['bot_id'] == self.config.bot_id] else: self.logger.warning(f"bot_id filter requested but no bot_id column in trade data") # Filter by minimum P&L if specified if self.config.min_pnl_display is not None and 'pnl' in filtered.columns: # Only show trades with P&L above threshold (absolute value) filtered = filtered[filtered['pnl'].abs() >= self.config.min_pnl_display] self.logger.info(f"Filtered trades: {len(trades)} -> {len(filtered)} trades") return filtered except Exception as e: self.logger.error(f"Error filtering trades: {e}") return pd.DataFrame() # Return empty DataFrame on error def pair_entry_exit_trades(self, trades: pd.DataFrame) -> List[Dict[str, Any]]: """ Pair buy and sell trades to create entry/exit connections. Args: trades: Filtered trade data Returns: List of trade pairs with entry/exit information """ try: trade_pairs = [] if trades.empty: return trade_pairs # Sort trades by timestamp sorted_trades = trades.sort_values('timestamp').reset_index(drop=True) # Simple FIFO pairing logic position = 0 # Current position (positive = long, negative = short) open_positions = [] # Stack of open positions for _, trade in sorted_trades.iterrows(): trade_dict = trade.to_dict() if trade['side'] == 'buy': # Opening long position or reducing short position if position < 0: # Closing short position(s) remaining_quantity = trade['quantity'] while remaining_quantity > 0 and open_positions: open_trade = open_positions.pop() close_quantity = min(remaining_quantity, open_trade['quantity']) # Create trade pair pnl = (open_trade['price'] - trade['price']) * close_quantity trade_pair = { 'entry_trade': open_trade, 'exit_trade': trade_dict, 'entry_time': open_trade['timestamp'], 'exit_time': trade['timestamp'], 'entry_price': open_trade['price'], 'exit_price': trade['price'], 'quantity': close_quantity, 'pnl': pnl, 'side': 'short', # This was a short position 'duration': trade['timestamp'] - open_trade['timestamp'] } trade_pairs.append(trade_pair) remaining_quantity -= close_quantity open_trade['quantity'] -= close_quantity # If open trade still has quantity, put it back if open_trade['quantity'] > 0: open_positions.append(open_trade) # If there's remaining quantity, it opens a new long position if remaining_quantity > 0: new_trade = trade_dict.copy() new_trade['quantity'] = remaining_quantity open_positions.append(new_trade) position += remaining_quantity else: # Opening new long position open_positions.append(trade_dict) position += trade['quantity'] else: # sell # Opening short position or reducing long position if position > 0: # Closing long position(s) remaining_quantity = trade['quantity'] while remaining_quantity > 0 and open_positions: open_trade = open_positions.pop(0) # FIFO for long positions close_quantity = min(remaining_quantity, open_trade['quantity']) # Create trade pair pnl = (trade['price'] - open_trade['price']) * close_quantity trade_pair = { 'entry_trade': open_trade, 'exit_trade': trade_dict, 'entry_time': open_trade['timestamp'], 'exit_time': trade['timestamp'], 'entry_price': open_trade['price'], 'exit_price': trade['price'], 'quantity': close_quantity, 'pnl': pnl, 'side': 'long', # This was a long position 'duration': trade['timestamp'] - open_trade['timestamp'] } trade_pairs.append(trade_pair) remaining_quantity -= close_quantity open_trade['quantity'] -= close_quantity # If open trade still has quantity, put it back if open_trade['quantity'] > 0: open_positions.insert(0, open_trade) # If there's remaining quantity, it opens a new short position if remaining_quantity > 0: new_trade = trade_dict.copy() new_trade['quantity'] = remaining_quantity open_positions.append(new_trade) position -= remaining_quantity else: # Opening new short position open_positions.append(trade_dict) position -= trade['quantity'] self.logger.info(f"Paired {len(trade_pairs)} trade pairs from {len(sorted_trades)} trades") return trade_pairs except Exception as e: self.logger.error(f"Error pairing trades: {e}") return [] def is_enabled(self) -> bool: """Check if the trade layer is enabled.""" return self.config.enabled def is_overlay(self) -> bool: """Trade layers are always overlays on the main chart.""" return True def get_subplot_row(self) -> Optional[int]: """Trade layers appear on main chart (no subplot).""" return None class TradingSignalLayer(BaseSignalLayer): """ Main trading signal layer for displaying buy/sell/hold signals from database. """ def __init__(self, config: SignalLayerConfig = None): """ Initialize trading signal layer. Args: config: Signal layer configuration (optional, uses defaults) """ if config is None: config = SignalLayerConfig( name="Trading Signals", enabled=True, signal_types=['buy', 'sell'], confidence_threshold=0.3, # Only show signals with >30% confidence marker_size=10, show_confidence=True, show_price_labels=True ) super().__init__(config) self.logger.info(f"Initialized TradingSignalLayer: {config.name}") def render(self, fig: go.Figure, data: pd.DataFrame, signals: pd.DataFrame = None, **kwargs) -> go.Figure: """ Render signal markers on the chart. Args: fig: Plotly figure to render onto data: Market data (OHLCV format) signals: Signal data from database (optional) **kwargs: Additional rendering parameters Returns: Updated figure with signal overlays """ try: if signals is None or signals.empty: self.logger.info("No signals provided for rendering") return fig # Validate signal data if not self.validate_signal_data(signals): self.logger.warning("Signal data validation failed") # Add error annotation if validation failed error_message = self.error_handler.get_user_friendly_message() fig.add_annotation( text=f"Signal Error: {error_message}", x=0.5, y=0.95, xref="paper", yref="paper", showarrow=False, font=dict(color="red", size=10) ) return fig # Filter signals based on configuration filtered_signals = self.filter_signals_by_config(signals) if filtered_signals.empty: self.logger.info("No signals remain after filtering") return fig # Create signal traces signal_traces = self.create_signal_traces(filtered_signals) # Add traces to figure for trace in signal_traces: fig.add_trace(trace) # Store processed data for potential reuse self.signal_data = filtered_signals self.logger.info(f"Successfully rendered {len(filtered_signals)} signals") return fig except Exception as e: self.logger.error(f"Error rendering signal layer: {e}") # Add error annotation to chart fig.add_annotation( text=f"Signal Rendering Error: {str(e)}", x=0.5, y=0.9, xref="paper", yref="paper", showarrow=False, font=dict(color="red", size=10) ) return fig class TradeExecutionLayer(BaseTradeLayer): """ Trade execution layer for displaying actual buy/sell trades with entry/exit connections. """ def __init__(self, config: TradeLayerConfig = None): """ Initialize trade execution layer. Args: config: Trade layer configuration (optional, uses defaults) """ if config is None: config = TradeLayerConfig( name="Trade Executions", enabled=True, show_pnl=True, show_trade_lines=True, show_quantity=True, show_fees=True, trade_marker_size=12 ) super().__init__(config) self.logger.info(f"Initialized TradeExecutionLayer: {config.name}") def create_trade_traces(self, trades: pd.DataFrame) -> List[go.Scatter]: """ Create Plotly traces for trade markers and connections. Args: trades: Filtered trade data Returns: List of Plotly traces for trades """ traces = [] try: if trades.empty: return traces # Create trade pairs for entry/exit connections trade_pairs = self.pair_entry_exit_trades(trades) # Create individual trade markers for side in ['buy', 'sell']: side_trades = trades[trades['side'] == side] if side_trades.empty: continue # Prepare hover text hover_text = [] for _, trade in side_trades.iterrows(): hover_parts = [ f"Trade: {trade['side'].upper()}", f"Price: ${trade['price']:.4f}", f"Time: {trade['timestamp']}" ] if self.config.show_quantity: hover_parts.append(f"Quantity: {trade['quantity']:.8f}") if self.config.show_pnl and 'pnl' in trade: pnl_value = trade.get('pnl', 0) if pnl_value != 0: hover_parts.append(f"P&L: ${pnl_value:.4f}") if self.config.show_fees and 'fees' in trade: fees = trade.get('fees', 0) if fees > 0: hover_parts.append(f"Fees: ${fees:.4f}") if 'bot_id' in trade: hover_parts.append(f"Bot ID: {trade['bot_id']}") hover_text.append("
".join(hover_parts)) # Create trace for this trade side trace = go.Scatter( x=side_trades['timestamp'], y=side_trades['price'], mode='markers', marker=dict( symbol=self.trade_symbols.get(side, 'circle'), size=self.config.trade_marker_size, color=self.trade_colors.get(side, '#666666'), line=dict(width=2, color='white'), opacity=0.9 ), name=f"{side.upper()} Trades", text=hover_text, hoverinfo='text', showlegend=True, legendgroup=f"trades_{side}" ) traces.append(trace) # Create entry/exit connection lines if enabled if self.config.show_trade_lines and trade_pairs: for i, pair in enumerate(trade_pairs): # Determine line color based on P&L line_color = self.trade_colors['profit'] if pair['pnl'] >= 0 else self.trade_colors['loss'] # Create connection line line_trace = go.Scatter( x=[pair['entry_time'], pair['exit_time']], y=[pair['entry_price'], pair['exit_price']], mode='lines', line=dict( color=line_color, width=2, dash='solid' if pair['pnl'] >= 0 else 'dash' ), name=f"Trade #{i+1}" if i < 10 else None, # Only show legend for first 10 showlegend=i < 10, legendgroup=f"trade_lines", hovertext=f"P&L: ${pair['pnl']:.4f}
Duration: {pair['duration']}", hoverinfo='text' ) traces.append(line_trace) return traces except Exception as e: self.logger.error(f"Error creating trade traces: {e}") # Return error trace error_trace = self.create_error_trace(f"Error displaying trades: {str(e)}") return [error_trace] def render(self, fig: go.Figure, data: pd.DataFrame, trades: pd.DataFrame = None, **kwargs) -> go.Figure: """ Render trade execution markers and connections on the chart. Args: fig: Plotly figure to render onto data: Market data (OHLCV format) trades: Trade data from database (optional) **kwargs: Additional rendering parameters Returns: Updated figure with trade overlays """ try: if trades is None or trades.empty: self.logger.info("No trades provided for rendering") return fig # Validate trade data if not self.validate_trade_data(trades): self.logger.warning("Trade data validation failed") # Add error annotation if validation failed error_message = self.error_handler.get_user_friendly_message() fig.add_annotation( text=f"Trade Error: {error_message}", x=0.5, y=0.95, xref="paper", yref="paper", showarrow=False, font=dict(color="red", size=10) ) return fig # Filter trades based on configuration filtered_trades = self.filter_trades_by_config(trades) if filtered_trades.empty: self.logger.info("No trades remain after filtering") return fig # Create trade traces trade_traces = self.create_trade_traces(filtered_trades) # Add traces to figure for trace in trade_traces: fig.add_trace(trace) # Store processed data for potential reuse self.trade_data = filtered_trades self.logger.info(f"Successfully rendered {len(filtered_trades)} trades") return fig except Exception as e: self.logger.error(f"Error rendering trade layer: {e}") # Add error annotation to chart fig.add_annotation( text=f"Trade Rendering Error: {str(e)}", x=0.5, y=0.9, xref="paper", yref="paper", showarrow=False, font=dict(color="red", size=10) ) return fig # Convenience functions for creating signal layers def create_trading_signal_layer(bot_id: Optional[int] = None, confidence_threshold: float = 0.3, signal_types: List[str] = None, **kwargs) -> TradingSignalLayer: """ Create a trading signal layer with common configurations. Args: bot_id: Filter signals by specific bot (None for all bots) confidence_threshold: Minimum confidence to display signals signal_types: Signal types to display (['buy', 'sell'] by default) **kwargs: Additional configuration options Returns: Configured TradingSignalLayer instance """ if signal_types is None: signal_types = ['buy', 'sell'] config = SignalLayerConfig( name=f"Bot {bot_id} Signals" if bot_id else "Trading Signals", enabled=True, signal_types=signal_types, confidence_threshold=confidence_threshold, bot_id=bot_id, marker_size=kwargs.get('marker_size', 10), show_confidence=kwargs.get('show_confidence', True), show_price_labels=kwargs.get('show_price_labels', True), **{k: v for k, v in kwargs.items() if k not in ['marker_size', 'show_confidence', 'show_price_labels']} ) return TradingSignalLayer(config) def create_buy_signals_only_layer(**kwargs) -> TradingSignalLayer: """Create a signal layer that shows only buy signals.""" return create_trading_signal_layer(signal_types=['buy'], **kwargs) def create_sell_signals_only_layer(**kwargs) -> TradingSignalLayer: """Create a signal layer that shows only sell signals.""" return create_trading_signal_layer(signal_types=['sell'], **kwargs) def create_high_confidence_signals_layer(confidence_threshold: float = 0.7, **kwargs) -> TradingSignalLayer: """Create a signal layer for high-confidence signals only.""" return create_trading_signal_layer( confidence_threshold=confidence_threshold, **kwargs ) # Convenience functions for creating trade layers def create_trade_execution_layer(bot_id: Optional[int] = None, show_pnl: bool = True, show_trade_lines: bool = True, **kwargs) -> TradeExecutionLayer: """ Create a trade execution layer with common configurations. Args: bot_id: Filter trades by specific bot (None for all bots) show_pnl: Show profit/loss information show_trade_lines: Draw lines connecting entry/exit points **kwargs: Additional configuration options Returns: Configured TradeExecutionLayer instance """ config = TradeLayerConfig( name=f"Bot {bot_id} Trades" if bot_id else "Trade Executions", enabled=True, show_pnl=show_pnl, show_trade_lines=show_trade_lines, bot_id=bot_id, show_quantity=kwargs.get('show_quantity', True), show_fees=kwargs.get('show_fees', True), trade_marker_size=kwargs.get('trade_marker_size', 12), min_pnl_display=kwargs.get('min_pnl_display', None), **{k: v for k, v in kwargs.items() if k not in ['show_quantity', 'show_fees', 'trade_marker_size', 'min_pnl_display']} ) return TradeExecutionLayer(config) def create_profitable_trades_only_layer(**kwargs) -> TradeExecutionLayer: """Create a trade layer that shows only profitable trades.""" return create_trade_execution_layer(min_pnl_display=0.01, **kwargs) def create_losing_trades_only_layer(**kwargs) -> TradeExecutionLayer: """Create a trade layer that shows only losing trades (for analysis).""" config = kwargs.copy() config['min_pnl_display'] = -float('inf') # Show all losing trades layer = create_trade_execution_layer(**config) # Override filter to show only losing trades original_filter = layer.filter_trades_by_config def losing_trades_filter(trades): filtered = original_filter(trades) if not filtered.empty and 'pnl' in filtered.columns: filtered = filtered[filtered['pnl'] < 0] return filtered layer.filter_trades_by_config = losing_trades_filter return layer