This commit is contained in:
Vasily.onl 2025-06-03 12:08:43 +08:00
parent d508616677
commit 74d7e1ab2c
5 changed files with 1476 additions and 1409 deletions

File diff suppressed because it is too large Load Diff

View File

@ -27,6 +27,22 @@ The TCP Dashboard implements a sophisticated conditional logging system that all
3. **Logger Inheritance**: Parent components pass their logger to child components
4. **Hierarchical Structure**: Log files are organized by component hierarchy
### Component Hierarchy
```
Top-level Application (individual logger)
├── ProductionManager (individual logger)
│ ├── DataSaver (receives logger from ProductionManager)
│ ├── DataValidator (receives logger from ProductionManager)
│ ├── DatabaseConnection (receives logger from ProductionManager)
│ └── CollectorManager (individual logger)
│ ├── OKX collector BTC-USD (individual logger)
│ │ ├── DataAggregator (receives logger from OKX collector)
│ │ ├── DataTransformer (receives logger from OKX collector)
│ │ └── DataProcessor (receives logger from OKX collector)
│ └── Another collector...
```
### Usage Patterns
#### 1. No Logging
@ -134,24 +150,48 @@ class ComponentExample:
self.logger = logger
self.log_errors_only = log_errors_only
# Conditional logging helpers
self._log_debug = self._create_conditional_logger('debug')
self._log_info = self._create_conditional_logger('info')
self._log_warning = self._create_conditional_logger('warning')
self._log_error = self._create_conditional_logger('error')
self._log_critical = self._create_conditional_logger('critical')
def _log_debug(self, message: str) -> None:
"""Log debug message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.debug(message)
def _create_conditional_logger(self, level):
"""Create conditional logging function based on configuration."""
if not self.logger:
return lambda msg: None # No-op if no logger
def _log_info(self, message: str) -> None:
"""Log info message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.info(message)
def _log_warning(self, message: str) -> None:
"""Log warning message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.warning(message)
def _log_error(self, message: str, exc_info: bool = False) -> None:
"""Log error message if logger is available (always logs errors)."""
if self.logger:
self.logger.error(message, exc_info=exc_info)
def _log_critical(self, message: str, exc_info: bool = False) -> None:
"""Log critical message if logger is available (always logs critical)."""
if self.logger:
self.logger.critical(message, exc_info=exc_info)
```
#### Child Component Pattern
Child components receive logger from parent:
```python
class OKXCollector(BaseDataCollector):
def __init__(self, symbol: str, logger=None, log_errors_only=False):
super().__init__(..., logger=logger, log_errors_only=log_errors_only)
log_func = getattr(self.logger, level)
if level in ['debug', 'info', 'warning'] and self.log_errors_only:
return lambda msg: None # Suppress non-error messages
return log_func # Normal logging
# Pass logger to child components
self._data_processor = OKXDataProcessor(
symbol,
logger=self.logger # Pass parent's logger
)
self._data_validator = DataValidator(logger=self.logger)
self._data_transformer = DataTransformer(logger=self.logger)
```
#### Supported Components
@ -178,179 +218,6 @@ The following components support conditional logging:
- Parameters: `logger=None`
- Data processing with conditional logging
### Best Practices for Conditional Logging
#### 1. Logger Inheritance
```python
# Parent component creates logger
parent_logger = get_logger('parent_system')
parent = ParentComponent(logger=parent_logger)
# Pass logger to children for consistent hierarchy
child1 = ChildComponent(logger=parent_logger)
child2 = ChildComponent(logger=parent_logger, log_errors_only=True)
child3 = ChildComponent(logger=None) # No logging
```
#### 2. Environment-Based Configuration
```python
import os
from utils.logger import get_logger
def create_system_logger():
"""Create logger based on environment."""
env = os.getenv('ENVIRONMENT', 'development')
if env == 'production':
return get_logger('production_system', log_level='INFO', verbose=False)
elif env == 'testing':
return None # No logging during tests
else:
return get_logger('dev_system', log_level='DEBUG', verbose=True)
# Use in components
system_logger = create_system_logger()
manager = CollectorManager(logger=system_logger)
```
#### 3. Conditional Error-Only Mode
```python
def create_collector_with_logging_strategy(symbol, strategy='normal'):
"""Create collector with different logging strategies."""
base_logger = get_logger(f'collector_{symbol.lower().replace("-", "_")}')
if strategy == 'silent':
return OKXCollector(symbol, logger=None)
elif strategy == 'errors_only':
return OKXCollector(symbol, logger=base_logger, log_errors_only=True)
else:
return OKXCollector(symbol, logger=base_logger)
# Usage
btc_collector = create_collector_with_logging_strategy('BTC-USDT', 'normal')
eth_collector = create_collector_with_logging_strategy('ETH-USDT', 'errors_only')
ada_collector = create_collector_with_logging_strategy('ADA-USDT', 'silent')
```
#### 4. Performance Optimization
```python
class OptimizedComponent:
def __init__(self, logger=None, log_errors_only=False):
self.logger = logger
self.log_errors_only = log_errors_only
# Pre-compute logging capabilities for performance
self.can_log_debug = logger and not log_errors_only
self.can_log_info = logger and not log_errors_only
self.can_log_warning = logger and not log_errors_only
self.can_log_error = logger is not None
self.can_log_critical = logger is not None
def process_data(self, data):
if self.can_log_debug:
self.logger.debug(f"Processing {len(data)} records")
# ... processing logic ...
if self.can_log_info:
self.logger.info("Data processing completed")
```
### Migration Guide
#### From Standard Logging
```python
# Old approach
import logging
logger = logging.getLogger(__name__)
class OldComponent:
def __init__(self):
self.logger = logger
# New conditional approach
from utils.logger import get_logger
class NewComponent:
def __init__(self, logger=None, log_errors_only=False):
self.logger = logger
self.log_errors_only = log_errors_only
# Add conditional logging helpers
self._setup_conditional_logging()
```
#### Gradual Adoption
1. **Phase 1**: Add optional logger parameters to new components
2. **Phase 2**: Update existing components to support conditional logging
3. **Phase 3**: Implement hierarchical logging structure
4. **Phase 4**: Add error-only logging mode
### Testing Conditional Logging
#### Test Script Example
```python
# test_conditional_logging.py
from utils.logger import get_logger
from data.collector_manager import CollectorManager
from data.exchanges.okx.collector import OKXCollector
def test_no_logging():
"""Test components work without loggers."""
manager = CollectorManager(logger=None)
collector = OKXCollector("BTC-USDT", logger=None)
print("✓ No logging test passed")
def test_with_logging():
"""Test components work with loggers."""
logger = get_logger('test_system')
manager = CollectorManager(logger=logger)
collector = OKXCollector("BTC-USDT", logger=logger)
print("✓ With logging test passed")
def test_error_only():
"""Test error-only logging mode."""
logger = get_logger('test_errors')
collector = OKXCollector("BTC-USDT", logger=logger, log_errors_only=True)
print("✓ Error-only logging test passed")
if __name__ == "__main__":
test_no_logging()
test_with_logging()
test_error_only()
print("✅ All conditional logging tests passed!")
```
## Log Format
All log messages follow this unified format:
```
[YYYY-MM-DD HH:MM:SS - LEVEL - message]
```
Example:
```
[2024-01-15 14:30:25 - INFO - Bot started successfully]
[2024-01-15 14:30:26 - ERROR - Connection failed: timeout]
```
## File Organization
Logs are organized in a hierarchical structure:
```
logs/
├── app/
│ ├── 2024-01-15.txt
│ └── 2024-01-16.txt
├── bot_manager/
│ ├── 2024-01-15.txt
│ └── 2024-01-16.txt
├── data_collector/
│ └── 2024-01-15.txt
└── strategies/
└── 2024-01-15.txt
```
## Basic Usage
### Import and Initialize
@ -414,6 +281,38 @@ class BotManager:
self.logger.info(f"Bot {bot_id} stopped")
```
## Log Format
All log messages follow this unified format:
```
[YYYY-MM-DD HH:MM:SS - LEVEL - message]
```
Example:
```
[2024-01-15 14:30:25 - INFO - Bot started successfully]
[2024-01-15 14:30:26 - ERROR - Connection failed: timeout]
```
## File Organization
Logs are organized in a hierarchical structure:
```
logs/
├── tcp_dashboard/
│ ├── 2024-01-15.txt
│ └── 2024-01-16.txt
├── production_manager/
│ ├── 2024-01-15.txt
│ └── 2024-01-16.txt
├── collector_manager/
│ └── 2024-01-15.txt
├── okx_collector_btc_usdt/
│ └── 2024-01-15.txt
└── okx_collector_eth_usdt/
└── 2024-01-15.txt
```
## Configuration
### Logger Parameters
@ -487,6 +386,84 @@ logger = get_logger('bot_manager', max_log_files=14)
- Deletes older files automatically
- Based on file modification time, not filename
## Best Practices for Conditional Logging
### 1. Logger Inheritance
```python
# Parent component creates logger
parent_logger = get_logger('parent_system')
parent = ParentComponent(logger=parent_logger)
# Pass logger to children for consistent hierarchy
child1 = ChildComponent(logger=parent_logger)
child2 = ChildComponent(logger=parent_logger, log_errors_only=True)
child3 = ChildComponent(logger=None) # No logging
```
### 2. Environment-Based Configuration
```python
import os
from utils.logger import get_logger
def create_system_logger():
"""Create logger based on environment."""
env = os.getenv('ENVIRONMENT', 'development')
if env == 'production':
return get_logger('production_system', log_level='INFO', verbose=False)
elif env == 'testing':
return None # No logging during tests
else:
return get_logger('dev_system', log_level='DEBUG', verbose=True)
# Use in components
system_logger = create_system_logger()
manager = CollectorManager(logger=system_logger)
```
### 3. Conditional Error-Only Mode
```python
def create_collector_with_logging_strategy(symbol, strategy='normal'):
"""Create collector with different logging strategies."""
base_logger = get_logger(f'collector_{symbol.lower().replace("-", "_")}')
if strategy == 'silent':
return OKXCollector(symbol, logger=None)
elif strategy == 'errors_only':
return OKXCollector(symbol, logger=base_logger, log_errors_only=True)
else:
return OKXCollector(symbol, logger=base_logger)
# Usage
btc_collector = create_collector_with_logging_strategy('BTC-USDT', 'normal')
eth_collector = create_collector_with_logging_strategy('ETH-USDT', 'errors_only')
ada_collector = create_collector_with_logging_strategy('ADA-USDT', 'silent')
```
### 4. Performance Optimization
```python
class OptimizedComponent:
def __init__(self, logger=None, log_errors_only=False):
self.logger = logger
self.log_errors_only = log_errors_only
# Pre-compute logging capabilities for performance
self.can_log_debug = logger and not log_errors_only
self.can_log_info = logger and not log_errors_only
self.can_log_warning = logger and not log_errors_only
self.can_log_error = logger is not None
self.can_log_critical = logger is not None
def process_data(self, data):
if self.can_log_debug:
self.logger.debug(f"Processing {len(data)} records")
# ... processing logic ...
if self.can_log_info:
self.logger.info("Data processing completed")
```
## Advanced Features
### Manual Log Cleanup
@ -671,16 +648,37 @@ if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Data: {expensive_serialization(data)}")
```
## Integration with Existing Code
## Migration Guide
The logging system is designed to be gradually adopted:
### Updating Existing Components
1. **Start with new modules**: Use the unified logger in new code
2. **Replace existing logging**: Gradually migrate existing logging to the unified system
3. **No breaking changes**: Existing code continues to work
1. **Add logger parameter to constructor**:
```python
def __init__(self, ..., logger=None, log_errors_only=False):
```
### Migration Example
2. **Add conditional logging helpers**:
```python
def _log_debug(self, message: str) -> None:
if self.logger and not self.log_errors_only:
self.logger.debug(message)
```
3. **Update all logging calls**:
```python
# Before
self.logger.info("Message")
# After
self._log_info("Message")
```
4. **Pass logger to child components**:
```python
child = ChildComponent(logger=self.logger)
```
### From Standard Logging
```python
# Old logging (if any existed)
import logging
@ -692,13 +690,113 @@ from utils.logger import get_logger
logger = get_logger('component_name', verbose=True)
```
### Gradual Adoption
1. **Phase 1**: Add optional logger parameters to new components
2. **Phase 2**: Update existing components to support conditional logging
3. **Phase 3**: Implement hierarchical logging structure
4. **Phase 4**: Add error-only logging mode
## Testing
### Testing Conditional Logging
#### Test Script Example
```python
# test_conditional_logging.py
from utils.logger import get_logger
from data.collector_manager import CollectorManager
from data.exchanges.okx.collector import OKXCollector
def test_no_logging():
"""Test components work without loggers."""
manager = CollectorManager(logger=None)
collector = OKXCollector("BTC-USDT", logger=None)
print("✓ No logging test passed")
def test_with_logging():
"""Test components work with loggers."""
logger = get_logger('test_system')
manager = CollectorManager(logger=logger)
collector = OKXCollector("BTC-USDT", logger=logger)
print("✓ With logging test passed")
def test_error_only():
"""Test error-only logging mode."""
logger = get_logger('test_errors')
collector = OKXCollector("BTC-USDT", logger=logger, log_errors_only=True)
print("✓ Error-only logging test passed")
if __name__ == "__main__":
test_no_logging()
test_with_logging()
test_error_only()
print("✅ All conditional logging tests passed!")
```
### Testing Changes
```python
# Test without logger
component = MyComponent(logger=None)
# Should work without errors, no logging
# Test with logger
logger = get_logger('test_component')
component = MyComponent(logger=logger)
# Should log normally
# Test error-only mode
component = MyComponent(logger=logger, log_errors_only=True)
# Should only log errors
```
### Basic System Test
Run a simple test to verify the logging system:
```bash
python -c "from utils.logger import get_logger; logger = get_logger('test', verbose=True); logger.info('Test message'); print('Check logs/test/ directory')"
```
## Troubleshooting
### Common Issues
1. **Permission errors**: Ensure the application has write permissions to the project directory
2. **Disk space**: Monitor disk usage and adjust log retention with `max_log_files`
3. **Threading issues**: The logger is thread-safe, but check for application-level concurrency issues
4. **Too many console messages**: Adjust `verbose` parameter or log levels
### Debug Mode
Enable debug logging to troubleshoot issues:
```python
logger = get_logger('component_name', 'DEBUG', verbose=True)
```
### Console Output Issues
```python
# Force console output regardless of environment
logger = get_logger('component_name', verbose=True)
# Check environment variables
import os
print(f"VERBOSE_LOGGING: {os.getenv('VERBOSE_LOGGING')}")
print(f"LOG_TO_CONSOLE: {os.getenv('LOG_TO_CONSOLE')}")
```
### Fallback Logging
If file logging fails, the system automatically falls back to console logging with a warning message.
## Integration with Existing Code
The logging system is designed to be gradually adopted:
1. **Start with new modules**: Use the unified logger in new code
2. **Replace existing logging**: Gradually migrate existing logging to the unified system
3. **No breaking changes**: Existing code continues to work
## Maintenance
### Automatic Cleanup Benefits
@ -735,49 +833,4 @@ find logs/ -name "*.txt" -size +10M
find logs/ -name "*.txt" | cut -d'/' -f2 | sort | uniq -c
```
## Troubleshooting
### Common Issues
1. **Permission errors**: Ensure the application has write permissions to the project directory
2. **Disk space**: Monitor disk usage and adjust log retention with `max_log_files`
3. **Threading issues**: The logger is thread-safe, but check for application-level concurrency issues
4. **Too many console messages**: Adjust `verbose` parameter or log levels
### Debug Mode
Enable debug logging to troubleshoot issues:
```python
logger = get_logger('component_name', 'DEBUG', verbose=True)
```
### Console Output Issues
```python
# Force console output regardless of environment
logger = get_logger('component_name', verbose=True)
# Check environment variables
import os
print(f"VERBOSE_LOGGING: {os.getenv('VERBOSE_LOGGING')}")
print(f"LOG_TO_CONSOLE: {os.getenv('LOG_TO_CONSOLE')}")
```
### Fallback Logging
If file logging fails, the system automatically falls back to console logging with a warning message.
## New Features Summary
### Verbose Parameter
- Controls console logging output
- Respects log levels (DEBUG shows all, ERROR shows only errors)
- Uses environment variables as default (`VERBOSE_LOGGING` or `LOG_TO_CONSOLE`)
- Can be explicitly set to `True`/`False` to override environment
### Automatic Cleanup
- Enabled by default (`clean_old_logs=True`)
- Triggered when new log files are created (date changes)
- Keeps most recent `max_log_files` files (default: 30)
- Component-specific retention policies
- Non-blocking operation with error handling
This conditional logging system provides maximum flexibility while maintaining clean, maintainable code that works in all scenarios.

View File

@ -1,481 +0,0 @@
# Data Collection Service
The Data Collection Service is a production-ready service for cryptocurrency market data collection with clean logging and robust error handling. It manages multiple data collectors for different trading pairs and exchanges.
## Features
- **Clean Logging**: Only essential information (connections, disconnections, errors)
- **Multi-Exchange Support**: Extensible architecture for multiple exchanges
- **Health Monitoring**: Built-in health checks and auto-recovery
- **Configurable**: JSON-based configuration with sensible defaults
- **Graceful Shutdown**: Proper signal handling and cleanup
- **Testing**: Comprehensive unit test coverage
## Quick Start
### Basic Usage
```bash
# Start with default configuration (indefinite run)
python scripts/start_data_collection.py
# Run for 8 hours
python scripts/start_data_collection.py --hours 8
# Use custom configuration
python scripts/start_data_collection.py --config config/my_config.json
```
### Monitoring
```bash
# Check status once
python scripts/monitor_clean.py
# Monitor continuously every 60 seconds
python scripts/monitor_clean.py --interval 60
```
## Configuration
The service uses JSON configuration files with automatic default creation if none exists.
### Default Configuration Location
`config/data_collection.json`
### Configuration Structure
```json
{
"exchanges": {
"okx": {
"enabled": true,
"trading_pairs": [
{
"symbol": "BTC-USDT",
"enabled": true,
"data_types": ["trade"],
"timeframes": ["1m", "5m", "15m", "1h"]
},
{
"symbol": "ETH-USDT",
"enabled": true,
"data_types": ["trade"],
"timeframes": ["1m", "5m", "15m", "1h"]
}
]
}
},
"collection_settings": {
"health_check_interval": 120,
"store_raw_data": true,
"auto_restart": true,
"max_restart_attempts": 3
},
"logging": {
"level": "INFO",
"log_errors_only": true,
"verbose_data_logging": false
}
}
```
### Configuration Options
#### Exchange Settings
- **enabled**: Whether to enable this exchange
- **trading_pairs**: Array of trading pair configurations
#### Trading Pair Settings
- **symbol**: Trading pair symbol (e.g., "BTC-USDT")
- **enabled**: Whether to collect data for this pair
- **data_types**: Types of data to collect (["trade"], ["ticker"], etc.)
- **timeframes**: Candle timeframes to generate (["1m", "5m", "15m", "1h", "4h", "1d"])
#### Collection Settings
- **health_check_interval**: Health check frequency in seconds
- **store_raw_data**: Whether to store raw trade data
- **auto_restart**: Enable automatic restart on failures
- **max_restart_attempts**: Maximum restart attempts before giving up
#### Logging Settings
- **level**: Log level ("DEBUG", "INFO", "WARNING", "ERROR")
- **log_errors_only**: Only log errors and essential events
- **verbose_data_logging**: Enable verbose logging of individual trades/candles
## Service Architecture
### Core Components
1. **DataCollectionService**: Main service class managing the lifecycle
2. **CollectorManager**: Manages multiple data collectors with health monitoring
3. **ExchangeFactory**: Creates exchange-specific collectors
4. **BaseDataCollector**: Abstract base for all data collectors
### Data Flow
```
Exchange API → Data Collector → Data Processor → Database
Health Monitor → Service Manager
```
### Storage
- **Raw Data**: PostgreSQL `raw_trades` table
- **Candles**: PostgreSQL `market_data` table with multiple timeframes
- **Real-time**: Redis pub/sub for live data distribution
## Logging Philosophy
The service implements **clean production logging** focused on operational needs:
### What Gets Logged
✅ **Service Lifecycle**
- Service start/stop
- Collector initialization
- Database connections
✅ **Connection Events**
- WebSocket connect/disconnect
- Reconnection attempts
- API errors
✅ **Health & Errors**
- Health check results
- Error conditions
- Recovery actions
✅ **Statistics**
- Periodic uptime reports
- Collection summary
### What Doesn't Get Logged
❌ **Individual Data Points**
- Every trade received
- Every candle generated
- Raw market data
❌ **Verbose Operations**
- Database queries
- Internal processing steps
- Routine heartbeats
## API Reference
### DataCollectionService
The main service class for managing data collection.
#### Constructor
```python
DataCollectionService(config_path: str = "config/data_collection.json")
```
#### Methods
##### `async run(duration_hours: Optional[float] = None) -> bool`
Run the service for a specified duration or indefinitely.
**Parameters:**
- `duration_hours`: Optional duration in hours (None = indefinite)
**Returns:**
- `bool`: True if successful, False if error occurred
##### `async start() -> bool`
Start the data collection service.
**Returns:**
- `bool`: True if started successfully
##### `async stop() -> None`
Stop the service gracefully.
##### `get_status() -> Dict[str, Any]`
Get current service status including uptime, collector counts, and errors.
**Returns:**
- `dict`: Status information
### Standalone Function
#### `run_data_collection_service(config_path, duration_hours)`
```python
async def run_data_collection_service(
config_path: str = "config/data_collection.json",
duration_hours: Optional[float] = None
) -> bool
```
Convenience function to run the service.
## Integration Examples
### Basic Integration
```python
import asyncio
from data.collection_service import DataCollectionService
async def main():
service = DataCollectionService("config/my_config.json")
await service.run(duration_hours=24) # Run for 24 hours
if __name__ == "__main__":
asyncio.run(main())
```
### Custom Status Monitoring
```python
import asyncio
from data.collection_service import DataCollectionService
async def monitor_service():
service = DataCollectionService()
# Start service in background
start_task = asyncio.create_task(service.run())
# Monitor status every 5 minutes
while service.running:
status = service.get_status()
print(f"Uptime: {status['uptime_hours']:.1f}h, "
f"Collectors: {status['collectors_running']}, "
f"Errors: {status['errors_count']}")
await asyncio.sleep(300) # 5 minutes
await start_task
asyncio.run(monitor_service())
```
### Programmatic Control
```python
import asyncio
from data.collection_service import DataCollectionService
async def controlled_collection():
service = DataCollectionService()
# Initialize and start
await service.initialize_collectors()
await service.start()
try:
# Run for 1 hour
await asyncio.sleep(3600)
finally:
# Graceful shutdown
await service.stop()
asyncio.run(controlled_collection())
```
## Error Handling
The service implements robust error handling at multiple levels:
### Service Level
- **Configuration Errors**: Invalid JSON, missing files
- **Initialization Errors**: Database connection, collector creation
- **Runtime Errors**: Unexpected exceptions during operation
### Collector Level
- **Connection Errors**: WebSocket disconnections, API failures
- **Data Errors**: Invalid data formats, processing failures
- **Health Errors**: Failed health checks, timeout conditions
### Recovery Strategies
1. **Automatic Restart**: Collectors auto-restart on failures
2. **Exponential Backoff**: Increasing delays between retry attempts
3. **Circuit Breaker**: Stop retrying after max attempts exceeded
4. **Graceful Degradation**: Continue with healthy collectors
## Testing
### Running Tests
```bash
# Run all data collection service tests
uv run pytest tests/test_data_collection_service.py -v
# Run specific test
uv run pytest tests/test_data_collection_service.py::TestDataCollectionService::test_service_initialization -v
# Run with coverage
uv run pytest tests/test_data_collection_service.py --cov=data.collection_service
```
### Test Coverage
The test suite covers:
- Service initialization and configuration
- Collector creation and management
- Service lifecycle (start/stop)
- Error handling and recovery
- Configuration validation
- Signal handling
- Status reporting
## Troubleshooting
### Common Issues
#### Configuration Not Found
```
❌ Failed to load config from config/data_collection.json: [Errno 2] No such file or directory
```
**Solution**: The service will create a default configuration. Check the created file and adjust as needed.
#### Database Connection Failed
```
❌ Database connection failed: connection refused
```
**Solution**: Ensure PostgreSQL and Redis are running via Docker:
```bash
docker-compose up -d postgres redis
```
#### No Collectors Created
```
❌ No collectors were successfully initialized
```
**Solution**: Check configuration - ensure at least one exchange is enabled with valid trading pairs.
#### WebSocket Connection Issues
```
❌ Failed to start data collectors
```
**Solution**: Check network connectivity and API credentials. Verify exchange is accessible.
### Debug Mode
For verbose debugging, modify the logging configuration:
```json
{
"logging": {
"level": "DEBUG",
"log_errors_only": false,
"verbose_data_logging": true
}
}
```
⚠️ **Warning**: Debug mode generates extensive logs and should not be used in production.
## Production Deployment
### Docker
The service can be containerized for production deployment:
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install uv
RUN uv pip install -r requirements.txt
CMD ["python", "scripts/start_data_collection.py", "--config", "config/production.json"]
```
### Systemd Service
Create a systemd service for Linux deployment:
```ini
[Unit]
Description=Cryptocurrency Data Collection Service
After=network.target postgres.service redis.service
[Service]
Type=simple
User=crypto-collector
WorkingDirectory=/opt/crypto-dashboard
ExecStart=/usr/bin/python scripts/start_data_collection.py --config config/production.json
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
```
### Environment Variables
Configure sensitive data via environment variables:
```bash
export POSTGRES_HOST=localhost
export POSTGRES_PORT=5432
export POSTGRES_DB=crypto_dashboard
export POSTGRES_USER=dashboard_user
export POSTGRES_PASSWORD=secure_password
export REDIS_HOST=localhost
export REDIS_PORT=6379
```
## Performance Considerations
### Resource Usage
- **Memory**: ~100MB base + ~10MB per trading pair
- **CPU**: Low (async I/O bound)
- **Network**: ~1KB/s per trading pair
- **Storage**: ~1GB/day per trading pair (with raw data)
### Scaling
- **Vertical**: Increase timeframes and trading pairs
- **Horizontal**: Run multiple services with different configurations
- **Database**: Use TimescaleDB for time-series optimization
### Optimization Tips
1. **Disable Raw Data**: Set `store_raw_data: false` to reduce storage
2. **Limit Timeframes**: Only collect needed timeframes
3. **Batch Processing**: Use longer health check intervals
4. **Connection Pooling**: Database connections are automatically pooled
## Changelog
### v1.0.0 (Current)
- Initial implementation
- OKX exchange support
- Clean logging system
- Comprehensive test coverage
- JSON configuration
- Health monitoring
- Graceful shutdown

View File

@ -1,292 +0,0 @@
# Conditional Logging System
## Overview
The TCP Dashboard project implements a sophisticated conditional logging system that provides fine-grained control over logging behavior across all components. This system supports hierarchical logging, conditional logging, and error-only logging modes.
## Key Features
### 1. Conditional Logging
- **No Logger**: If no logger instance is passed to a component's constructor, that component performs no logging operations
- **Logger Provided**: If a logger instance is passed, the component uses it for logging
- **Error-Only Mode**: If `log_errors_only=True` is set, only error and critical level messages are logged
### 2. Logger Inheritance
- Components that receive a logger pass the same logger instance down to child components
- This creates a hierarchical logging structure that follows the component hierarchy
### 3. Hierarchical File Organization
- Log files are organized based on component hierarchy
- Each major component gets its own log directory
- Child components log to their parent's log file
## Component Hierarchy
```
Top-level Application (individual logger)
├── ProductionManager (individual logger)
│ ├── DataSaver (receives logger from ProductionManager)
│ ├── DataValidator (receives logger from ProductionManager)
│ ├── DatabaseConnection (receives logger from ProductionManager)
│ └── CollectorManager (individual logger)
│ ├── OKX collector BTC-USD (individual logger)
│ │ ├── DataAggregator (receives logger from OKX collector)
│ │ ├── DataTransformer (receives logger from OKX collector)
│ │ └── DataProcessor (receives logger from OKX collector)
│ └── Another collector...
```
## Usage Examples
### Basic Usage
```python
from utils.logger import get_logger
from data.exchanges.okx.collector import OKXCollector
# Create a logger for the collector
collector_logger = get_logger('okx_collector_btc_usdt', verbose=True)
# Create collector with logger - all child components will use this logger
collector = OKXCollector(
symbol='BTC-USDT',
logger=collector_logger
)
# Child components (data processor, validator, transformer) will automatically
# receive and use the same logger instance
```
### No Logging Mode
```python
# Create collector without logger - no logging will be performed
collector = OKXCollector(
symbol='BTC-USDT',
logger=None # or simply omit the parameter
)
# No log files will be created, no console output
```
### Error-Only Logging Mode
```python
from utils.logger import get_logger
from data.collector_manager import CollectorManager
# Create logger for manager
manager_logger = get_logger('collector_manager', verbose=True)
# Create manager with error-only logging
manager = CollectorManager(
manager_name="production_manager",
logger=manager_logger,
log_errors_only=True # Only errors and critical messages will be logged
)
# Manager will only log errors, but child collectors can have their own loggers
```
### Hierarchical Logging Setup
```python
from utils.logger import get_logger
from data.collector_manager import CollectorManager
from data.exchanges.okx.collector import OKXCollector
# Create manager with its own logger
manager_logger = get_logger('collector_manager', verbose=True)
manager = CollectorManager(logger=manager_logger)
# Create individual collectors with their own loggers
btc_logger = get_logger('okx_collector_btc_usdt', verbose=True)
eth_logger = get_logger('okx_collector_eth_usdt', verbose=True)
btc_collector = OKXCollector('BTC-USDT', logger=btc_logger)
eth_collector = OKXCollector('ETH-USDT', logger=eth_logger)
# Add collectors to manager
manager.add_collector(btc_collector)
manager.add_collector(eth_collector)
# Result:
# - Manager logs to: logs/collector_manager/YYYY-MM-DD.txt
# - BTC collector logs to: logs/okx_collector_btc_usdt/YYYY-MM-DD.txt
# - ETH collector logs to: logs/okx_collector_eth_usdt/YYYY-MM-DD.txt
# - All child components of each collector log to their parent's file
```
## Implementation Details
### Base Classes
All base classes support conditional logging:
```python
class BaseDataCollector:
def __init__(self, ..., logger=None, log_errors_only=False):
self.logger = logger
self.log_errors_only = log_errors_only
def _log_debug(self, message: str) -> None:
if self.logger and not self.log_errors_only:
self.logger.debug(message)
def _log_error(self, message: str, exc_info: bool = False) -> None:
if self.logger:
self.logger.error(message, exc_info=exc_info)
```
### Child Component Pattern
Child components receive logger from parent:
```python
class OKXCollector(BaseDataCollector):
def __init__(self, symbol: str, logger=None):
super().__init__(..., logger=logger)
# Pass logger to child components
self._data_processor = OKXDataProcessor(
symbol,
logger=self.logger # Pass parent's logger
)
```
### Conditional Logging Helpers
All components use helper methods for conditional logging:
```python
def _log_debug(self, message: str) -> None:
"""Log debug message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.debug(message)
def _log_info(self, message: str) -> None:
"""Log info message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.info(message)
def _log_warning(self, message: str) -> None:
"""Log warning message if logger is available and not in errors-only mode."""
if self.logger and not self.log_errors_only:
self.logger.warning(message)
def _log_error(self, message: str, exc_info: bool = False) -> None:
"""Log error message if logger is available (always logs errors)."""
if self.logger:
self.logger.error(message, exc_info=exc_info)
def _log_critical(self, message: str, exc_info: bool = False) -> None:
"""Log critical message if logger is available (always logs critical)."""
if self.logger:
self.logger.critical(message, exc_info=exc_info)
```
## Log File Structure
```
logs/
├── collector_manager/
│ └── 2024-01-15.txt
├── okx_collector_btc_usdt/
│ └── 2024-01-15.txt
├── okx_collector_eth_usdt/
│ └── 2024-01-15.txt
└── production_manager/
└── 2024-01-15.txt
```
## Configuration Options
### Logger Parameters
- `logger`: Logger instance or None
- `log_errors_only`: Boolean flag for error-only mode
- `verbose`: Console output (when creating new loggers)
- `clean_old_logs`: Automatic cleanup of old log files
- `max_log_files`: Maximum number of log files to keep
### Environment Variables
```bash
# Enable verbose console logging
VERBOSE_LOGGING=true
# Enable console output
LOG_TO_CONSOLE=true
```
## Best Practices
### 1. Component Design
- Always accept `logger=None` parameter in constructors
- Pass logger to all child components
- Use conditional logging helper methods
- Never assume logger is available
### 2. Error Handling
- Always log errors regardless of `log_errors_only` setting
- Use appropriate log levels
- Include context in error messages
### 3. Performance
- Conditional logging has minimal performance impact
- Logger checks are fast boolean operations
- No string formatting when logging is disabled
### 4. Testing
- Test components with and without loggers
- Verify error-only mode works correctly
- Check that child components receive loggers properly
## Migration Guide
### Updating Existing Components
1. **Add logger parameter to constructor**:
```python
def __init__(self, ..., logger=None, log_errors_only=False):
```
2. **Add conditional logging helpers**:
```python
def _log_debug(self, message: str) -> None:
if self.logger and not self.log_errors_only:
self.logger.debug(message)
```
3. **Update all logging calls**:
```python
# Before
self.logger.info("Message")
# After
self._log_info("Message")
```
4. **Pass logger to child components**:
```python
child = ChildComponent(logger=self.logger)
```
### Testing Changes
```python
# Test without logger
component = MyComponent(logger=None)
# Should work without errors, no logging
# Test with logger
logger = get_logger('test_component')
component = MyComponent(logger=logger)
# Should log normally
# Test error-only mode
component = MyComponent(logger=logger, log_errors_only=True)
# Should only log errors
```
This conditional logging system provides maximum flexibility while maintaining clean, maintainable code that works in all scenarios.

View File

@ -0,0 +1,782 @@
# Data Collection Service
The Data Collection Service is a production-ready service for cryptocurrency market data collection with clean logging and robust error handling. It provides a service layer that manages multiple data collectors for different trading pairs and exchanges.
## Overview
The service provides a high-level interface for managing the data collection system, handling configuration, lifecycle management, and monitoring. It acts as a orchestration layer on top of the core data collector components.
## Features
- **Service Lifecycle Management**: Start, stop, and monitor data collection operations
- **JSON Configuration**: File-based configuration with automatic defaults
- **Clean Production Logging**: Only essential operational information
- **Health Monitoring**: Service-level health checks and auto-recovery
- **Graceful Shutdown**: Proper signal handling and cleanup
- **Multi-Exchange Orchestration**: Coordinate collectors across multiple exchanges
- **Production Ready**: Designed for 24/7 operation with monitoring
## Quick Start
### Basic Usage
```bash
# Start with default configuration (indefinite run)
python scripts/start_data_collection.py
# Run for 8 hours
python scripts/start_data_collection.py --hours 8
# Use custom configuration
python scripts/start_data_collection.py --config config/my_config.json
```
### Monitoring
```bash
# Check status once
python scripts/monitor_clean.py
# Monitor continuously every 60 seconds
python scripts/monitor_clean.py --interval 60
```
## Configuration
The service uses JSON configuration files with automatic default creation if none exists.
### Default Configuration Location
`config/data_collection.json`
### Configuration Structure
```json
{
"exchanges": {
"okx": {
"enabled": true,
"trading_pairs": [
{
"symbol": "BTC-USDT",
"enabled": true,
"data_types": ["trade"],
"timeframes": ["1m", "5m", "15m", "1h"]
},
{
"symbol": "ETH-USDT",
"enabled": true,
"data_types": ["trade"],
"timeframes": ["1m", "5m", "15m", "1h"]
}
]
}
},
"collection_settings": {
"health_check_interval": 120,
"store_raw_data": true,
"auto_restart": true,
"max_restart_attempts": 3
},
"logging": {
"level": "INFO",
"log_errors_only": true,
"verbose_data_logging": false
}
}
```
### Configuration Options
#### Exchange Settings
- **enabled**: Whether to enable this exchange
- **trading_pairs**: Array of trading pair configurations
#### Trading Pair Settings
- **symbol**: Trading pair symbol (e.g., "BTC-USDT")
- **enabled**: Whether to collect data for this pair
- **data_types**: Types of data to collect (["trade"], ["ticker"], etc.)
- **timeframes**: Candle timeframes to generate (["1m", "5m", "15m", "1h", "4h", "1d"])
#### Collection Settings
- **health_check_interval**: Health check frequency in seconds
- **store_raw_data**: Whether to store raw trade data
- **auto_restart**: Enable automatic restart on failures
- **max_restart_attempts**: Maximum restart attempts before giving up
#### Logging Settings
- **level**: Log level ("DEBUG", "INFO", "WARNING", "ERROR")
- **log_errors_only**: Only log errors and essential events
- **verbose_data_logging**: Enable verbose logging of individual trades/candles
## Service Architecture
### Service Layer Components
```
┌─────────────────────────────────────────────────┐
│ DataCollectionService │
│ ┌─────────────────────────────────────────┐ │
│ │ Configuration Manager │ │
│ │ • JSON config loading/validation │ │
│ │ • Default config generation │ │
│ │ • Runtime config updates │ │
│ └─────────────────────────────────────────┘ │
│ ┌─────────────────────────────────────────┐ │
│ │ Service Monitor │ │
│ │ • Service-level health checks │ │
│ │ • Uptime tracking │ │
│ │ • Error aggregation │ │
│ └─────────────────────────────────────────┘ │
│ │ │
│ ┌─────────────────────────────────────────┐ │
│ │ CollectorManager │ │
│ │ • Individual collector management │ │
│ │ • Health monitoring │ │
│ │ • Auto-restart coordination │ │
│ └─────────────────────────────────────────┘ │
└─────────────────────────────────────────────────┘
┌─────────────────────────────┐
│ Core Data Collectors │
│ (See data_collectors.md) │
└─────────────────────────────┘
```
### Data Flow
```
Configuration → Service → CollectorManager → Data Collectors → Database
↓ ↓
Service Monitor Health Monitor
```
### Storage Integration
- **Raw Data**: PostgreSQL `raw_trades` table via repository pattern
- **Candles**: PostgreSQL `market_data` table with multiple timeframes
- **Real-time**: Redis pub/sub for live data distribution
- **Service Metrics**: Service uptime, error counts, collector statistics
## Logging Philosophy
The service implements **clean production logging** focused on operational needs:
### What Gets Logged
✅ **Service Lifecycle**
- Service start/stop events
- Configuration loading
- Service initialization
✅ **Collector Orchestration**
- Collector creation and destruction
- Service-level health summaries
- Recovery operations
✅ **Configuration Events**
- Config file changes
- Runtime configuration updates
- Validation errors
✅ **Service Statistics**
- Periodic uptime reports
- Collection summary statistics
- Performance metrics
### What Doesn't Get Logged
❌ **Individual Data Points**
- Every trade received
- Every candle generated
- Raw market data
❌ **Internal Operations**
- Individual collector heartbeats
- Routine database operations
- Internal processing steps
## API Reference
### DataCollectionService
The main service class for managing data collection operations.
#### Constructor
```python
DataCollectionService(config_path: str = "config/data_collection.json")
```
**Parameters:**
- `config_path`: Path to JSON configuration file
#### Methods
##### `async run(duration_hours: Optional[float] = None) -> bool`
Run the service for a specified duration or indefinitely.
**Parameters:**
- `duration_hours`: Optional duration in hours (None = indefinite)
**Returns:**
- `bool`: True if successful, False if error occurred
**Example:**
```python
service = DataCollectionService()
await service.run(duration_hours=24) # Run for 24 hours
```
##### `async start() -> bool`
Start the data collection service and all configured collectors.
**Returns:**
- `bool`: True if started successfully
##### `async stop() -> None`
Stop the service gracefully, including all collectors and cleanup.
##### `get_status() -> Dict[str, Any]`
Get current service status including uptime, collector counts, and errors.
**Returns:**
```python
{
'service_running': True,
'uptime_hours': 12.5,
'collectors_total': 6,
'collectors_running': 5,
'collectors_failed': 1,
'errors_count': 2,
'last_error': 'Connection timeout for ETH-USDT',
'configuration': {
'config_file': 'config/data_collection.json',
'exchanges_enabled': ['okx'],
'total_trading_pairs': 6
}
}
```
##### `async initialize_collectors() -> bool`
Initialize all collectors based on configuration.
**Returns:**
- `bool`: True if all collectors initialized successfully
##### `load_configuration() -> Dict[str, Any]`
Load and validate configuration from file.
**Returns:**
- `dict`: Loaded configuration
### Standalone Function
#### `run_data_collection_service(config_path, duration_hours)`
```python
async def run_data_collection_service(
config_path: str = "config/data_collection.json",
duration_hours: Optional[float] = None
) -> bool
```
Convenience function to run the service with minimal setup.
**Parameters:**
- `config_path`: Path to configuration file
- `duration_hours`: Optional duration in hours
**Returns:**
- `bool`: True if successful
## Integration Examples
### Basic Service Integration
```python
import asyncio
from data.collection_service import DataCollectionService
async def main():
service = DataCollectionService("config/my_config.json")
# Run for 24 hours
success = await service.run(duration_hours=24)
if not success:
print("Service encountered errors")
if __name__ == "__main__":
asyncio.run(main())
```
### Custom Status Monitoring
```python
import asyncio
from data.collection_service import DataCollectionService
async def monitor_service():
service = DataCollectionService()
# Start service in background
start_task = asyncio.create_task(service.run())
# Monitor status every 5 minutes
while service.running:
status = service.get_status()
print(f"Service Uptime: {status['uptime_hours']:.1f}h")
print(f"Collectors: {status['collectors_running']}/{status['collectors_total']}")
print(f"Errors: {status['errors_count']}")
await asyncio.sleep(300) # 5 minutes
await start_task
asyncio.run(monitor_service())
```
### Programmatic Control
```python
import asyncio
from data.collection_service import DataCollectionService
async def controlled_collection():
service = DataCollectionService()
try:
# Initialize and start
await service.initialize_collectors()
await service.start()
# Monitor and control
while True:
status = service.get_status()
# Check if any collectors failed
if status['collectors_failed'] > 0:
print("Some collectors failed, checking health...")
# Service auto-restart will handle this
await asyncio.sleep(60) # Check every minute
except KeyboardInterrupt:
print("Shutting down service...")
finally:
await service.stop()
asyncio.run(controlled_collection())
```
### Configuration Management
```python
import asyncio
import json
from data.collection_service import DataCollectionService
async def dynamic_configuration():
service = DataCollectionService()
# Load and modify configuration
config = service.load_configuration()
# Add new trading pair
config['exchanges']['okx']['trading_pairs'].append({
'symbol': 'SOL-USDT',
'enabled': True,
'data_types': ['trade'],
'timeframes': ['1m', '5m']
})
# Save updated configuration
with open('config/data_collection.json', 'w') as f:
json.dump(config, f, indent=2)
# Restart service with new config
await service.stop()
await service.start()
asyncio.run(dynamic_configuration())
```
## Error Handling
The service implements robust error handling at the service orchestration level:
### Service Level Errors
- **Configuration Errors**: Invalid JSON, missing required fields
- **Initialization Errors**: Failed collector creation, database connectivity
- **Runtime Errors**: Service-level exceptions, resource exhaustion
### Error Recovery Strategies
1. **Graceful Degradation**: Continue with healthy collectors
2. **Configuration Validation**: Validate before applying changes
3. **Service Restart**: Full service restart on critical errors
4. **Error Aggregation**: Collect and report errors across all collectors
### Error Reporting
```python
# Service status includes error information
status = service.get_status()
if status['errors_count'] > 0:
print(f"Service has {status['errors_count']} errors")
print(f"Last error: {status['last_error']}")
# Get detailed error information from collectors
for collector_name in service.manager.list_collectors():
collector_status = service.manager.get_collector_status(collector_name)
if collector_status['status'] == 'error':
print(f"Collector {collector_name}: {collector_status['statistics']['last_error']}")
```
## Testing
### Running Service Tests
```bash
# Run all data collection service tests
uv run pytest tests/test_data_collection_service.py -v
# Run specific test categories
uv run pytest tests/test_data_collection_service.py::TestDataCollectionService -v
# Run with coverage
uv run pytest tests/test_data_collection_service.py --cov=data.collection_service
```
### Test Coverage
The service test suite covers:
- Service initialization and configuration loading
- Collector orchestration and management
- Service lifecycle (start/stop/restart)
- Configuration validation and error handling
- Signal handling and graceful shutdown
- Status reporting and monitoring
- Error aggregation and recovery
### Mock Testing
```python
import pytest
from unittest.mock import AsyncMock, patch
from data.collection_service import DataCollectionService
@pytest.mark.asyncio
async def test_service_with_mock_collectors():
with patch('data.collection_service.CollectorManager') as mock_manager:
# Mock successful initialization
mock_manager.return_value.start.return_value = True
service = DataCollectionService()
result = await service.start()
assert result is True
mock_manager.return_value.start.assert_called_once()
```
## Production Deployment
### Docker Deployment
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY . .
# Install dependencies
RUN pip install uv
RUN uv pip install -r requirements.txt
# Create logs and config directories
RUN mkdir -p logs config
# Copy production configuration
COPY config/production.json config/data_collection.json
# Health check
HEALTHCHECK --interval=60s --timeout=10s --start-period=30s --retries=3 \
CMD python scripts/health_check.py || exit 1
# Run service
CMD ["python", "scripts/start_data_collection.py", "--config", "config/data_collection.json"]
```
### Kubernetes Deployment
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: data-collection-service
spec:
replicas: 1
selector:
matchLabels:
app: data-collection-service
template:
metadata:
labels:
app: data-collection-service
spec:
containers:
- name: data-collector
image: crypto-dashboard/data-collector:latest
ports:
- containerPort: 8080
env:
- name: POSTGRES_HOST
value: "postgres-service"
- name: REDIS_HOST
value: "redis-service"
volumeMounts:
- name: config-volume
mountPath: /app/config
- name: logs-volume
mountPath: /app/logs
livenessProbe:
exec:
command:
- python
- scripts/health_check.py
initialDelaySeconds: 30
periodSeconds: 60
volumes:
- name: config-volume
configMap:
name: data-collection-config
- name: logs-volume
emptyDir: {}
```
### Systemd Service
```ini
[Unit]
Description=Cryptocurrency Data Collection Service
After=network.target postgres.service redis.service
Requires=postgres.service redis.service
[Service]
Type=simple
User=crypto-collector
Group=crypto-collector
WorkingDirectory=/opt/crypto-dashboard
ExecStart=/usr/bin/python scripts/start_data_collection.py --config config/production.json
ExecReload=/bin/kill -HUP $MAINPID
Restart=always
RestartSec=10
KillMode=mixed
TimeoutStopSec=30
# Environment
Environment=PYTHONPATH=/opt/crypto-dashboard
Environment=LOG_LEVEL=INFO
# Security
NoNewPrivileges=true
PrivateTmp=true
ProtectSystem=strict
ReadWritePaths=/opt/crypto-dashboard/logs
[Install]
WantedBy=multi-user.target
```
### Environment Configuration
```bash
# Production environment variables
export ENVIRONMENT=production
export POSTGRES_HOST=postgres.internal
export POSTGRES_PORT=5432
export POSTGRES_DB=crypto_dashboard
export POSTGRES_USER=dashboard_user
export POSTGRES_PASSWORD=secure_password
export REDIS_HOST=redis.internal
export REDIS_PORT=6379
# Service configuration
export DATA_COLLECTION_CONFIG=/etc/crypto-dashboard/data_collection.json
export LOG_LEVEL=INFO
export HEALTH_CHECK_INTERVAL=120
```
## Monitoring and Alerting
### Metrics Collection
The service exposes metrics for monitoring systems:
```python
# Service metrics
service_uptime_hours = 24.5
collectors_running = 5
collectors_total = 6
errors_per_hour = 0.2
data_points_processed = 15000
```
### Health Checks
```python
# External health check endpoint
async def health_check():
service = DataCollectionService()
status = service.get_status()
if not status['service_running']:
return {'status': 'unhealthy', 'reason': 'service_stopped'}
if status['collectors_failed'] > status['collectors_total'] * 0.5:
return {'status': 'degraded', 'reason': 'too_many_failed_collectors'}
return {'status': 'healthy'}
```
### Alerting Rules
```yaml
# Prometheus alerting rules
groups:
- name: data_collection_service
rules:
- alert: DataCollectionServiceDown
expr: up{job="data-collection-service"} == 0
for: 5m
annotations:
summary: "Data collection service is down"
- alert: TooManyFailedCollectors
expr: collectors_failed / collectors_total > 0.5
for: 10m
annotations:
summary: "More than 50% of collectors have failed"
- alert: HighErrorRate
expr: rate(errors_total[5m]) > 0.1
for: 15m
annotations:
summary: "High error rate in data collection service"
```
## Performance Considerations
### Resource Usage
- **Memory**: ~150MB base + ~15MB per trading pair (including service overhead)
- **CPU**: Low (async I/O bound, service orchestration)
- **Network**: ~1KB/s per trading pair
- **Storage**: Service logs ~10MB/day
### Scaling Strategies
1. **Horizontal Scaling**: Multiple service instances with different configurations
2. **Configuration Partitioning**: Separate services by exchange or asset class
3. **Load Balancing**: Distribute trading pairs across service instances
4. **Regional Deployment**: Deploy closer to exchange data centers
### Optimization Tips
1. **Configuration Tuning**: Optimize health check intervals and timeframes
2. **Resource Limits**: Set appropriate memory and CPU limits
3. **Batch Operations**: Use efficient database operations
4. **Monitoring Overhead**: Balance monitoring frequency with performance
## Troubleshooting
### Common Service Issues
#### Service Won't Start
```
❌ Failed to start data collection service
```
**Solutions:**
1. Check configuration file validity
2. Verify database connectivity
3. Ensure no port conflicts
4. Check file permissions
#### Configuration Loading Failed
```
❌ Failed to load config from config/data_collection.json: Invalid JSON
```
**Solutions:**
1. Validate JSON syntax
2. Check required fields
3. Verify file encoding (UTF-8)
4. Recreate default configuration
#### No Collectors Created
```
❌ No collectors were successfully initialized
```
**Solutions:**
1. Check exchange configuration
2. Verify trading pair symbols
3. Check network connectivity
4. Review collector creation logs
### Debug Mode
Enable verbose service debugging:
```json
{
"logging": {
"level": "DEBUG",
"log_errors_only": false,
"verbose_data_logging": true
}
}
```
### Service Diagnostics
```python
# Run diagnostic check
from data.collection_service import DataCollectionService
service = DataCollectionService()
status = service.get_status()
print(f"Service Running: {status['service_running']}")
print(f"Configuration File: {status['configuration']['config_file']}")
print(f"Collectors: {status['collectors_running']}/{status['collectors_total']}")
# Check individual collector health
for collector_name in service.manager.list_collectors():
collector_status = service.manager.get_collector_status(collector_name)
print(f"{collector_name}: {collector_status['status']}")
```
## Related Documentation
- [Data Collectors System](../components/data_collectors.md) - Core collector components
- [Logging System](../components/logging.md) - Logging configuration
- [Database Operations](../database/operations.md) - Database integration
- [Monitoring Guide](../monitoring/README.md) - System monitoring setup