indicators refactor
This commit is contained in:
parent
b29af1e0e6
commit
d92a48cd7e
106
data/common/indicators/base.py
Normal file
106
data/common/indicators/base.py
Normal file
@ -0,0 +1,106 @@
|
||||
"""
|
||||
Base classes and interfaces for technical indicators.
|
||||
|
||||
This module provides the foundation for all technical indicators
|
||||
with common functionality and type definitions.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Dict, Any
|
||||
import pandas as pd
|
||||
from utils.logger import get_logger
|
||||
|
||||
from .result import IndicatorResult
|
||||
from ..data_types import OHLCVCandle
|
||||
|
||||
|
||||
|
||||
class BaseIndicator(ABC):
|
||||
"""
|
||||
Abstract base class for all technical indicators.
|
||||
|
||||
Provides common functionality and enforces consistent interface
|
||||
across all indicator implementations.
|
||||
"""
|
||||
|
||||
def __init__(self, logger=None):
|
||||
"""
|
||||
Initialize base indicator.
|
||||
|
||||
Args:
|
||||
logger: Optional logger instance
|
||||
"""
|
||||
if logger is None:
|
||||
self.logger = get_logger(__name__)
|
||||
self.logger = logger
|
||||
|
||||
def prepare_dataframe(self, candles: List[OHLCVCandle]) -> pd.DataFrame:
|
||||
"""
|
||||
Convert OHLCV candles to pandas DataFrame for calculations.
|
||||
|
||||
Args:
|
||||
candles: List of OHLCV candles (can be sparse)
|
||||
|
||||
Returns:
|
||||
DataFrame with OHLCV data, sorted by timestamp
|
||||
"""
|
||||
if not candles:
|
||||
return pd.DataFrame()
|
||||
|
||||
# Convert to DataFrame
|
||||
data = []
|
||||
for candle in candles:
|
||||
data.append({
|
||||
'timestamp': candle.end_time, # Right-aligned timestamp
|
||||
'symbol': candle.symbol,
|
||||
'timeframe': candle.timeframe,
|
||||
'open': float(candle.open),
|
||||
'high': float(candle.high),
|
||||
'low': float(candle.low),
|
||||
'close': float(candle.close),
|
||||
'volume': float(candle.volume),
|
||||
'trade_count': candle.trade_count
|
||||
})
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Sort by timestamp to ensure proper order
|
||||
df = df.sort_values('timestamp').reset_index(drop=True)
|
||||
|
||||
# Set timestamp as index for time-series operations
|
||||
df.set_index('timestamp', inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
@abstractmethod
|
||||
def calculate(self, df: pd.DataFrame, **kwargs) -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate the indicator values.
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
**kwargs: Additional parameters specific to each indicator
|
||||
|
||||
Returns:
|
||||
List of indicator results
|
||||
"""
|
||||
pass
|
||||
|
||||
def validate_dataframe(self, df: pd.DataFrame, min_periods: int) -> bool:
|
||||
"""
|
||||
Validate that DataFrame has sufficient data for calculation.
|
||||
|
||||
Args:
|
||||
df: DataFrame to validate
|
||||
min_periods: Minimum number of periods required
|
||||
|
||||
Returns:
|
||||
True if DataFrame is valid, False otherwise
|
||||
"""
|
||||
if df.empty or len(df) < min_periods:
|
||||
if self.logger:
|
||||
self.logger.warning(
|
||||
f"Insufficient data: got {len(df)} periods, need {min_periods}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
20
data/common/indicators/implementations/__init__.py
Normal file
20
data/common/indicators/implementations/__init__.py
Normal file
@ -0,0 +1,20 @@
|
||||
"""
|
||||
Technical indicator implementations package.
|
||||
|
||||
This package contains individual implementations of technical indicators,
|
||||
each in its own module for better maintainability and separation of concerns.
|
||||
"""
|
||||
|
||||
from .sma import SMAIndicator
|
||||
from .ema import EMAIndicator
|
||||
from .rsi import RSIIndicator
|
||||
from .macd import MACDIndicator
|
||||
from .bollinger import BollingerBandsIndicator
|
||||
|
||||
__all__ = [
|
||||
'SMAIndicator',
|
||||
'EMAIndicator',
|
||||
'RSIIndicator',
|
||||
'MACDIndicator',
|
||||
'BollingerBandsIndicator'
|
||||
]
|
||||
81
data/common/indicators/implementations/bollinger.py
Normal file
81
data/common/indicators/implementations/bollinger.py
Normal file
@ -0,0 +1,81 @@
|
||||
"""
|
||||
Bollinger Bands indicator implementation.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import pandas as pd
|
||||
|
||||
from ..base import BaseIndicator
|
||||
from ..result import IndicatorResult
|
||||
|
||||
|
||||
class BollingerBandsIndicator(BaseIndicator):
|
||||
"""
|
||||
Bollinger Bands technical indicator.
|
||||
|
||||
Calculates a set of lines plotted two standard deviations away from a simple moving average.
|
||||
Handles sparse data appropriately without interpolation.
|
||||
"""
|
||||
|
||||
def calculate(self, df: pd.DataFrame, period: int = 20,
|
||||
std_dev: float = 2.0, price_column: str = 'close') -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate Bollinger Bands.
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
period: Number of periods for moving average (default 20)
|
||||
std_dev: Number of standard deviations (default 2.0)
|
||||
price_column: Price column to use ('open', 'high', 'low', 'close')
|
||||
|
||||
Returns:
|
||||
List of indicator results with upper band, middle band (SMA), and lower band
|
||||
"""
|
||||
# Validate input data
|
||||
if not self.validate_dataframe(df, period):
|
||||
return []
|
||||
|
||||
try:
|
||||
# Calculate middle band (SMA)
|
||||
df['middle_band'] = df[price_column].rolling(window=period, min_periods=period).mean()
|
||||
|
||||
# Calculate standard deviation
|
||||
df['std'] = df[price_column].rolling(window=period, min_periods=period).std()
|
||||
|
||||
# Calculate upper and lower bands
|
||||
df['upper_band'] = df['middle_band'] + (std_dev * df['std'])
|
||||
df['lower_band'] = df['middle_band'] - (std_dev * df['std'])
|
||||
|
||||
# Calculate bandwidth and %B
|
||||
df['bandwidth'] = (df['upper_band'] - df['lower_band']) / df['middle_band']
|
||||
df['percent_b'] = (df[price_column] - df['lower_band']) / (df['upper_band'] - df['lower_band'])
|
||||
|
||||
# Convert results to IndicatorResult objects
|
||||
results = []
|
||||
for timestamp, row in df.iterrows():
|
||||
if not pd.isna(row['middle_band']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={
|
||||
'upper_band': row['upper_band'],
|
||||
'middle_band': row['middle_band'],
|
||||
'lower_band': row['lower_band'],
|
||||
'bandwidth': row['bandwidth'],
|
||||
'percent_b': row['percent_b']
|
||||
},
|
||||
metadata={
|
||||
'period': period,
|
||||
'std_dev': std_dev,
|
||||
'price_column': price_column
|
||||
}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"Error calculating Bollinger Bands: {e}")
|
||||
return []
|
||||
60
data/common/indicators/implementations/ema.py
Normal file
60
data/common/indicators/implementations/ema.py
Normal file
@ -0,0 +1,60 @@
|
||||
"""
|
||||
Exponential Moving Average (EMA) indicator implementation.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import pandas as pd
|
||||
|
||||
from ..base import BaseIndicator
|
||||
from ..result import IndicatorResult
|
||||
|
||||
|
||||
class EMAIndicator(BaseIndicator):
|
||||
"""
|
||||
Exponential Moving Average (EMA) technical indicator.
|
||||
|
||||
Calculates weighted moving average giving more weight to recent prices.
|
||||
Handles sparse data appropriately without interpolation.
|
||||
"""
|
||||
|
||||
def calculate(self, df: pd.DataFrame, period: int = 20,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate Exponential Moving Average (EMA).
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
period: Number of periods for moving average (default: 20)
|
||||
price_column: Price column to use ('open', 'high', 'low', 'close')
|
||||
|
||||
Returns:
|
||||
List of indicator results with EMA values
|
||||
"""
|
||||
# Validate input data
|
||||
if not self.validate_dataframe(df, period):
|
||||
return []
|
||||
|
||||
try:
|
||||
# Calculate EMA using pandas exponential weighted moving average
|
||||
df['ema'] = df[price_column].ewm(span=period, adjust=False).mean()
|
||||
|
||||
# Convert results to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= period - 1 and not pd.isna(row['ema']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'ema': row['ema']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"Error calculating EMA: {e}")
|
||||
return []
|
||||
84
data/common/indicators/implementations/macd.py
Normal file
84
data/common/indicators/implementations/macd.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""
|
||||
Moving Average Convergence Divergence (MACD) indicator implementation.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import pandas as pd
|
||||
|
||||
from ..base import BaseIndicator
|
||||
from ..result import IndicatorResult
|
||||
|
||||
|
||||
class MACDIndicator(BaseIndicator):
|
||||
"""
|
||||
Moving Average Convergence Divergence (MACD) technical indicator.
|
||||
|
||||
Calculates trend-following momentum indicator that shows the relationship
|
||||
between two moving averages of a security's price.
|
||||
Handles sparse data appropriately without interpolation.
|
||||
"""
|
||||
|
||||
def calculate(self, df: pd.DataFrame, fast_period: int = 12,
|
||||
slow_period: int = 26, signal_period: int = 9,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate Moving Average Convergence Divergence (MACD).
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
fast_period: Fast EMA period (default 12)
|
||||
slow_period: Slow EMA period (default 26)
|
||||
signal_period: Signal line EMA period (default 9)
|
||||
price_column: Price column to use ('open', 'high', 'low', 'close')
|
||||
|
||||
Returns:
|
||||
List of indicator results with MACD, signal, and histogram values
|
||||
"""
|
||||
# Validate input data
|
||||
if not self.validate_dataframe(df, slow_period):
|
||||
return []
|
||||
|
||||
try:
|
||||
# Calculate fast and slow EMAs
|
||||
df['ema_fast'] = df[price_column].ewm(span=fast_period, adjust=False).mean()
|
||||
df['ema_slow'] = df[price_column].ewm(span=slow_period, adjust=False).mean()
|
||||
|
||||
# Calculate MACD line
|
||||
df['macd'] = df['ema_fast'] - df['ema_slow']
|
||||
|
||||
# Calculate signal line (EMA of MACD)
|
||||
df['signal'] = df['macd'].ewm(span=signal_period, adjust=False).mean()
|
||||
|
||||
# Calculate histogram
|
||||
df['histogram'] = df['macd'] - df['signal']
|
||||
|
||||
# Convert results to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= slow_period - 1:
|
||||
if not (pd.isna(row['macd']) or pd.isna(row['signal']) or pd.isna(row['histogram'])):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={
|
||||
'macd': row['macd'],
|
||||
'signal': row['signal'],
|
||||
'histogram': row['histogram']
|
||||
},
|
||||
metadata={
|
||||
'fast_period': fast_period,
|
||||
'slow_period': slow_period,
|
||||
'signal_period': signal_period,
|
||||
'price_column': price_column
|
||||
}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"Error calculating MACD: {e}")
|
||||
return []
|
||||
75
data/common/indicators/implementations/rsi.py
Normal file
75
data/common/indicators/implementations/rsi.py
Normal file
@ -0,0 +1,75 @@
|
||||
"""
|
||||
Relative Strength Index (RSI) indicator implementation.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import pandas as pd
|
||||
|
||||
from ..base import BaseIndicator
|
||||
from ..result import IndicatorResult
|
||||
|
||||
|
||||
class RSIIndicator(BaseIndicator):
|
||||
"""
|
||||
Relative Strength Index (RSI) technical indicator.
|
||||
|
||||
Measures momentum by comparing the magnitude of recent gains to recent losses.
|
||||
Handles sparse data appropriately without interpolation.
|
||||
"""
|
||||
|
||||
def calculate(self, df: pd.DataFrame, period: int = 14,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate Relative Strength Index (RSI).
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
period: Number of periods for RSI calculation (default: 14)
|
||||
price_column: Price column to use ('open', 'high', 'low', 'close')
|
||||
|
||||
Returns:
|
||||
List of indicator results with RSI values
|
||||
"""
|
||||
# Validate input data
|
||||
if not self.validate_dataframe(df, period + 1): # Need extra period for diff
|
||||
return []
|
||||
|
||||
try:
|
||||
# Calculate price changes
|
||||
df['price_change'] = df[price_column].diff()
|
||||
|
||||
# Separate gains and losses
|
||||
df['gain'] = df['price_change'].where(df['price_change'] > 0, 0)
|
||||
df['loss'] = (-df['price_change']).where(df['price_change'] < 0, 0)
|
||||
|
||||
# Calculate average gain and loss using EMA
|
||||
df['avg_gain'] = df['gain'].ewm(span=period, adjust=False).mean()
|
||||
df['avg_loss'] = df['loss'].ewm(span=period, adjust=False).mean()
|
||||
|
||||
# Calculate RS and RSI
|
||||
df['rs'] = df['avg_gain'] / df['avg_loss']
|
||||
df['rsi'] = 100 - (100 / (1 + df['rs']))
|
||||
|
||||
# Handle division by zero
|
||||
df['rsi'] = df['rsi'].fillna(50) # Neutral RSI when no losses
|
||||
|
||||
# Convert results to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= period and not pd.isna(row['rsi']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'rsi': row['rsi']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"Error calculating RSI: {e}")
|
||||
return []
|
||||
59
data/common/indicators/implementations/sma.py
Normal file
59
data/common/indicators/implementations/sma.py
Normal file
@ -0,0 +1,59 @@
|
||||
"""
|
||||
Simple Moving Average (SMA) indicator implementation.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import pandas as pd
|
||||
|
||||
from ..base import BaseIndicator
|
||||
from ..result import IndicatorResult
|
||||
|
||||
|
||||
class SMAIndicator(BaseIndicator):
|
||||
"""
|
||||
Simple Moving Average (SMA) technical indicator.
|
||||
|
||||
Calculates the unweighted mean of previous n periods.
|
||||
Handles sparse data appropriately without interpolation.
|
||||
"""
|
||||
|
||||
def calculate(self, df: pd.DataFrame, period: int = 20,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
"""
|
||||
Calculate Simple Moving Average (SMA).
|
||||
|
||||
Args:
|
||||
df: DataFrame with OHLCV data
|
||||
period: Number of periods for moving average (default: 20)
|
||||
price_column: Price column to use ('open', 'high', 'low', 'close')
|
||||
|
||||
Returns:
|
||||
List of indicator results with SMA values
|
||||
"""
|
||||
# Validate input data
|
||||
if not self.validate_dataframe(df, period):
|
||||
return []
|
||||
|
||||
try:
|
||||
# Calculate SMA using pandas rolling window
|
||||
df['sma'] = df[price_column].rolling(window=period, min_periods=period).mean()
|
||||
|
||||
# Convert results to IndicatorResult objects
|
||||
results = []
|
||||
for timestamp, row in df.iterrows():
|
||||
if not pd.isna(row['sma']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'sma': row['sma']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"Error calculating SMA: {e}")
|
||||
return []
|
||||
@ -25,6 +25,14 @@ import numpy as np
|
||||
|
||||
from .result import IndicatorResult
|
||||
from ..data_types import OHLCVCandle
|
||||
from .base import BaseIndicator
|
||||
from .implementations import (
|
||||
SMAIndicator,
|
||||
EMAIndicator,
|
||||
RSIIndicator,
|
||||
MACDIndicator,
|
||||
BollingerBandsIndicator
|
||||
)
|
||||
|
||||
|
||||
class TechnicalIndicators:
|
||||
@ -51,6 +59,13 @@ class TechnicalIndicators:
|
||||
"""
|
||||
self.logger = logger
|
||||
|
||||
# Initialize individual indicator calculators
|
||||
self._sma = SMAIndicator(logger)
|
||||
self._ema = EMAIndicator(logger)
|
||||
self._rsi = RSIIndicator(logger)
|
||||
self._macd = MACDIndicator(logger)
|
||||
self._bollinger = BollingerBandsIndicator(logger)
|
||||
|
||||
if self.logger:
|
||||
self.logger.info("TechnicalIndicators: Initialized indicator calculator")
|
||||
|
||||
@ -67,30 +82,7 @@ class TechnicalIndicators:
|
||||
if not candles:
|
||||
return pd.DataFrame()
|
||||
|
||||
# Convert to DataFrame
|
||||
data = []
|
||||
for candle in candles:
|
||||
data.append({
|
||||
'timestamp': candle.end_time, # Right-aligned timestamp
|
||||
'symbol': candle.symbol,
|
||||
'timeframe': candle.timeframe,
|
||||
'open': float(candle.open),
|
||||
'high': float(candle.high),
|
||||
'low': float(candle.low),
|
||||
'close': float(candle.close),
|
||||
'volume': float(candle.volume),
|
||||
'trade_count': candle.trade_count
|
||||
})
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Sort by timestamp to ensure proper order
|
||||
df = df.sort_values('timestamp').reset_index(drop=True)
|
||||
|
||||
# Set timestamp as index for time-series operations
|
||||
df.set_index('timestamp', inplace=True)
|
||||
|
||||
return df
|
||||
return self._sma.prepare_dataframe(candles)
|
||||
|
||||
def sma(self, df: pd.DataFrame, period: int,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
@ -105,26 +97,7 @@ class TechnicalIndicators:
|
||||
Returns:
|
||||
List of indicator results with SMA values
|
||||
"""
|
||||
if df.empty or len(df) < period:
|
||||
return []
|
||||
|
||||
# Calculate SMA using pandas rolling window
|
||||
df['sma'] = df[price_column].rolling(window=period, min_periods=period).mean()
|
||||
|
||||
# Convert results back to IndicatorResult objects
|
||||
results = []
|
||||
for timestamp, row in df.iterrows():
|
||||
if not pd.isna(row['sma']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'sma': row['sma']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
return self._sma.calculate(df, period=period, price_column=price_column)
|
||||
|
||||
def ema(self, df: pd.DataFrame, period: int,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
@ -139,27 +112,7 @@ class TechnicalIndicators:
|
||||
Returns:
|
||||
List of indicator results with EMA values
|
||||
"""
|
||||
if df.empty or len(df) < period:
|
||||
return []
|
||||
|
||||
# Calculate EMA using pandas exponential weighted moving average
|
||||
df['ema'] = df[price_column].ewm(span=period, adjust=False).mean()
|
||||
|
||||
# Convert results back to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= period - 1 and not pd.isna(row['ema']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'ema': row['ema']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
return self._ema.calculate(df, period=period, price_column=price_column)
|
||||
|
||||
def rsi(self, df: pd.DataFrame, period: int = 14,
|
||||
price_column: str = 'close') -> List[IndicatorResult]:
|
||||
@ -174,42 +127,7 @@ class TechnicalIndicators:
|
||||
Returns:
|
||||
List of indicator results with RSI values
|
||||
"""
|
||||
if df.empty or len(df) < period + 1:
|
||||
return []
|
||||
|
||||
# Calculate price changes
|
||||
df['price_change'] = df[price_column].diff()
|
||||
|
||||
# Separate gains and losses
|
||||
df['gain'] = df['price_change'].where(df['price_change'] > 0, 0)
|
||||
df['loss'] = (-df['price_change']).where(df['price_change'] < 0, 0)
|
||||
|
||||
# Calculate average gain and loss using EMA
|
||||
df['avg_gain'] = df['gain'].ewm(span=period, adjust=False).mean()
|
||||
df['avg_loss'] = df['loss'].ewm(span=period, adjust=False).mean()
|
||||
|
||||
# Calculate RS and RSI
|
||||
df['rs'] = df['avg_gain'] / df['avg_loss']
|
||||
df['rsi'] = 100 - (100 / (1 + df['rs']))
|
||||
|
||||
# Handle division by zero
|
||||
df['rsi'] = df['rsi'].fillna(50) # Neutral RSI when no losses
|
||||
|
||||
# Convert results back to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= period and not pd.isna(row['rsi']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={'rsi': row['rsi']},
|
||||
metadata={'period': period, 'price_column': price_column}
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
return self._rsi.calculate(df, period=period, price_column=price_column)
|
||||
|
||||
def macd(self, df: pd.DataFrame,
|
||||
fast_period: int = 12, slow_period: int = 26, signal_period: int = 9,
|
||||
@ -227,47 +145,13 @@ class TechnicalIndicators:
|
||||
Returns:
|
||||
List of indicator results with MACD, signal, and histogram values
|
||||
"""
|
||||
if df.empty or len(df) < slow_period:
|
||||
return []
|
||||
|
||||
# Calculate fast and slow EMAs
|
||||
df['ema_fast'] = df[price_column].ewm(span=fast_period, adjust=False).mean()
|
||||
df['ema_slow'] = df[price_column].ewm(span=slow_period, adjust=False).mean()
|
||||
|
||||
# Calculate MACD line
|
||||
df['macd'] = df['ema_fast'] - df['ema_slow']
|
||||
|
||||
# Calculate signal line (EMA of MACD)
|
||||
df['signal'] = df['macd'].ewm(span=signal_period, adjust=False).mean()
|
||||
|
||||
# Calculate histogram
|
||||
df['histogram'] = df['macd'] - df['signal']
|
||||
|
||||
# Convert results back to IndicatorResult objects
|
||||
results = []
|
||||
for i, (timestamp, row) in enumerate(df.iterrows()):
|
||||
# Only return results after minimum period
|
||||
if i >= slow_period - 1:
|
||||
if not (pd.isna(row['macd']) or pd.isna(row['signal']) or pd.isna(row['histogram'])):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={
|
||||
'macd': row['macd'],
|
||||
'signal': row['signal'],
|
||||
'histogram': row['histogram']
|
||||
},
|
||||
metadata={
|
||||
'fast_period': fast_period,
|
||||
'slow_period': slow_period,
|
||||
'signal_period': signal_period,
|
||||
'price_column': price_column
|
||||
}
|
||||
return self._macd.calculate(
|
||||
df,
|
||||
fast_period=fast_period,
|
||||
slow_period=slow_period,
|
||||
signal_period=signal_period,
|
||||
price_column=price_column
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
def bollinger_bands(self, df: pd.DataFrame, period: int = 20,
|
||||
std_dev: float = 2.0, price_column: str = 'close') -> List[IndicatorResult]:
|
||||
@ -283,47 +167,12 @@ class TechnicalIndicators:
|
||||
Returns:
|
||||
List of indicator results with upper band, middle band (SMA), and lower band
|
||||
"""
|
||||
if df.empty or len(df) < period:
|
||||
return []
|
||||
|
||||
# Calculate middle band (SMA)
|
||||
df['middle_band'] = df[price_column].rolling(window=period, min_periods=period).mean()
|
||||
|
||||
# Calculate standard deviation
|
||||
df['std'] = df[price_column].rolling(window=period, min_periods=period).std()
|
||||
|
||||
# Calculate upper and lower bands
|
||||
df['upper_band'] = df['middle_band'] + (std_dev * df['std'])
|
||||
df['lower_band'] = df['middle_band'] - (std_dev * df['std'])
|
||||
|
||||
# Calculate bandwidth and %B
|
||||
df['bandwidth'] = (df['upper_band'] - df['lower_band']) / df['middle_band']
|
||||
df['percent_b'] = (df[price_column] - df['lower_band']) / (df['upper_band'] - df['lower_band'])
|
||||
|
||||
# Convert results back to IndicatorResult objects
|
||||
results = []
|
||||
for timestamp, row in df.iterrows():
|
||||
if not pd.isna(row['middle_band']):
|
||||
result = IndicatorResult(
|
||||
timestamp=timestamp,
|
||||
symbol=row['symbol'],
|
||||
timeframe=row['timeframe'],
|
||||
values={
|
||||
'upper_band': row['upper_band'],
|
||||
'middle_band': row['middle_band'],
|
||||
'lower_band': row['lower_band'],
|
||||
'bandwidth': row['bandwidth'],
|
||||
'percent_b': row['percent_b']
|
||||
},
|
||||
metadata={
|
||||
'period': period,
|
||||
'std_dev': std_dev,
|
||||
'price_column': price_column
|
||||
}
|
||||
return self._bollinger.calculate(
|
||||
df,
|
||||
period=period,
|
||||
std_dev=std_dev,
|
||||
price_column=price_column
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
def calculate_multiple_indicators(self, df: pd.DataFrame,
|
||||
indicators_config: Dict[str, Dict[str, Any]]) -> Dict[str, List[IndicatorResult]]:
|
||||
@ -370,22 +219,26 @@ class TechnicalIndicators:
|
||||
slow_period = config.get('slow_period', 26)
|
||||
signal_period = config.get('signal_period', 9)
|
||||
price_column = config.get('price_column', 'close')
|
||||
results[indicator_name] = self.macd(df, fast_period, slow_period, signal_period, price_column)
|
||||
results[indicator_name] = self.macd(
|
||||
df, fast_period, slow_period, signal_period, price_column
|
||||
)
|
||||
|
||||
elif indicator_type == 'bollinger_bands':
|
||||
period = config.get('period', 20)
|
||||
std_dev = config.get('std_dev', 2.0)
|
||||
price_column = config.get('price_column', 'close')
|
||||
results[indicator_name] = self.bollinger_bands(df, period, std_dev, price_column)
|
||||
results[indicator_name] = self.bollinger_bands(
|
||||
df, period, std_dev, price_column
|
||||
)
|
||||
|
||||
else:
|
||||
if self.logger:
|
||||
self.logger.warning(f"TechnicalIndicators: Unknown indicator type: {indicator_type}")
|
||||
self.logger.warning(f"Unknown indicator type: {indicator_type}")
|
||||
results[indicator_name] = []
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"TechnicalIndicators: Error calculating {indicator_name}: {e}")
|
||||
self.logger.error(f"Error calculating {indicator_name}: {e}")
|
||||
results[indicator_name] = []
|
||||
|
||||
return results
|
||||
@ -406,7 +259,7 @@ class TechnicalIndicators:
|
||||
indicator_method = getattr(self, indicator_type, None)
|
||||
if not indicator_method:
|
||||
if self.logger:
|
||||
self.logger.error(f"TechnicalIndicators: Unknown indicator type '{indicator_type}'")
|
||||
self.logger.error(f"Unknown indicator type '{indicator_type}'")
|
||||
return None
|
||||
|
||||
try:
|
||||
@ -429,5 +282,5 @@ class TechnicalIndicators:
|
||||
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
self.logger.error(f"TechnicalIndicators: Error calculating {indicator_type}: {e}")
|
||||
self.logger.error(f"Error calculating {indicator_type}: {e}")
|
||||
return None
|
||||
Loading…
x
Reference in New Issue
Block a user