- Introduced a dedicated sub-package for technical indicators under `data/common/indicators/`, improving modularity and maintainability.
- Moved `TechnicalIndicators` and `IndicatorResult` classes to their respective files, along with utility functions for configuration management.
- Updated import paths throughout the codebase to reflect the new structure, ensuring compatibility.
- Added comprehensive safety net tests for the indicators module to verify core functionality and prevent regressions during refactoring.
- Enhanced documentation to provide clear usage examples and details on the new package structure.
These changes improve the overall architecture of the technical indicators module, making it more scalable and easier to manage.
- Updated `ChartBuilder` to support dynamic indicator integration, allowing users to specify overlay and subplot indicators for enhanced chart analysis.
- Implemented a new `get_indicator_data` method in `MarketDataIntegrator` for fetching indicator data based on user configurations.
- Added `create_export_controls` in `chart_controls.py` to facilitate data export options (CSV/JSON) for user analysis.
- Enhanced error handling and logging throughout the chart and data analysis processes to improve reliability and user feedback.
- Updated documentation to reflect new features and usage guidelines for indicator management and data export functionalities.
- Introduced a comprehensive user indicator management system in `components/charts/indicator_manager.py`, allowing users to create, edit, and manage custom indicators with JSON persistence.
- Added new default indicators in `components/charts/indicator_defaults.py` to provide users with immediate options for technical analysis.
- Enhanced the chart rendering capabilities by implementing the `create_chart_with_indicators` function in `components/charts/builder.py`, supporting both overlay and subplot indicators.
- Updated the main application layout in `app.py` to include a modal for adding and editing indicators, improving user interaction.
- Enhanced documentation to cover the new indicator system, including a quick guide for adding new indicators and detailed usage examples.
- Added unit tests to ensure the reliability and functionality of the new indicator management features.
Implement modular chart layers and error handling for Crypto Trading Bot Dashboard
- Introduced a comprehensive chart layer system in `components/charts/layers/` to support various technical indicators and subplots.
- Added base layer components including `BaseLayer`, `CandlestickLayer`, and `VolumeLayer` for flexible chart rendering.
- Implemented overlay indicators such as `SMALayer`, `EMALayer`, and `BollingerBandsLayer` with robust error handling.
- Created subplot layers for indicators like `RSILayer` and `MACDLayer`, enhancing visualization capabilities.
- Developed a `MarketDataIntegrator` for seamless data fetching and validation, improving data quality assurance.
- Enhanced error handling utilities in `components/charts/error_handling.py` to manage insufficient data scenarios effectively.
- Updated documentation to reflect the new chart layer architecture and usage guidelines.
- Added unit tests for all chart layer components to ensure functionality and reliability.