- Introduced `indicators.py` containing implementations for SMA, EMA, RSI, MACD, and Bollinger Bands, optimized for handling sparse OHLCV data.
- Added `IndicatorResult` dataclass to encapsulate results of indicator calculations.
- Implemented methods for calculating multiple indicators efficiently with JSON configuration support and validation.
- Updated `__init__.py` to include new indicators in the module's exports.
- Enhanced documentation to cover the new technical indicators module, including usage examples and integration details.
- Added comprehensive unit tests to ensure accuracy and robustness of the indicators module.
- Introduced a modular architecture for data processing, including common utilities for validation, transformation, and aggregation.
- Implemented `StandardizedTrade`, `OHLCVCandle`, and `TimeframeBucket` classes for unified data handling across exchanges.
- Developed `OKXDataProcessor` for OKX-specific data validation and processing, leveraging the new common framework.
- Enhanced `OKXCollector` to utilize the common data processing utilities, improving modularity and maintainability.
- Updated documentation to reflect the new architecture and provide guidance on the data processing framework.
- Created comprehensive tests for the new data processing components to ensure reliability and functionality.
- Introduced the `OKXCollector` and `OKXWebSocketClient` classes for real-time market data collection from the OKX exchange.
- Implemented a factory pattern for creating exchange-specific collectors, enhancing modularity and scalability.
- Added configuration support for the OKX collector in `config/okx_config.json`.
- Updated documentation to reflect the new modular architecture and provide guidance on using the OKX collector.
- Created unit tests for the OKX collector and exchange factory to ensure functionality and reliability.
- Enhanced logging and error handling throughout the new implementation for improved monitoring and debugging.
- Introduced `BaseDataCollector` and `CollectorManager` classes for standardized data collection and centralized management.
- Added health monitoring features, including auto-restart capabilities and detailed status reporting for collectors.
- Updated `env.template` to include new logging and health check configurations.
- Enhanced documentation in `docs/data_collectors.md` to provide comprehensive guidance on the new data collection system.
- Added unit tests for `BaseDataCollector` and `CollectorManager` to ensure reliability and functionality.