- Updated `app_new.py` to run the application in debug mode for stability.
- Introduced a new time range control panel in `dashboard/components/chart_controls.py`, allowing users to select predefined time ranges and custom date ranges.
- Enhanced chart callbacks in `dashboard/callbacks/charts.py` to handle time range inputs, ensuring accurate market statistics and analysis based on user selections.
- Implemented logic to preserve chart state during updates, preventing resets of zoom/pan settings.
- Updated market statistics display to reflect the selected time range, improving user experience and data relevance.
- Added a clear button for custom date ranges to reset selections easily.
- Enhanced documentation to reflect the new time range features and usage guidelines.
- Updated `register_chart_callbacks` to include enhanced market statistics.
- Implemented new data analysis callbacks in `dashboard/callbacks/data_analysis.py` for volume and price movement analysis.
- Created `VolumeAnalyzer` and `PriceMovementAnalyzer` classes for detailed statistical calculations.
- Integrated data analysis components into the market statistics layout, providing users with insights on volume trends and price movements.
- Improved error handling and logging for data analysis operations.
- Updated documentation to reflect the new features and usage guidelines.
- Added `psutil` dependency for system performance metrics.
- Implemented a new layout in `dashboard/layouts/system_health.py` using Mantine components for real-time monitoring of data collection services, database health, Redis status, and system performance.
- Enhanced callbacks in `dashboard/callbacks/system_health.py` for detailed status updates and error handling.
- Introduced quick status indicators for data collection, database, Redis, and performance metrics with auto-refresh functionality.
- Created modals for viewing detailed data collection information and service logs.
- Updated documentation to reflect the new features and usage guidelines.
- Introduced `TradingSignalLayer` and `TradeExecutionLayer` for visualizing buy/sell signals and trade entries/exits on charts.
- Implemented signal validation and filtering mechanisms to ensure data integrity and user-configurable options.
- Enhanced market data layout to support new timeframes for improved user experience.
- Updated documentation to reflect the new signal layer architecture and its integration with the dashboard.
- Ensured compatibility with existing components while maintaining a modular structure for future enhancements.
- Deleted `app.py`, consolidating the main application logic into a modular structure for improved maintainability.
- Added `dash-mantine-components` dependency to enhance UI component capabilities.
- Updated `pyproject.toml` and `uv.lock` to reflect the new dependency.
- Adjusted imports in `components/__init__.py` and `chart_controls.py` to align with the new modular design.
- Cleaned up unused parameter controls in the market data layout to streamline the user interface.
- Introduced a new modular structure for the dashboard, enhancing maintainability and scalability.
- Created main application entry point in `app_new.py`, integrating all components and callbacks.
- Developed layout modules for market data, bot management, performance analytics, and system health in the `layouts` directory.
- Implemented callback modules for navigation, charts, indicators, and system health in the `callbacks` directory.
- Established reusable UI components in the `components` directory, including chart controls and indicator modals.
- Enhanced documentation to reflect the new modular structure and provide clear usage guidelines.
- Ensured all components are under 300-400 lines for better readability and maintainability.