Implement comprehensive chart configuration and validation system
- Introduced a modular chart configuration system in `components/charts/config/` to manage indicator definitions, default configurations, and strategy-specific setups.
- Added new modules for error handling and validation, enhancing user guidance and error reporting capabilities.
- Implemented detailed schema validation for indicators and strategies, ensuring robust configuration management.
- Created example strategies and default configurations to facilitate user onboarding and usage.
- Enhanced documentation to provide clear guidelines on the configuration system, validation rules, and usage examples.
- Added unit tests for all new components to ensure functionality and reliability across the configuration system.
Implement modular chart layers and error handling for Crypto Trading Bot Dashboard
- Introduced a comprehensive chart layer system in `components/charts/layers/` to support various technical indicators and subplots.
- Added base layer components including `BaseLayer`, `CandlestickLayer`, and `VolumeLayer` for flexible chart rendering.
- Implemented overlay indicators such as `SMALayer`, `EMALayer`, and `BollingerBandsLayer` with robust error handling.
- Created subplot layers for indicators like `RSILayer` and `MACDLayer`, enhancing visualization capabilities.
- Developed a `MarketDataIntegrator` for seamless data fetching and validation, improving data quality assurance.
- Enhanced error handling utilities in `components/charts/error_handling.py` to manage insufficient data scenarios effectively.
- Updated documentation to reflect the new chart layer architecture and usage guidelines.
- Added unit tests for all chart layer components to ensure functionality and reliability.
- Suppressed SQLAlchemy logging in `app.py` and `main.py` to reduce console verbosity.
- Introduced a new modular chart system in `components/charts/` with a `ChartBuilder` class for flexible chart creation.
- Added utility functions for data processing and validation in `components/charts/utils.py`.
- Implemented indicator definitions and configurations in `components/charts/config/indicator_defs.py`.
- Created a comprehensive documentation structure for the new chart system, ensuring clarity and maintainability.
- Added unit tests for the `ChartBuilder` class to verify functionality and robustness.
- Updated existing components to integrate with the new chart system, enhancing overall architecture and user experience.
- Introduced `app.py` as the main entry point for the dashboard, providing real-time visualization and bot management interface.
- Implemented layout components including header, navigation tabs, and content areas for market data, bot management, performance analytics, and system health.
- Added callbacks for dynamic updates of market data charts and statistics, ensuring real-time interaction.
- Created reusable UI components in `components` directory for modularity and maintainability.
- Enhanced database operations for fetching market data and checking data availability.
- Updated `main.py` to start the dashboard application with improved user instructions and error handling.
- Documented components and functions for clarity and future reference.