- Introduced `indicators.py` containing implementations for SMA, EMA, RSI, MACD, and Bollinger Bands, optimized for handling sparse OHLCV data.
- Added `IndicatorResult` dataclass to encapsulate results of indicator calculations.
- Implemented methods for calculating multiple indicators efficiently with JSON configuration support and validation.
- Updated `__init__.py` to include new indicators in the module's exports.
- Enhanced documentation to cover the new technical indicators module, including usage examples and integration details.
- Added comprehensive unit tests to ensure accuracy and robustness of the indicators module.
- Introduced `example_complete_series_aggregation.py` to demonstrate time series aggregation, emitting candles even when no trades occur.
- Implemented `CompleteSeriesProcessor` extending `RealTimeCandleProcessor` to handle time-based candle emission and empty candle creation.
- Refactored `OKXCollector` to utilize the new repository pattern for database operations, enhancing modularity and maintainability.
- Updated database operations to centralize data handling through `DatabaseOperations`, improving error handling and logging.
- Enhanced documentation to include details on the new aggregation example and repository pattern implementation, ensuring clarity for users.