- Introduced `service_config.py` to manage configuration loading, validation, and schema management, enhancing modularity and security.
- Created a `ServiceConfig` class for handling configuration with robust error handling and default values.
- Refactored `DataCollectionService` to utilize the new `ServiceConfig`, streamlining configuration management and improving readability.
- Added a `CollectorFactory` to encapsulate collector creation logic, promoting separation of concerns.
- Updated `CollectorManager` and related components to align with the new architecture, ensuring better maintainability.
- Enhanced logging practices across the service for improved monitoring and debugging.
These changes significantly improve the architecture and maintainability of the data collection service, aligning with project standards for modularity and performance.
- Introduced a new transformation module that includes safety limits for trade operations, enhancing data integrity and preventing errors.
- Refactored existing transformation logic into dedicated classes and functions, improving modularity and maintainability.
- Added detailed validation for trade sizes, prices, and symbol formats, ensuring compliance with trading rules.
- Implemented logging for significant operations and validation checks, aiding in monitoring and debugging.
- Created a changelog to document the new features and changes, providing clarity for future development.
- Developed extensive unit tests to cover the new functionality, ensuring reliability and preventing regressions.
These changes significantly enhance the architecture of the transformation module, making it more robust and easier to manage.
- Split the `aggregation.py` file into a dedicated sub-package, improving modularity and maintainability.
- Moved `TimeframeBucket`, `RealTimeCandleProcessor`, and `BatchCandleProcessor` classes into their respective files within the new `aggregation` sub-package.
- Introduced utility functions for trade aggregation and validation, enhancing code organization.
- Updated import paths throughout the codebase to reflect the new structure, ensuring compatibility.
- Added safety net tests for the aggregation package to verify core functionality and prevent regressions during refactoring.
These changes enhance the overall architecture of the aggregation module, making it more scalable and easier to manage.
- Marked task 2.9 as complete in the project documentation by adding comprehensive unit tests for data collection and aggregation functionality.
- Created `test_data_collection_aggregation.py` to cover OKX data collection, real-time candle aggregation, data validation, and transformation.
- Included tests for error handling, edge cases, and performance to ensure robustness and reliability of the data processing components.
- Enhanced documentation within the test module to provide clarity on the testing approach and coverage.