- Updated project rules to unify structure and interaction with tools, emphasizing the use of UV for package management and Windows PowerShell for terminal commands.
- Added guidelines for argument validation and referencing documentation files for context and architecture.
- Improved links in the README documentation for better navigation and accessibility to project resources.
These changes aim to streamline project management and enhance clarity for developers, ensuring adherence to best practices and coding standards.
- Introduced a new modular structure for the dashboard, enhancing maintainability and scalability.
- Created main application entry point in `app_new.py`, integrating all components and callbacks.
- Developed layout modules for market data, bot management, performance analytics, and system health in the `layouts` directory.
- Implemented callback modules for navigation, charts, indicators, and system health in the `callbacks` directory.
- Established reusable UI components in the `components` directory, including chart controls and indicator modals.
- Enhanced documentation to reflect the new modular structure and provide clear usage guidelines.
- Ensured all components are under 300-400 lines for better readability and maintainability.
- Introduced `indicators.py` containing implementations for SMA, EMA, RSI, MACD, and Bollinger Bands, optimized for handling sparse OHLCV data.
- Added `IndicatorResult` dataclass to encapsulate results of indicator calculations.
- Implemented methods for calculating multiple indicators efficiently with JSON configuration support and validation.
- Updated `__init__.py` to include new indicators in the module's exports.
- Enhanced documentation to cover the new technical indicators module, including usage examples and integration details.
- Added comprehensive unit tests to ensure accuracy and robustness of the indicators module.
- Introduced a modular architecture for data processing, including common utilities for validation, transformation, and aggregation.
- Implemented `StandardizedTrade`, `OHLCVCandle`, and `TimeframeBucket` classes for unified data handling across exchanges.
- Developed `OKXDataProcessor` for OKX-specific data validation and processing, leveraging the new common framework.
- Enhanced `OKXCollector` to utilize the common data processing utilities, improving modularity and maintainability.
- Updated documentation to reflect the new architecture and provide guidance on the data processing framework.
- Created comprehensive tests for the new data processing components to ensure reliability and functionality.
- Introduced the `OKXCollector` and `OKXWebSocketClient` classes for real-time market data collection from the OKX exchange.
- Implemented a factory pattern for creating exchange-specific collectors, enhancing modularity and scalability.
- Added configuration support for the OKX collector in `config/okx_config.json`.
- Updated documentation to reflect the new modular architecture and provide guidance on using the OKX collector.
- Created unit tests for the OKX collector and exchange factory to ensure functionality and reliability.
- Enhanced logging and error handling throughout the new implementation for improved monitoring and debugging.
- Introduced `BaseDataCollector` and `CollectorManager` classes for standardized data collection and centralized management.
- Added health monitoring features, including auto-restart capabilities and detailed status reporting for collectors.
- Updated `env.template` to include new logging and health check configurations.
- Enhanced documentation in `docs/data_collectors.md` to provide comprehensive guidance on the new data collection system.
- Added unit tests for `BaseDataCollector` and `CollectorManager` to ensure reliability and functionality.