- Introduced a dedicated sub-package for technical indicators under `data/common/indicators/`, improving modularity and maintainability.
- Moved `TechnicalIndicators` and `IndicatorResult` classes to their respective files, along with utility functions for configuration management.
- Updated import paths throughout the codebase to reflect the new structure, ensuring compatibility.
- Added comprehensive safety net tests for the indicators module to verify core functionality and prevent regressions during refactoring.
- Enhanced documentation to provide clear usage examples and details on the new package structure.
These changes improve the overall architecture of the technical indicators module, making it more scalable and easier to manage.
Implement modular chart layers and error handling for Crypto Trading Bot Dashboard
- Introduced a comprehensive chart layer system in `components/charts/layers/` to support various technical indicators and subplots.
- Added base layer components including `BaseLayer`, `CandlestickLayer`, and `VolumeLayer` for flexible chart rendering.
- Implemented overlay indicators such as `SMALayer`, `EMALayer`, and `BollingerBandsLayer` with robust error handling.
- Created subplot layers for indicators like `RSILayer` and `MACDLayer`, enhancing visualization capabilities.
- Developed a `MarketDataIntegrator` for seamless data fetching and validation, improving data quality assurance.
- Enhanced error handling utilities in `components/charts/error_handling.py` to manage insufficient data scenarios effectively.
- Updated documentation to reflect the new chart layer architecture and usage guidelines.
- Added unit tests for all chart layer components to ensure functionality and reliability.