- Introduced a dedicated sub-package for technical indicators under `data/common/indicators/`, improving modularity and maintainability.
- Moved `TechnicalIndicators` and `IndicatorResult` classes to their respective files, along with utility functions for configuration management.
- Updated import paths throughout the codebase to reflect the new structure, ensuring compatibility.
- Added comprehensive safety net tests for the indicators module to verify core functionality and prevent regressions during refactoring.
- Enhanced documentation to provide clear usage examples and details on the new package structure.
These changes improve the overall architecture of the technical indicators module, making it more scalable and easier to manage.
- Updated `ChartBuilder` to support dynamic indicator integration, allowing users to specify overlay and subplot indicators for enhanced chart analysis.
- Implemented a new `get_indicator_data` method in `MarketDataIntegrator` for fetching indicator data based on user configurations.
- Added `create_export_controls` in `chart_controls.py` to facilitate data export options (CSV/JSON) for user analysis.
- Enhanced error handling and logging throughout the chart and data analysis processes to improve reliability and user feedback.
- Updated documentation to reflect new features and usage guidelines for indicator management and data export functionalities.
- Introduced `BotIntegratedSignalLayer` and `BotIntegratedTradeLayer` to facilitate automated data fetching and visualization of bot signals and trades.
- Implemented `BotDataService` for efficient retrieval of bot-related data, including filtering and performance summaries.
- Added support for various bot-enhanced layers, including support/resistance and custom strategy layers, to improve trading analysis.
- Updated existing signal layer components to integrate with the new bot functionalities, ensuring seamless operation.
- Enhanced logging and error handling for better debugging and user feedback during bot operations.
- Included comprehensive tests for new functionalities to ensure reliability and maintainability.
- Updated documentation to reflect the new bot integration features and usage guidelines.
- Introduced `TradingSignalLayer` and `TradeExecutionLayer` for visualizing buy/sell signals and trade entries/exits on charts.
- Implemented signal validation and filtering mechanisms to ensure data integrity and user-configurable options.
- Enhanced market data layout to support new timeframes for improved user experience.
- Updated documentation to reflect the new signal layer architecture and its integration with the dashboard.
- Ensured compatibility with existing components while maintaining a modular structure for future enhancements.
- Introduced a comprehensive user indicator management system in `components/charts/indicator_manager.py`, allowing users to create, edit, and manage custom indicators with JSON persistence.
- Added new default indicators in `components/charts/indicator_defaults.py` to provide users with immediate options for technical analysis.
- Enhanced the chart rendering capabilities by implementing the `create_chart_with_indicators` function in `components/charts/builder.py`, supporting both overlay and subplot indicators.
- Updated the main application layout in `app.py` to include a modal for adding and editing indicators, improving user interaction.
- Enhanced documentation to cover the new indicator system, including a quick guide for adding new indicators and detailed usage examples.
- Added unit tests to ensure the reliability and functionality of the new indicator management features.
Implement modular chart layers and error handling for Crypto Trading Bot Dashboard
- Introduced a comprehensive chart layer system in `components/charts/layers/` to support various technical indicators and subplots.
- Added base layer components including `BaseLayer`, `CandlestickLayer`, and `VolumeLayer` for flexible chart rendering.
- Implemented overlay indicators such as `SMALayer`, `EMALayer`, and `BollingerBandsLayer` with robust error handling.
- Created subplot layers for indicators like `RSILayer` and `MACDLayer`, enhancing visualization capabilities.
- Developed a `MarketDataIntegrator` for seamless data fetching and validation, improving data quality assurance.
- Enhanced error handling utilities in `components/charts/error_handling.py` to manage insufficient data scenarios effectively.
- Updated documentation to reflect the new chart layer architecture and usage guidelines.
- Added unit tests for all chart layer components to ensure functionality and reliability.
- Suppressed SQLAlchemy logging in `app.py` and `main.py` to reduce console verbosity.
- Introduced a new modular chart system in `components/charts/` with a `ChartBuilder` class for flexible chart creation.
- Added utility functions for data processing and validation in `components/charts/utils.py`.
- Implemented indicator definitions and configurations in `components/charts/config/indicator_defs.py`.
- Created a comprehensive documentation structure for the new chart system, ensuring clarity and maintainability.
- Added unit tests for the `ChartBuilder` class to verify functionality and robustness.
- Updated existing components to integrate with the new chart system, enhancing overall architecture and user experience.